
First Contact

IT & Medien Centrum | CC HPC
March 13, 2021

IT & Medien Centrum | LiDO3 | First Contact

Table Of Contents

1 LiDO3 - first contact 5
1.1 Introduction . 5
1.2 Scope . 7
1.3 Non-scope . 7

2 Prerequisites 8
2.1 How do I get / extend a user account? 8

2.1.1 Application . 8
2.1.2 Approval . 11
2.1.3 Account creation . 12

2.2 SSH Key . 12
2.2.1 Create SSH Key on Unix . 12
2.2.2 Create SSH Key on Windows . 13
2.2.3 Changing your SSH public key 15

3 Publications 16

4 Working with LiDO3 17
4.1 Basic workflow . 17
4.2 Connect . 18

4.2.1 Unix . 19
4.2.2 Windows . 21

4.2.2.1 PuTTY . 21
4.2.2.2 WinSCP . 26

4.2.3 Inter-node connections . 31
4.2.4 Troubleshooting . 35

4.2.4.1 Keyfile permissions . 35
4.2.4.2 Getting prompted for a password on login 36
4.2.4.3 Rejected connections 36

4.3 Linux Environment . 36

LiDO3 | First Contact page 2 of 120

IT & Medien Centrum | LiDO3 | First Contact

4.3.1 Working with the Linux shell . 36
4.3.1.1 Editing files . 36

4.3.2 Filesystems . 37
4.3.2.1 /home and /work file systems 37
4.3.2.2 Read-only /home directory on compute nodes 39
4.3.2.3 Dealing with the disk space quotas 39

4.3.2.3.1 Compressing application data 40
4.3.2.4 /scratch file system . 41

4.3.3 Filetransfer between LiDO3 and external computers 42
4.3.4 Shared file access . 43
4.3.5 Software modules . 45

4.3.5.1 Loaded modules . 45
4.3.5.2 Available modules . 45
4.3.5.3 Load a module . 46
4.3.5.4 Unload a module . 46
4.3.5.5 Modules in job scripts 46
4.3.5.6 Compiler modules . 47

4.3.6 Installing your own software . 48
4.3.6.1 configure-make-install 48
4.3.6.2 pip . 49

4.4 Resource management . 49
4.4.1 Partition . 52
4.4.2 Working with partitions . 53

4.4.2.1 srun - interactive execution and jobsteps 55
4.4.2.2 sbatch - Submit a job script 57
4.4.2.3 salloc - Allocate nodes 60
4.4.2.4 scontrol, squeue, showq - Query Job status 61
4.4.2.5 scancel - Cancel a queued job 64
4.4.2.6 Decreasing job priority with scontrol, sbatch . 65
4.4.2.7 seff, sacct - show post job performance analysis 65

4.4.3 Constraints on node-features . 67
4.4.4 Generic Resource (GRES) - request a GPU 71
4.4.5 Memory management . 75
4.4.6 Utilize complete nodes . 78
4.4.7 Slurm statements . 78
4.4.8 Slurm cheat sheet . 81
4.4.9 List of job states . 83
4.4.10 Format options for slurm commands 83
4.4.11 Job variables . 84

4.5 Examples . 85

LiDO3 | First Contact page 3 of 120

IT & Medien Centrum | LiDO3 | First Contact

4.5.1 Basic slurm script example . 85
4.5.2 Example using multiple GPU nodes 85
4.5.3 Common software example: ANSYS CFX 86
4.5.4 Common software example: ANSYS Fluent 89
4.5.5 Common software example: Matlab 91
4.5.6 Common software example: R 93

4.5.6.1 Using multiple versions of R along with additional R
modules . 96

4.5.7 Third-party node usage example 97
4.5.8 Have a job automatically clean up when risking to exceed the

configured walltime . 98
4.5.9 Example for job steps . 101
4.5.10 Example for parallel debugging with TotalView 102

4.6 System overview . 105
4.7 Dictionary . 106

4.7.1 Walltime . 106
4.7.2 Backfilling . 106

4.8 Get support . 108
4.9 Frequently asked questions . 108

4.9.1 My Slurm job exits with can't open /dev/ipath, network
↪ down (err=26) . 108

4.9.2 No GPU is visible on a GPU node 108
4.9.3 How can i use more than one CPU socket on a GPU node? . . . 109

4.10 Appendix . 110
4.10.1 Symbolic links for non-writable home directory 110
4.10.2 Migrating your Slurm scripts to full node usage 112

4.10.2.1 Executing several processes concurrently in the back-
ground . 112

4.10.2.2 Slurm’s srun --multi-prog option 114
4.10.2.3 GNU Parallel . 116

4.10.3 Slurm for Torque/PBS users . 118
4.10.3.1 Job variables in Slurm and Torque 119

4.10.4 Picture credits . 120

LiDO3 | First Contact page 4 of 120

IT & Medien Centrum | LiDO3 | First Contact

Chapter 1

LiDO3 - first contact

1.1 Introduction

You may have a laptop or PC with 8 to 16 cores, several terabytes of hard disk space
and several gigabytes of main memory – or access to a comparably equipped server.
Because you have determined that this equipment is not sufficient for the simulations
you intend to run with your application, you were redirected to the HPC cluster LiDO3.
However, LiDO3 is not one particularly powerful and well-equipped server with thou-
sands of cores, petabytes of hard disk space and terabytes of main memory. In other
words, a scaled-up version of your own equipment. Instead it is more a scaled-out
version: it consists of several hundred individual servers with an average equipment

LiDO3 | First Contact page 5 of 120

IT & Medien Centrum | LiDO3 | First Contact

like the laptop or PC or server mentioned at the beginning, plus a jointly usable hard
disk space every one of these servers can use concurrently, connected via a special
low-latency and fast network.
In this respect, the use of LiDO3 differs from the use of your laptop:
You can not simply run your application on one of the LiDO3 gateways. You could,
but in this case the resources of the gateways (40 cores, 256 GiB RAM) would already
be exhausted by the need of simulations of individual users! Attempts to perform large
calculations on the gateways is not prevented from the outset, but is sanctioned in the
case of discovery with the temporary blocking of the user account.
As – in contrast to your laptop/PC/server – several hundred scientists and students
have access to LiDO3 and want to run potentially dozens to thousands of simula-
tions simultaneously on LiDO3, there is a scheduler that attempts to broker between
computational demand and the available computational resources. It distributes the
simulations over the available compute nodes in a way that not several users share the
same ressources (CPU/RAM) or, in the worst case, eat them away one another.
This scheduler is called Slurm1. It provides interactive and non-interactive (so-called
batch jobs) sessions.
The interactive workflow differs from the way you are used to work on your laptop only
by an additional command in advance (look for the srun command in the remainder of
this document or any Slurm documentation). Be aware, though, that for an interactive
Slurm session to work as intended, you do rely on a uninterrupted network connection
to LiDO3 for the entire duration of the execution of your simulation! In addition, it
may happen that sufficient resources for your interactive Slurm job become available
only after some time of waiting (few hours or days of waiting time, depending on the
size of your resource request). Possibly at an inconvenient time, e.g. at night at 2
a.m., a time you do not want to work or are not at your computer at all.
That is why the use of batch jobs for large production calculations is generally prefer-
able.

If you happen to not unterstand how to use the Slurm scheduling system after
reading this document, please contact us beforehand, thus we can clarify on how your
application could be ported and executed correctly to LiDO3.

1https://en.wikipedia.org/wiki/Slurm

LiDO3 | First Contact page 6 of 120

https://en.wikipedia.org/wiki/Slurm
https://en.wikipedia.org/wiki/Slurm

IT & Medien Centrum | LiDO3 | First Contact

1.2 Scope
This document intends to guide you through the first steps on LiDO3, TU Dortmund’s
high performance cluster (HPC): to get access to the system and a job running.
We renounce the explicit mention of the female form and hope that this omission
allows fluent reading of the instructions.

1.3 Non-scope
Programming, especially parallel programming and the usage of libraries like MPI2 is
not subject of this document. Neither is it a guide for structuring workload to scale
on a HPC environment.

2https://en.wikipedia.org/wiki/Message_Passing_Interface

LiDO3 | First Contact page 7 of 120

https://en.wikipedia.org/wiki/Message_Passing_Interface
https://en.wikipedia.org/wiki/Message_Passing_Interface

Chapter 2

Prerequisites

2.1 How do I get / extend a user account?

2.1.1 Application
Applications must be submitted by permanent employees of the Technische Universität
Dortmund or the institution of the applicant.
In most cases, employees of the Technische Universität Dortmund can use the service
portal1 to submit an application online.
In this application form, it is mandatory to provide information about association (e. g.
faculty and chair), the intended purpose of LiDO usage, termination date of LiDO
usage, name and email address of your approver (your supervising professor) and your
public SSH key which you are supposed to have generated before submitting the form.
For generating your public and private key pair see page 12.

The LiDO application form is not visible for students without a student assistant
contract (“Hiwi-Vertrag”) nor for external PhD students. If such a student is
supposed to use the LiDO cluster, his supervisor must submit the form and is en-
couraged to use the text box labelled “Additional information” to add the remark
that the account application is actually for a student, supplying additionally the
student’s real name, login name, email address and phone number.

1https://service.tu-dortmund.de/group/intra/lido3neuantrag

8

https://service.tu-dortmund.de/group/intra/lido3neuantrag
https://service.tu-dortmund.de/group/intra/lido3neuantrag
https://service.tu-dortmund.de/group/intra/lido3neuantrag

IT & Medien Centrum | LiDO3 | First Contact

Figure 2.1: Use “Neuantrag” to submit the application.

LiDO3 | First Contact page 9 of 120

IT & Medien Centrum | LiDO3 | First Contact

Figure 2.2: Insert your generated public key into the “SSH Public Key” field to submit
your public key.

If the project is funded by the Fachhochschule Dortmund or UA Ruhr within the
framework of a cooperaton with the Technische Universität Dortmund, you have to
apply directly at the Service Desk with the following filled out form2. Please note
that this application can only be used by professors for their own projects, doctoral or
post-doctoral research.

2https://www.itmc.tu-dortmund.de/cms/Medienpool/pdfs/
Hochleistungsrechnen/hauptantrag-lido-externe.pdf

LiDO3 | First Contact page 10 of 120

https://www.itmc.tu-dortmund.de/cms/Medienpool/pdfs/Hochleistungsrechnen/hauptantrag-lido-externe.pdf
https://www.itmc.tu-dortmund.de/cms/Medienpool/pdfs/Hochleistungsrechnen/hauptantrag-lido-externe.pdf
https://www.itmc.tu-dortmund.de/cms/Medienpool/pdfs/Hochleistungsrechnen/hauptantrag-lido-externe.pdf

IT & Medien Centrum | LiDO3 | First Contact

Zentrale und Serviceeinrichtungen- IT und Medien Centrum (ITMC)
Servicedesk
Otto-Hahn-Str. 12, room E.037
D-44227 Dortmund

If you have questions regarding the account or are an applicant from a university outside
Dortmund, please contact

Maria Pefferkuch
Zentrale und Serviceeinrichtungen- IT und Medien Centrum (ITMC)
Otto-Hahn-Str. 12, room E.036
Phone: +49 231 / 755 - 2367

Users from the UA Ruhr, please contact the Service Desk by telephone to make an
appointment.

To manage your existing LiDO3 user account, please use the web forms in the
LiDO3 user management portal3 (access from university network only, SSO login
with uni-account is mandatory):

2.1.2 Approval
Upon submitting the application form service portal4, a ticket is generated in the
ITMC ticket system that involves informing your approver (your supervising professor)
via e-mail about your account application. The approver is kindly requested to accept
or decline your application. Once the approver has accepted or declined your LiDO3
account application, the LiDO team gets informed. If the approver does not react, the
LiDO team is, unfortunately, not informed about the pending account application. The
Service Desk, however, can check for pending account applications and by this check
whether your LiDO3 account application was received by the ITMC ticket system at
all.

3https://l3umw.lido.tu-dortmund.de:8193/usermanagement/static/
index.html

4https://service.tu-dortmund.de/group/intra/lido3neuantrag

LiDO3 | First Contact page 11 of 120

https://l3umw.lido.tu-dortmund.de:8193/usermanagement/static/index.html
https://service.tu-dortmund.de/group/intra/lido3neuantrag
https://l3umw.lido.tu-dortmund.de:8193/usermanagement/static/index.html
https://l3umw.lido.tu-dortmund.de:8193/usermanagement/static/index.html
https://service.tu-dortmund.de/group/intra/lido3neuantrag

IT & Medien Centrum | LiDO3 | First Contact

2.1.3 Account creation
Once an approver has accepted your account application, the LiDO team gets informed
by the ticket system about it. Typically, within a work day or two your account is then
semi-automatically created. If it takes considerably longer and you do not get any
feedback about your account creation, it is almost certain the LiDO team has not
yet been informed about your pending account application, but that the approver
has overlooked the Matrix42 e-mail that asks for approval or denial of your account
application. In that case, you may want to check with your approver first before
contacting the Service Desk.

2.2 SSH Key
SSH keys are used to identify yourself to a computer using public-key cryptography5

instead of a password. On one hand, this is done for security reasons – a SSH key
is much harder to crack than a password, if at all – and on the other hand for user
comfort.
The internet is full of tutorials that show how to create and use a SSH key, so we will
just refer to one example for Linux users6 and one for Windows/PuTTY users7.

The use of SSH-Keys is mandatory. You cannot log into LiDO3 with a username
and password. In case you are prompted for a password other than your SSH key
passphrase when you try to log in to either one of the gateway servers, something
went wrong with your SSH keys: either the public key entered in the application form
got scrambled or the private key does not match the public key (any more).

2.2.1 Create SSH Key on Unix
Open a shell and enter

$ ssh-keygen -t rsa -b 4096 -C "your.email@tu-dortmund.de"

5https://en.wikipedia.org/wiki/Public-key_cryptography
6https://www.digitalocean.com/community/tutorials/how-to-set-up-

ssh-keys--2
7https://www.howtoforge.com/how-to-configure-ssh-keys-

authentication-with-putty-and-linux-server-in-5-quick-steps

LiDO3 | First Contact page 12 of 120

https://en.wikipedia.org/wiki/Public-key_cryptography
https://www.digitalocean.com/community/tutorials/how-to-set-up-ssh-keys--2
https://www.howtoforge.com/how-to-configure-ssh-keys-authentication-with-putty-and-linux-server-in-5-quick-steps
https://en.wikipedia.org/wiki/Public-key_cryptography
https://www.digitalocean.com/community/tutorials/how-to-set-up-ssh-keys--2
https://www.digitalocean.com/community/tutorials/how-to-set-up-ssh-keys--2
https://www.howtoforge.com/how-to-configure-ssh-keys-authentication-with-putty-and-linux-server-in-5-quick-steps
https://www.howtoforge.com/how-to-configure-ssh-keys-authentication-with-putty-and-linux-server-in-5-quick-steps

IT & Medien Centrum | LiDO3 | First Contact

If you already have other SSH-keys, you can change the filename here, otherwise just
use the default.

Generating public/private rsa key pair.
Enter file in which to save the key
(/home/<username>/.ssh/id_rsa):

When prompted, enter a secure passphrase to protect8 your – private – SSH key.

Enter passphrase (empty for no passphrase):
[Type a passphrase]
Enter same passphrase again:
[Type passphrase again]
Your identification has been saved in
↪ /home/<username>/.ssh/id_rsa.

Your public key has been saved in
↪ /home/<username>/.ssh/id_rsa.pub.

(...)

Copy and paste only the public key (typically marked by the .pub file extension) into
the user application form (see page 10) after the successful creation.

2.2.2 Create SSH Key on Windows
Starting from Windows 10, Version 1809 (Oktober 2018 Update; you can check the ver-
sion by pressing Win-key+R and then invoking the command \lstinlinewinver!),
an OpenSSH port is available in the command line (Eingabeaufforderung). This in-
cludes the program ssh-keygen described in the previous section 2.2.1.
If you want to rely on a GUI-based solution, you can use puttygen from the PuTTY
Software Suite.9 Click on Generate. To build the key pair, it is important to move
your mouse in random directions while the key is generated.

8If someone gains access to your computer, they also gain access to every system that uses your
SSH-key-pair. To add an extra layer of security, you should add a passphrase to your SSH key.

9https://www.chiark.greenend.org.uk/~sgtatham/putty/

LiDO3 | First Contact page 13 of 120

https://www.chiark.greenend.org.uk/~sgtatham/putty/
https://www.chiark.greenend.org.uk/~sgtatham/putty/

IT & Medien Centrum | LiDO3 | First Contact

Figure 2.3: Random movements of the mousepointer are used in order to create the
key pair.

After that you have to enter a password which is later used to protect your private key.
Save your private and your public key on the Windows machine. PuTTY uses its own
file format (suffix .ppk) which can not be used on Linux directly. Therefore copy and
paste only the public key into the user application form (see figure 2.4 on page 10).

LiDO3 | First Contact page 14 of 120

IT & Medien Centrum | LiDO3 | First Contact

Figure 2.4: Save the private and the public key. Copy and paste the public key (marked
in yellow) to the user application form.

2.2.3 Changing your SSH public key
Unlike on other Unix systems your SSH key will not be visible in ~/.ssh/authorized_keys
on LiDO3. Thus any changes to your key must be advertised in the LiDO3 user man-
agement portal10 (access from university network only, SSO login with uni-account is
mandatory).

10https://l3umw.lido.tu-dortmund.de:8193/usermanagement/static/
index.html

LiDO3 | First Contact page 15 of 120

https://l3umw.lido.tu-dortmund.de:8193/usermanagement/static/index.html
https://l3umw.lido.tu-dortmund.de:8193/usermanagement/static/index.html
https://l3umw.lido.tu-dortmund.de:8193/usermanagement/static/index.html
https://l3umw.lido.tu-dortmund.de:8193/usermanagement/static/index.html

Chapter 3

Publications

Please drop us a short e-mail with a citation reference for publications for which LiDO3
has been used. We need this information in our reports to DFG (German Research
Foundation) that funded the LiDO3 acquisition.
It would be appreciated if you could include a short acknowledgement in your paper,
something along the lines of:

The authors gratefully acknowledge the computing time
provided on the Linux HPC cluster at Technical University
Dortmund (LiDO3), partially funded in the course of the
Large-Scale Equipment Initiative by the German Research
Foundation (DFG) as project 271512359.

or

Die erforderlichen Berechnungen wurden auf dem
Linux-HPC-Cluster der Technischen Universität Dortmund
(LiDO3) durchgeführt, in Teilen durch die
Forschungsgroßgeräte-Initiative der Deutschen
Forschungsgemeinschaft (DFG) unter der Projektnummer
271512359 gefördert.

16

Chapter 4

Working with LiDO3

4.1 Basic workflow
The basic workflow is

◾ Connect to one of the gateway servers via SSH1.
◾ Create a job.
◾ Enqueue the job into the job queue.
◾ One or more nodes calculate the result.
◾ Receive the result on a gateway server.

Figure 4.1: Clients connect to one of the gateway servers and transmit jobs.

1http://en.wikipedia.org/wiki/Secure_Shell

17

http://en.wikipedia.org/wiki/Secure_Shell
http://en.wikipedia.org/wiki/Secure_Shell

IT & Medien Centrum | LiDO3 | First Contact

4.2 Connect
As long as your operating systems has an up-to-date version of a SSH2-client, you can
connect to one of the gateway servers:

◾ gw01.lido.tu-dortmund.de

◾ gw02.lido.tu-dortmund.de

Both gateways have the same software stack and allow access to all jobs and files, it
does not matter which one you choose. If one gateway is down due to maintenance or
failure, there is still a second one.
The login credentials consist of your unimail username and the private key of the key
pair you provided us in the application form.
If you used a passphrase to protect your private SSH key – what we recommend –,
the SSH client (or an authentication agent like pageant) will prompt you for that
passphrase.3 Typically, you have about one minute to answer the passphrase prompt
until the SSH key exchange is severed by the LiDO3 gateway you are trying to connect
to.5 If otherwise the requested password is not related to the private key file, but to
the actual login, e.g.

<username@gw01.lido.tu-dortmund.de's password:

something is either wrong in your setup or the private SSH key does not match the
public SSH key stored on LiDO3.

Please note that LiDO3 is only reachable inside the university network! If you
want to use LiDO3 from outside the university, e.g. from home or at a conference, it
is mandatory to establish a VPN connection to the TU Dortmund network first. If you
try to create a SSH connection to LiDO3 without a VPN connection from outside the
TU Dortmund network, you will get a network time out error message. With Putty, the
error message looks like depicted in figure 4.2.6 Given that your SSH connection will

2http://en.wikipedia.org/wiki/Secure_Shell
3Depending on the actual SSH Client, you might not get any visual or acoustic feedback while you

type your passphrase.4 For instance with Putty, it might seem your keyboard entries are completely
ignored until you press the enter key.

5After that grace period to enter the passphrase has expired, Putty, e.g., will report a Fatal
↪ Error and that the remote side unexpectedly closed the network connection.

6See the ServicePortal7 for up-to-date information and tutorials on how to establish a VPN con-
nection to the TU Dortmund network.

LiDO3 | First Contact page 18 of 120

http://en.wikipedia.org/wiki/Secure_Shell
http://en.wikipedia.org/wiki/Secure_Shell
https://service.tu-dortmund.de/

IT & Medien Centrum | LiDO3 | First Contact

be severed every time you VPN connection gets reset, it is recommended to connect to
LiDO3 inside a remote desktop session that runs on a server inside the TU Dortmund
network. So, establish a VPN connection to the TU Dortmund network, (re-)connect
to a remote desktop session and from within that session create a SSH connection
to LiDO3. This way, whenever you are working interactively on LiDO3, e.g. when
using a graphical program like Abacus, DDT, Totalview, your entire workflow does not
terminate in case your VPN connection gets interrupted. Remote Desktop sessions are
available for Windows, Mac and Linux8. For non-graphical LiDO3 usage, you may want
to use a terminal multiplexing software on the LiDO3 gateways directly, e.g. tmux10.
This has a lower overhead that a remote desktop session and still protects you from
loosing your environment if the network connection to LiDO3 gets interrupted.

Figure 4.2: Putty reports a Fatal Error while connecting to LiDO3 gateways from
outside the TU Dortmund network, without an active VPN connection to the TU
Dortmund.

4.2.1 Unix
On any Unix-style operating system you should be able to connect from a terminal via

ssh -i <private ssh-key> <account_name>@<gateway_name>

replacing <private ssh-key> with the path/filename of your private SSH
Key (see page 12), <account_name> with your LiDO-account-name and
<gateway_name> with one of the pre-mentioned names of the gateway servers.

8Look into Cendio ThinLinc software9 when connecting to LiDO3 from Linux.
10https://github.com/tmux/tmux

LiDO3 | First Contact page 19 of 120

https://github.com/tmux/tmux
https://www.cendio.com/
https://github.com/tmux/tmux

IT & Medien Centrum | LiDO3 | First Contact

If you connect to one of the gateway servers for the first time, you will be asked if the
key fingerprint from this server is correct. This is done for security reasons to make
sure that this really is one of the servers you want to connect to. The correct key
fingerprints are as follows:

$ ssh-keygen -lf <(ssh-keyscan gw01.lido.tu-dortmund.de)
gw01.lido.tu-dortmund.de:22 SSH-2.0-OpenSSH_7.4
gw01.lido.tu-dortmund.de:22 SSH-2.0-OpenSSH_7.4
gw01.lido.tu-dortmund.de:22 SSH-2.0-OpenSSH_7.4
256 SHA256:SxL75DVFyNKVbSMkB1M/fPTy5qcPtWa5M9iHHe9OETU
↪ gw01.lido.tu-dortmund.de (ECDSA)

2048 SHA256:rG0Cmye6DibyWvaqjHcma6vnwsvTfYATy1JM/O200Ns
↪ gw01.lido.tu-dortmund.de (RSA)

256 SHA256:lUQLD2VY/pTVpsSPwuUwvHA8jm/tNiGJ+GbaHP9sBPo
↪ gw01.lido.tu-dortmund.de (ED25519)

$ ssh-keygen -lf <(ssh-keyscan gw02.lido.tu-dortmund.de)
gw02.lido.tu-dortmund.de:22 SSH-2.0-OpenSSH_7.4
gw02.lido.tu-dortmund.de:22 SSH-2.0-OpenSSH_7.4
gw02.lido.tu-dortmund.de:22 SSH-2.0-OpenSSH_7.4
2048 SHA256:rG0Cmye6DibyWvaqjHcma6vnwsvTfYATy1JM/O200Ns
↪ gw02.lido.tu-dortmund.de (RSA)

256 SHA256:SxL75DVFyNKVbSMkB1M/fPTy5qcPtWa5M9iHHe9OETU
↪ gw02.lido.tu-dortmund.de (ECDSA)

256 SHA256:sYjJMuRut7jSomxbluWOf0YKE1y5QE5esAQovRBveHo
↪ gw02.lido.tu-dortmund.de (ED25519)

When using Putty, the fingerprints are given in the MD5 format instead of the SHD256
format.

root@gw01: /root>ssh-keygen -E md5 -lf <(ssh-keyscan
↪ gw01.lido.tu-dortmund.de)

gw01.lido.tu-dortmund.de:22 SSH-2.0-OpenSSH_7.4
gw01.lido.tu-dortmund.de:22 SSH-2.0-OpenSSH_7.4
gw01.lido.tu-dortmund.de:22 SSH-2.0-OpenSSH_7.4
2048 MD5:a5:e3:b4:7f:cc:53:15:32:89:17:d7:ed:14:d5:6e:9d
↪ gw01.lido.tu-dortmund.de (RSA)

256 MD5:c6:ee:1d:4b:da:c9:dc:6c:86:08:30:14:f8:ff:18:f8
↪ gw01.lido.tu-dortmund.de (ECDSA)

256 MD5:a0:f4:f8:63:e8:79:e5:88:23:2d:1c:44:de:fc:18:81
↪ gw01.lido.tu-dortmund.de (ED25519)

root@gw02: /root>ssh-keygen -E md5 -lf <(ssh-keyscan
↪ gw02.lido.tu-dortmund.de)

gw02.lido.tu-dortmund.de:22 SSH-2.0-OpenSSH_7.4

LiDO3 | First Contact page 20 of 120

IT & Medien Centrum | LiDO3 | First Contact

gw02.lido.tu-dortmund.de:22 SSH-2.0-OpenSSH_7.4
gw02.lido.tu-dortmund.de:22 SSH-2.0-OpenSSH_7.4
2048 MD5:a5:e3:b4:7f:cc:53:15:32:89:17:d7:ed:14:d5:6e:9d
↪ gw02.lido.tu-dortmund.de (RSA)

256 MD5:c6:ee:1d:4b:da:c9:dc:6c:86:08:30:14:f8:ff:18:f8
↪ gw02.lido.tu-dortmund.de (ECDSA)

256 MD5:2f:58:ae:c4:eb:aa:bb:88:cf:5f:a1:fa:fc:49:0b:64
↪ gw02.lido.tu-dortmund.de (ED25519)

4.2.2 Windows
Older versions of Microsoft Windows come with no built-in SSH11-client-software, so
you have to download and install a third-party tool. Having Windows 10, you can
install a Linux subsystem12 and use that to start a connection.
Starting from Windows 10, Version 1809 (Oktober 2018 Update; you can check the ver-
sion by pressing Win-key+R and then invoking the command \lstinlinewinver!),
an OpenSSH port is available in the command line (Eingabeaufforderung). This in-
cludes the program ssh described in the previous section 4.2.1.
PuTTY13 is a well known and sufficient ssh-client and it’s free. MobaXterm14 is a fork
based on PuTTY with X11 server, tabbed SSH client and network tools.

4.2.2.1 PuTTY

Since Windows users may not be used to connect to other computers via SSH15, we
will describe it more detail here — assuming you use PuTTY16 as client software. Of
course you can use other SSH client software if that suits you better.
Replace <gateway_name> at Connection→SSH with one of the pre-mentioned
names of the gateway servers, enter the path to your SSH Key (see page 13) at
Connection→SSH→Auth and click on Open.

11http://en.wikipedia.org/wiki/Secure_Shell
12https://docs.microsoft.com/en-us/windows/wsl/install-win10
13http://www.chiark.greenend.org.uk/~sgtatham/putty/
14http://mobaxterm.mobatek.net/
15http://en.wikipedia.org/wiki/Secure_Shell
16http://www.chiark.greenend.org.uk/~sgtatham/putty/

LiDO3 | First Contact page 21 of 120

http://en.wikipedia.org/wiki/Secure_Shell
https://docs.microsoft.com/en-us/windows/wsl/install-win10
http://www.chiark.greenend.org.uk/~sgtatham/putty/
http://mobaxterm.mobatek.net/
http://en.wikipedia.org/wiki/Secure_Shell
http://www.chiark.greenend.org.uk/~sgtatham/putty/
http://en.wikipedia.org/wiki/Secure_Shell
https://docs.microsoft.com/en-us/windows/wsl/install-win10
http://www.chiark.greenend.org.uk/~sgtatham/putty/
http://mobaxterm.mobatek.net/
http://en.wikipedia.org/wiki/Secure_Shell
http://www.chiark.greenend.org.uk/~sgtatham/putty/

IT & Medien Centrum | LiDO3 | First Contact

Figure 4.3: Optional: hardcode your LiDO3 user name in your Putty session.

Figure 4.4: Mandatory: Enter the path and filename to your personal private SSH-key.

LiDO3 | First Contact page 22 of 120

IT & Medien Centrum | LiDO3 | First Contact

Figure 4.5: Mandatory: Enter the gateway name, path to your private SSH key. Then
click Open.

If you connect to one of the gateway servers for the first time, you will be asked if the
key fingerprint from this server is correct. This is done for security reasons to make
sure that this really is one of the servers you want to connect to. The correct key
fingerprints are as follows:

$ ssh-keygen -lf <(ssh-keyscan gw01.lido.tu-dortmund.de)
gw01.lido.tu-dortmund.de:22 SSH-2.0-OpenSSH_7.4
gw01.lido.tu-dortmund.de:22 SSH-2.0-OpenSSH_7.4
gw01.lido.tu-dortmund.de:22 SSH-2.0-OpenSSH_7.4
256 SHA256:SxL75DVFyNKVbSMkB1M/fPTy5qcPtWa5M9iHHe9OETU
↪ gw01.lido.tu-dortmund.de (ECDSA)

2048 SHA256:rG0Cmye6DibyWvaqjHcma6vnwsvTfYATy1JM/O200Ns
↪ gw01.lido.tu-dortmund.de (RSA)

256 SHA256:lUQLD2VY/pTVpsSPwuUwvHA8jm/tNiGJ+GbaHP9sBPo
↪ gw01.lido.tu-dortmund.de (ED25519)

$ ssh-keygen -lf <(ssh-keyscan gw02.lido.tu-dortmund.de)
gw02.lido.tu-dortmund.de:22 SSH-2.0-OpenSSH_7.4
gw02.lido.tu-dortmund.de:22 SSH-2.0-OpenSSH_7.4
gw02.lido.tu-dortmund.de:22 SSH-2.0-OpenSSH_7.4
2048 SHA256:rG0Cmye6DibyWvaqjHcma6vnwsvTfYATy1JM/O200Ns
↪ gw02.lido.tu-dortmund.de (RSA)

LiDO3 | First Contact page 23 of 120

IT & Medien Centrum | LiDO3 | First Contact

256 SHA256:SxL75DVFyNKVbSMkB1M/fPTy5qcPtWa5M9iHHe9OETU
↪ gw02.lido.tu-dortmund.de (ECDSA)

256 SHA256:sYjJMuRut7jSomxbluWOf0YKE1y5QE5esAQovRBveHo
↪ gw02.lido.tu-dortmund.de (ED25519)

When using Putty, the fingerprints are given in the MD5 format instead of the SHD256
format.

root@gw01: /root>ssh-keygen -E md5 -lf <(ssh-keyscan
↪ gw01.lido.tu-dortmund.de)

gw01.lido.tu-dortmund.de:22 SSH-2.0-OpenSSH_7.4
gw01.lido.tu-dortmund.de:22 SSH-2.0-OpenSSH_7.4
gw01.lido.tu-dortmund.de:22 SSH-2.0-OpenSSH_7.4
2048 MD5:a5:e3:b4:7f:cc:53:15:32:89:17:d7:ed:14:d5:6e:9d
↪ gw01.lido.tu-dortmund.de (RSA)

256 MD5:c6:ee:1d:4b:da:c9:dc:6c:86:08:30:14:f8:ff:18:f8
↪ gw01.lido.tu-dortmund.de (ECDSA)

256 MD5:a0:f4:f8:63:e8:79:e5:88:23:2d:1c:44:de:fc:18:81
↪ gw01.lido.tu-dortmund.de (ED25519)

root@gw02: /root>ssh-keygen -E md5 -lf <(ssh-keyscan
↪ gw02.lido.tu-dortmund.de)

gw02.lido.tu-dortmund.de:22 SSH-2.0-OpenSSH_7.4
gw02.lido.tu-dortmund.de:22 SSH-2.0-OpenSSH_7.4
gw02.lido.tu-dortmund.de:22 SSH-2.0-OpenSSH_7.4
2048 MD5:a5:e3:b4:7f:cc:53:15:32:89:17:d7:ed:14:d5:6e:9d
↪ gw02.lido.tu-dortmund.de (RSA)

256 MD5:c6:ee:1d:4b:da:c9:dc:6c:86:08:30:14:f8:ff:18:f8
↪ gw02.lido.tu-dortmund.de (ECDSA)

256 MD5:2f:58:ae:c4:eb:aa:bb:88:cf:5f:a1:fa:fc:49:0b:64
↪ gw02.lido.tu-dortmund.de (ED25519)

Accept the key with a click on Yes.

LiDO3 | First Contact page 24 of 120

IT & Medien Centrum | LiDO3 | First Contact

Figure 4.6: Accept the key fingerprint with a click on Yes.

Replace <account_name> with your LiDO-account-name and press the [Enter]
key.

Figure 4.7: Enter your account name and press [Enter].

Enter the password for your private key and press the [Enter] key. Now you are
logged in, welcome to the world of high performance computing.

LiDO3 | First Contact page 25 of 120

IT & Medien Centrum | LiDO3 | First Contact

Figure 4.8: Succesful login to one of the LiDO3-gateways.

You end the session with the command exit.

4.2.2.2 WinSCP

If you only want to copy some files to/from LiDO3, you can skip the Terminal/GUI
solutions and reside to scp, which is copy over SSH17, i.e. an encrypted file transfer
over the network. A widely used scp GUI for Windows is called WinSCP18. It provides
a NortonCommander-like GUI where you can easily transfer files from one side to the
other, literally.
The initial setup consists of converting your SSH private key, adding it to WinSCP and
adding the LiDO3 gateway URL. By default, the login dialog opens directly. If not, it
can be triggered via the button ’New Sessions’ (or ’Neue Sitzung’ if you use German
language settings) and from the menu ’Session’ (’Sitzung’).

17http://en.wikipedia.org/wiki/Secure_Shell
18https://winscp.net/eng/index.php

LiDO3 | First Contact page 26 of 120

http://en.wikipedia.org/wiki/Secure_Shell
https://winscp.net/eng/index.php
http://en.wikipedia.org/wiki/Secure_Shell
https://winscp.net/eng/index.php

IT & Medien Centrum | LiDO3 | First Contact

Figure 4.9: Setting up protocol, server and username and opening advanced settings

Figure 4.10: Enable SSH compression.

LiDO3 | First Contact page 27 of 120

IT & Medien Centrum | LiDO3 | First Contact

Figure 4.11: Open private key selection.

Figure 4.12: Select private key.

LiDO3 | First Contact page 28 of 120

IT & Medien Centrum | LiDO3 | First Contact

Figure 4.13: Confirm private key conversion.

Figure 4.14: Save converted key file.

LiDO3 | First Contact page 29 of 120

IT & Medien Centrum | LiDO3 | First Contact

Figure 4.15: Acknowledge success information.

Figure 4.16: Confirm key selection.

LiDO3 | First Contact page 30 of 120

IT & Medien Centrum | LiDO3 | First Contact

Figure 4.17: Save connection setup and open connection.

After you are connected, you can copy files around by drag-drop moving them from
one window to the other or using menu entries and keyboard shortcuts, respectively.
You can move (i.e. up-/download, then delete at source location) files to/from your
local client, move them on the server side to different server-side locations, rename,
edit and delete them.

4.2.3 Inter-node connections
Similar to connections from the outside, connections between LiDO3 compute nodes
and gateways are only allowed via password-less, public key-based SSH authentification.
Preferably, those SSH keys are not protected by a passphrase either.
In order to generate an additional SSH key pair that allows password-less SSH logins
between LiDO3 gateway servers and compute nodes (e.g. to be able to use software
like ANSYS Fluent), proceed as follows:19

Step 1)

In a login shell on one of the LiDO3 gateway servers, invoke the following command
19Please note that the leading dollar sign, $, in the commands listed below are meant as a mere

placeholder for your prompt and should not be entered, too.

LiDO3 | First Contact page 31 of 120

IT & Medien Centrum | LiDO3 | First Contact

$ ssh-keygen -t rsa -b 4096 -f ~/.ssh/id_rsa.lido3intern

You will be prompted for an optional passphrase. Twice, in order to confirm your input.
Omit a passphrase by just pressing the enter key when prompted for the passphrase.20

The command will generate, besides an output along the following lines

Generating public/private rsa key pair.
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in
↪ /home/user/.ssh/id_rsa.lido3intern.

Your public key has been saved in
↪ /home/user/.ssh/id_rsa.lido3intern.pub.

The key fingerprint is:
SHA256:[...] user@gw01
The key's randomart image is:
+---[RSA 4096]----+
| + |
| ~ |
| . - .|
| . . ++|
|. . S . .++*|
| o o oo +ooo=|
| o = .*+=o+.|
| + + +o+o.*=*|
| o++E@|
+----[SHA256]-----+

a new SSH key pair consisting of a private and a public key, in the appropriate file
formats "PEM RSA private key" and "OpenSSH RSA public key", respectively.

20You may wonder whether this is a security concern: No, it is not because this SSH key pair will
only be used inside LiDO3. While it is strongly advised to passphrase-protect the SSH private key
that is stored on your local computer and that you use to log in to LiDO3 from your local computer
(together with the corresponding unprotected SSH public key that is stored on LiDO3), there is no
additional security gain by protecting any private SSH key that you use merely for SSH connections
between LiDO3 compute nodes: anyone who gets access to your home directory on LiDO3 (e.g. by
getting a copy of your not passphrase-protected private SSH key or your passphrase-protected private
SSH key plus the passphrase) does not gain anything additionally with your unprotected SSH key
pair for LiDO3 inter-node SSH connections.

LiDO3 | First Contact page 32 of 120

IT & Medien Centrum | LiDO3 | First Contact

Use the generated SSH key pair for LiDO3 inter-node connections only and
do not use SSH keys from other systems. In case of a security breach on LiDO3,
those (private) SSH keys might be stolen and used to connection from LiDO3 to other
computer systems. Private SSH keys that allow to log in to multiple systems outside
LiDO3 impose the danger of compromising additional systems outside LiDO3.

Step 2)

Tweak your SSH configuration on LiDO3 to use the new SSH private key by de-
fault when making logins. The easiest way to do this is to create or modify the file
~/.ssh/config. By default, this configuration file does not exist. Verify that the
file ~/.ssh/config does not exist yet by invoking

$ ls ~/.ssh/config

If it does not exist, you will get the following error message

ls: cannot access /home/<your username>/.ssh/config: No such
↪ file or directory

In this case, you can create the file and store the required information in a single step
by simply invoking

$ echo "IdentityFile ~/.ssh/id_rsa.lido3intern" >
↪ ~/.ssh/config

You can check the contents of the newly created file with either one of the commands

$ cat ~/.ssh/config
$ more ~/.ssh/config
$ less ~/.ssh/config

If the file ~/.ssh/config does exist for you, you are most likely experienced enough
to customize it appropriately with an editor of your choice (on LiDO3, e.g. nedit,
pico, nano, emacs, vim, or on your local computer, additionally transferring the
newly created file to LiDO3 afterwards in the latter case) such that we can refrain
from detailing how to store the following line in the appropriate line:

LiDO3 | First Contact page 33 of 120

IT & Medien Centrum | LiDO3 | First Contact

IdentityFile ~/.ssh/id_rsa.lido3intern

Make sure that the file ~/.ssh/config has file permissions as the SSH client
expects it – otherwise its content will be completely ignored and you will still not be
able to use password-less logins. Proper file permissions can be imposed by running
any of the following three commands in a shell on LiDO3:

$ chmod u=rw,g=r,o=r ~/.ssh/config
$ chmod 644 ~/.ssh/config
$ chmod g-w ~/.ssh/config

Step 3)

Configure your own SSH setup on LiDO3 such that this newly generated SSH key pair is
used and accepted when attempting to SSH connect to a compute node. Do this by ap-
pending the content of the newly generated SSH public key file, ~/.ssh/id_rsa.lido3intern.pub,
to the file ~/.ssh/authorized_keys:

$ cat ~/.ssh/id_rsa.lido3intern.pub >> ~/.ssh/authorized_keys

Again, make sure that the file permissions of ~/.ssh/authorized_keys are more
restrictive than they are by default. Otherwise, password-less, public key-based SSH
logins will silently fail, for no apparent reason. So, next invoke either one of the
following commands:

$ chmod u=rw,g=r,o=r ~/.ssh/authorized_keys
$ chmod 644 ~/.ssh/authorized_keys
$ chmod g-w ~/.ssh/authorized_keys

Step 4)

In order to make sure that this new, passphrase-less SSH key pair is only used on
LiDO3 and merely for internal logins, you can – using an editor of your choice (on
LiDO3, e.g. nedit, pico, nano, emacs, vim, or on your local computer, addi-
tionally transferring the newly created file to LiDO3 afterwards in the latter case) –
prepend the line you just appended to the file ~/.ssh/authorized_keys with a
from-string. With the prefix

LiDO3 | First Contact page 34 of 120

IT & Medien Centrum | LiDO3 | First Contact

from="10.10.*"

the new SSH key pair will only be accepted for logins from within LiDO3. So, after
editing the file ~/.ssh/authorized_keys in step 3 and 4, its content (see above
for how to view its content with, e.g., the command line tools cat, more or less)
should look something along the lines of

from="10.10.*" ssh-rsa AAAAB3NzaC1yc2EA[....] 5sJ5Qw==
↪ user@gw01

Once you have traversed the steps above, you can try out password-less logins to a
compute node by first requesting, for instance, a small, 5-minute interactive shell from
Slurm via

$ srun --partition=short --nodes=1 --cpus-per-task=1
↪ --time=00:05:00 --pty bash

Once your interactive Slurm job starts on, say, cstd01-001 (and for as long as that
interactive Slurm job is running, in this example for 5 minutes), you should be able to
login - from a different login on a LiDO3 gateway - to that very same compute node
via SSH, too, without being asked for a password or passphrase.
Due to step 2, it is not necessary to tweak your existing Slurm job scripts in any kind
in order for this new SSH key pair to be used implicitly.

The new SSH key pair will not interfere with the pre-existing SSH key pairs
you use to log into LiDO3 itself. The new SSH key pair will never be queried when
connecting from outside to LiDO3. Regardless whether you took the optional step 4
or not.

4.2.4 Troubleshooting
4.2.4.1 Keyfile permissions

The SSH clients are somewhat picky regarding the file permissions of the private key
files and the personal SSH configuration file.
In Linux, you can set the right file permissions via

LiDO3 | First Contact page 35 of 120

IT & Medien Centrum | LiDO3 | First Contact

chmod 600 <file name>

In Windows, you can set the right file permissions via

Icacls <file name> /Inheritance:r
Icacls <file name> /Grant:r "%Username%":"(R)"

4.2.4.2 Getting prompted for a password on login

If you are asked for a password (other then the password securing your private key) you
most probably provided no or the wrong private key. In this case, SSH automatically
skips forward to the next authentification method, i.e. password authentification.
On LiDO3 password authentification is disabled and thus this login method will fail,
regardless of which password you provide in this step.

4.2.4.3 Rejected connections

After a few failed login attempts, your IP address is blocked for 30 minutes to prohibit
brute force attacks. After 30 minutes, connections are accepted again.

4.3 Linux Environment

4.3.1 Working with the Linux shell
If you have never worked with the Linux Shell Bash21 before, you can find more than
one tutorial22 in the internet.

4.3.1.1 Editing files

Working with a Linux Shell and with LiDO3 means working with textfiles. Here is a
list of installed text editors:

◾ vi23

◾ emacs24

◾ gedit25

21https://en.wikipedia.org/wiki/Bash_%28Unix_shell%29
22http://tldp.org/LDP/Bash-Beginners-Guide/html/
23https://en.wikipedia.org/wiki/Vi
24https://en.wikipedia.org/wiki/Emacs
25https://en.wikipedia.org/wiki/Gedit

LiDO3 | First Contact page 36 of 120

https://en.wikipedia.org/wiki/Bash_%28Unix_shell%29
http://tldp.org/LDP/Bash-Beginners-Guide/html/
http://tldp.org/LDP/Bash-Beginners-Guide/html/
https://en.wikipedia.org/wiki/Vi
https://en.wikipedia.org/wiki/Emacs
https://en.wikipedia.org/wiki/Gedit
https://en.wikipedia.org/wiki/Bash_%28Unix_shell%29
http://tldp.org/LDP/Bash-Beginners-Guide/html/
https://en.wikipedia.org/wiki/Vi
https://en.wikipedia.org/wiki/Emacs
https://en.wikipedia.org/wiki/Gedit

IT & Medien Centrum | LiDO3 | First Contact

◾ nedit26

◾ nano27

◾ pico28

Choose the one that suits your needs.
Some of the editors might seem rather strange for Windows users and if desired, one
can create and edit the text files locally on the Windows workstation and copy them
via to one of the gateway server or vice versa.

Just keep in mind that the newline29 character is handled differently on Linux
and Windows. You want to use a feature like ASCII mode = newline conversion in
your SSH client software - if available.

4.3.2 Filesystems
4.3.2.1 /home and /work file systems

On LiDO3 there are two file systems available on both gateway servers and all compute
nodes:

◾ /home and
◾ /work

On both of them user quotas are enabled. Available disk space quota and current
quota usage is automatically shown on login.
We would like to point your attention to the different properties of the two file systems
/home and /work available on LiDO3:

◾ /home has a quota of 32 GiB for user data, but its content is backed up on
tape such that in case of a file system problem the /home file system and its
data can be restored. On login, the current quota usage is displayed. It can be
manually queried by running

df -h $HOME

26https://en.wikipedia.org/wiki/NEdit
27https://en.wikipedia.org/wiki/GNU_nano
28https://en.wikipedia.org/wiki/Pico_(text_editor)
29https://en.wikipedia.org/wiki/Newline

LiDO3 | First Contact page 37 of 120

https://en.wikipedia.org/wiki/NEdit
https://en.wikipedia.org/wiki/GNU_nano
https://en.wikipedia.org/wiki/Pico_(text_editor)
https://en.wikipedia.org/wiki/Newline
https://en.wikipedia.org/wiki/NEdit
https://en.wikipedia.org/wiki/GNU_nano
https://en.wikipedia.org/wiki/Pico_(text_editor)
https://en.wikipedia.org/wiki/Newline

IT & Medien Centrum | LiDO3 | First Contact

/home is provided by two redundant NFS servers and is hence a network file
system, but not a parallel file system.

/home is read-only, i.e. write-protected on the compute nodes! If the
software you execute on the compute nodes needs to write to the home directory,
you have two options:

◾ Redefine HOME before invoking the command. Bash users can prepend the
actual command with HOME=/work/${USER}.

◾ Create symbolic links in your home directory to an alternate writable loca-
tion. See on page 110 for some examples of already existing software.

◾ /work has different characteristics: it has a default quota of 2 TiB30 for user
data, but the files are not saved externally - due to financial limitations (hu-
man resources, backup capacity and intra-university network bandwidth). It is
provided by several redundant file servers, uses the parallel file system BeeGFS
and has a total size of 1.28 PiB. /work can be read from and written to on
both gateways and all compute nodes. The link in your home directory called
“nobackup” leads to the /work/${USER} directory.
The quota can be manually queried by running

beegfs-ctl --getquota --uid $USER

In case of a severe file system problem the data might get LOST
completely.
This is no mere theoretical risk, on its predecessor cluster LiDOng it has hap-
pened multiple times. Please keep this in mind and backup important files in
/work yourself at regular intervals. If it is technically possible when an emer-
gency situation arises, we will grant a two days window to make backups. Don’t
firmly rely on this chance, though, and keep in mind that when storing terabytes
of data on LiDO3 your network bandwidth might not suffice to transfer all your
data from LiDO3 within two days.

30Since 2020-05-15 this quota is not only shown but also enforced! Exceptions may be granted
after sending a written justification.

LiDO3 | First Contact page 38 of 120

IT & Medien Centrum | LiDO3 | First Contact

cd /home/<user>/nobackup/<my-app>
sbatch myjob.sh

Since it is in the nature of a high performance cluster that many nodes, cores and
processes access data simultaneously on those file systems, the cluster uses a parallel
distributed file system named BeeGFS31.

While beeing a specialist for parallel access patterns, there is also a caveat:
working with many small files and accessing the directory structures (in doing any
equivalent of ls) stresses the parallel file system. Do not do that!

4.3.2.2 Read-only /home directory on compute nodes

X11 To be able to use X Window System software on compute nodes, the X11 magic
cookie needs to be written to/updated in a file named .Xauthority. Typi-
cally, this file is stored in a user’s home directory. To work around the fact that
the /home directory can not be written to on the compute nodes, a workaround
has been set up system-wide, the file /work/${USER}/.Xauthority is
used instead.

GnuPG If you plan to use software that uses gpg to verify the signature of files, please
note that gpg tries to create temporary files in ${HOME}/.gnupg while do-
ing so. In order to have gpg successfully verify signatures on compute nodes, you
need to move the directory ${HOME}/.gnupg to e.g. /work/${USER}/.gnupg
and set a symbolic link to this new location in your home directory instead:

test -d ${HOME}/.gnupg || mkdir ${HOME}/.gnupg
mv ${HOME}/.gnupg /work/${USER}
ln -s /work/${USER}/.gnupg ${HOME}

4.3.2.3 Dealing with the disk space quotas

As stated before in 4.3.2.1, the maximum disk space usage in /home is restricted to
32GiB and in /work to 2 TiB. If you regularly reach these limits, there are several
steps that might be helpful.

◾ obviously: delete programs, sourcecode and data, that you do not need anymore
◾ move everything that you can easily recover to /work.

31https://en.wikipedia.org/wiki/BeeGFS

LiDO3 | First Contact page 39 of 120

https://en.wikipedia.org/wiki/BeeGFS
https://en.wikipedia.org/wiki/BeeGFS

IT & Medien Centrum | LiDO3 | First Contact

◾ move all binaries, your own compilations and third-party programs, to /work
◾ if you have source code checkouts, that you do not change on your own on
LiDO3, move them to /work

◾ store reproducable application output to /work
◾ move data, that you do not need on LiDO3 in the near future to other sto-
rage sites. This has the benefit of not loosing data on /work on a filesystem
malfunction

◾ use binary/compressed output formats where available. The usual ASCII-based
data storage is very wasteful

◾ compress application output directly in your Slurm script or at least afterwards,
when you have finished your first-level analysis.

4.3.2.3.1 Compressing application data
There are several programs readily available on LiDO3 (gateway and compute nodes)
to compress you application data.
zip:

compress files
zip archive.zip file1 file2
recursively compress complete directories
zip -r archive.zip directory1 directory2
inspect
zipinfo archive.zip
decompress
unzip archive.zip

tar with gzip:

compress files
tar cvzf archive.tar.gz file1 directory2
inspect
tar tvzf archive.tar.gz
decompress
tar xvzf archive.tar.gz

tar with bzip2:

LiDO3 | First Contact page 40 of 120

IT & Medien Centrum | LiDO3 | First Contact

compress files
tar cvjf archive.tar.bz2 file1 directory2
inspect
tar tvjf archive.tar.bz2
decompress
tar xvjf archive.tar.bz2
\textbf{tar with xz:}
\begin{lstlisting}
compress files
tar cvJf archive.tar.xz file1 directory2
inspect
tar tvjf archive.tar.xz
decompress
tar xvJf archive.tar.xz

4.3.2.4 /scratch file system

If you need to do heavy I/O or parallel processing of data in files, consider using the
/scratch file system. /scratch is a local file system on each node that can’t be
accessed from other machines.

Figure 4.18: /home and /work can be accessed from any node, /scratch is only a local
file system.

The workflow would look something like this:
◾ Job starts

◾ Copy data from /work to /scratch

LiDO3 | First Contact page 41 of 120

IT & Medien Centrum | LiDO3 | First Contact

◾ Job runs
◾ Process data on /scratch

◾ Job ends
◾ Copy data from /scratch to /work

It is a good approach to create a directory in /scratch consisting of your user
name and job ID is as in /scratch/<username>_<job_id>.

4.3.3 Filetransfer between LiDO3 and external computers
The simplest approach is to use ssh, precisely scp, which is in some sense the cp re-
placement from the ssh suite. On an external linux/macos/unix/windows wsl machine,
the command

my_pc# scp -i <path-to-your-private-ssh-key>
↪ <path-to-local-file>
↪ lido-user-name@gw01.lido.tu-dortmund.de:/home/lido-user-name/

copies a file into your home directory on LiDO3. The command

my_pc# scp -i <path-to-your-private-ssh-key>
↪ lido-user-name@gw01.lido.tu-dortmund.de:/home/lido-user-name/some_file
↪ <local-target-directory>

copies a file back to your local computer. The parameter ’-r’ copies complete directories
recursively. See ’man scp’ for further details.
There are also some GUI32 clients for transfering the files back and forth from your
Windows machine, e.g. FileZilla33 and WinSCP34. For both programs, the respective
websites explain how to set up SSH public key authentication35,36.

32https://en.wikipedia.org/wiki/Graphical_user_interface
33https://filezilla-project.org/
34http://winscp.net/
35https://wiki.filezilla-project.org/Howto
36https://winscp.net/eng/docs/guide_public_key

LiDO3 | First Contact page 42 of 120

https://en.wikipedia.org/wiki/Graphical_user_interface
https://filezilla-project.org/
http://winscp.net/
https://wiki.filezilla-project.org/Howto
https://en.wikipedia.org/wiki/Graphical_user_interface
https://filezilla-project.org/
http://winscp.net/
https://wiki.filezilla-project.org/Howto
https://winscp.net/eng/docs/guide_public_key

IT & Medien Centrum | LiDO3 | First Contact

4.3.4 Shared file access
It is possible to grant other users read and/or write access to your own files and
directories. One common solution to achieve this is by exploiting the group feature
common to all unixoid operating systems.
You can ask the LiDO3 support team to create such a unix group containing multiple
LiDO3 users to grant all of them read/write access on selected files and directories.
Usually, you or any other member of the same unix group will want to create a subdi-
rectory in someone’s home or work directory which is dedicated for this group’s work.
You need to share this directory’s name with your unix group members as they – by
default – can not list the content of your (home/work) directory. They can, however,
once everything is set up, see everything that is stored in said subdirectory.
Technically speaking, if you grant write access to a shared subdirectory, its content –
along with all files and directories underneath it – are owned not only by you, but by
your unix group. For this, the setgid bit37 needs to be set, such that all newly created
files and directories are owned by this unix group, too.
Members of this unix group kann read any file if at least:

◾ The file belongs to the unix group.
◾ For all directories in the hierarchy leading to the, the x-bit is set for the group
(or, if it is not set for the group, it is set for everyone).

◾ The r-bit of this file is set for the group (or, if it is not set for the group, it is
set for everyone)

Example:
Users sma and smb are members of the group uxg. Group memberships can easily
be checked by issuing the command id, optionally providing a single username, e.g.
id smb. User smb wants to use a file in the home directory of user sma.

$ ls -lad /home
drwxr-xr-x 281 root root 282 Jul 10 16:09 /home

^
|
+---- active x-bit allows access for smb

37https://en.wikipedia.org/wiki/Setuid

LiDO3 | First Contact page 43 of 120

https://en.wikipedia.org/wiki/Setuid
https://en.wikipedia.org/wiki/Setuid

IT & Medien Centrum | LiDO3 | First Contact

smb is neither the owner of the directory /home (which is root) nor member of
the unix group root), but does belong to the category other The x-bit is set for the
topmost directory /home for category other such that every valid user, including smb,
can enter this directory. (See Wikipedia on Unix Permissions38 for details.) He can
even issue an ls as the r-bit is set for other for this directory, too.
The next directory in the hierarchy towards the home directory of user smb is /home/sma.
Because the x-bit is set for other for this directory, the user smb can enter this direc-
tory, too. Nevertheless, he cannot see the content of this directory, due to the missing
r-bit for both the group triple and other triple.

$ ls -lad /home/sma
drwx-----x 7 sma sma 32 Jul 12 13:31 /home/sma

^
|
+---- active x-bit allows access for smb

Finally, the directory /home/sma/shared-work, which shall contain the actual
shared files, belongs to the unix group uxg. The x-bit for this group allows user smb
to enter this directory.

$ ls -lad /home/sma/shared-work
drwxr-x--- 4 sma uxg 4 Jul 12 13:50 /home/sma-shared-work

The r-bit for the group uxg allows user smb to see the contents of this directory, too.
Other users that are neither member of the unix group uxg nor the user sma (a.k.a.
the owner) itself cannot see the contents or even enter the directory, because the r-bit
is not set for the third other triple.

If sma whould ever change the name of the directory sma-shared-work, he
would need to tell this to the other members of the unix group uxg, because they
cannot find out the new name in /home/sma themselves. Given that they are not
able to see its contents at all.
All newly created files and directories in and beneath /home/sma-shared-work
will be read- and writeable for the user sma and all members of the group uxg. This
(default) behaviour is controlled by the so-called umask39 and its current values.

38https://en.wikipedia.org/wiki/File-system_permissions
39https://en.wikipedia.org/wiki/Umask

LiDO3 | First Contact page 44 of 120

https://en.wikipedia.org/wiki/File-system_permissions
https://en.wikipedia.org/wiki/Umask
https://en.wikipedia.org/wiki/File-system_permissions
https://en.wikipedia.org/wiki/Umask

IT & Medien Centrum | LiDO3 | First Contact

$ umask -S
u=rwx,g=rwx,o=rx

If, for example, you wanted to change the default setting such that other members of
the group uxg can only read, but not write to newly created files, you could issue the
command

umask -S u=rwx,g=rx,o=rx

once or add it to your ~/.bashrc file for persistent impact.

4.3.5 Software modules
The software and tools needed for development and job execution are organized as
modules. Modules dynamically modify the users environment and make it possible to

◾ get a clean environment with no software visible at all,
◾ install concurrent versions of the same software and
◾ use software that usually excludes each other.

Working with those modules is done with the module40 command.

4.3.5.1 Loaded modules

The command module list shows the modules that are currently loaded in your
environment:

$ module list
No Modulefiles Currently Loaded.

4.3.5.2 Available modules

To list the modules that can be potentially loaded, enter the command module
↪ avail.

$ module avail

--- /usr/share/Modules/modulefiles ---

40http://linux.die.net/man/1/module

LiDO3 | First Contact page 45 of 120

http://linux.die.net/man/1/module
http://linux.die.net/man/1/module

IT & Medien Centrum | LiDO3 | First Contact

dot module-git module-info modules null use.own

---- /cluster/sfw/modulefiles ---
abaqus/2016 gcc/6.4.0 openblas/0.2.19
clang/4.0.1 gcc/7.1.0 openmpi/mpi_thread_multiple/cuda/2.1.1
(...)

4.3.5.3 Load a module

To load a module into your environment, enter the command module add, followed
by the <MODULE_NAME>:

$ module add clang
$ module list
Currently Loaded Modulefiles:

1) clang/4.0.1

4.3.5.4 Unload a module

To unload a specific module, use the command module rm, followed by the <MODULE_NAME>:

$ module rm clang
$ module list
No Modulefiles Currently Loaded.

To unload all modules, use module purge.
Further documentation of the module concept is available at the HLRN41.

Important: in order to make the activated modules available on the compute
nodes (during execution time) as well, the command module add must be included in
the user’s shell init files (e.g. .bash_profile or job script).

4.3.5.5 Modules in job scripts

If you run a job that depends on modules, please ensure that these modules are included
in the user’s shell init files (e.g. .bash_profile), so that the job has a proper
environment set up when being executed on the compute nodes! Alternatively, the
following lines are to be included in the Slurm job script before starting the application:

41https://www.hlrn.de/home/view/System2/ModulesUsage

LiDO3 | First Contact page 46 of 120

https://www.hlrn.de/home/view/System2/ModulesUsage
https://www.hlrn.de/home/view/System2/ModulesUsage

IT & Medien Centrum | LiDO3 | First Contact

Clean module environment
module purge
Load modules needed
module load [compiler modules][MPI modules]

4.3.5.6 Compiler modules

Compilers and libraries are selected and activated via module commands (see section
4.3.5 Software modules).

Table 4.1: Compilers

Compiler Module Commands
GNU Compiler Collection module add gcc gcc, g++, gfortran
Intel Studio XE module add intel icc, icpc, ifort
Portland PGI compiler module add pgi pgcc, pgCC, pgf77, pgf95
Oracle Solaris Studio module add oraclestudio suncc, sunCC, sunf77, sunf95
Clang compiler module add clang clang, clang++

If you want to compile a parallel program using MPI you can use the corresponding
compiler wrappers from the Open MPI modules.
The naming scheme for the openmpi modules is as follows:
openmpi//THREADINGSUPPORT/CUDASUPPORT/OPENMPIVERSION

with
◾ THREADINGSUPPORT: whether build with thread multiple support :42

mpi_thread_multiple/no_mpi_thread_multiple
◾ CUDASUPPORT: whether to enable the build-in support for data transfers be-
tween the GPUs and the network controller without explicit memory transfer
statements.

◾ OPENMPIVERSION: the actual Open MPI version, e.g. 4.0.1

For a complete overview of all modules available please see:

module avail openmpi

42https://www.open-mpi.org/doc/current/man3/MPI_Init_thread.3.php

LiDO3 | First Contact page 47 of 120

https://www.open-mpi.org/doc/current/man3/MPI_Init_thread.3.php
https://www.open-mpi.org/doc/current/man3/MPI_Init_thread.3.php

IT & Medien Centrum | LiDO3 | First Contact

4.3.6 Installing your own software
Many software packages can be installed in your own /home or /work directory.
Admittedly, sometimes you are required to install – as a prerequisite for the software
- certain libraries locally as well. Usually, you do not need any supervisor or admin
privileges to do so.
In contrast to most manuals, which describe a single-user computer setting where one
user is using one computer, LiDO3 is a multi-user system and thus some steps to install
a software package will differ from common documentation.
First, you have no superuser rights nor any sudo rights. So, instead of installing any
application system-wide via root or sudo commands, you need to limit yourself to an
installation in your own directories. This implies especially no usage of commands like
apt, apt-get or yum and nothing starting with sudo.
Instead of that, you need to search for installation modes called ’local’ or ’single-user’
or possibilities to change the ’installation target directory’ or similar terms.
In the following we depict some common installation routines and how they need to
be modified for local installations.
If the software you want to install happens to absolutely fail for a user-level installation,
feel free to ask the LiDO3 team 4.8 for additional support.

4.3.6.1 configure-make-install

Most classic Unix/Linux software packages use GNU Autotools43 (aclocal, autoconf,
automake) for their build system. As a result, the software can be compiled and in-
stalled from its source code in four steps:

◾ configure
◾ make
◾ make check
◾ make install

The first step lays the proper groundwork for all following steps. The second command
builds the actual binaries according to the rules determined in the first step. The third
step optionally tests the created binaries while the last instruction copies all files to
their final destinations. Usually, the configure script provides some informations on the
available command line parameters by issuing

43https://en.wikipedia.org/wiki/Configure_script

LiDO3 | First Contact page 48 of 120

https://en.wikipedia.org/wiki/Configure_script
https://en.wikipedia.org/wiki/Configure_script

IT & Medien Centrum | LiDO3 | First Contact

./configure --help

You want to look out for something like ’prefix’ which usually describes the directory
where all files will finally be installed. Thus, simply create your own application in-
stallation directory and let --prefix=$HOME/my_app_directory hint to this
directory.
For cmake-based44 build systems, you can choose a different installation location by
passing the command line option
-DCMAKE_INSTALL_PREFIX:PATH=$HOME/my_app_directory.
Afterwards, make install should install all necessary files (including binaries, li-
braries and manpages) under this directory in your home or work directory. Note
that you must not use the common phrase sudo make install but rather just
make install.
If the configure script has no means to change the installation directory, it is often
suficcient to stop after the make check step and use the binary created in the build
directory as is. If its not in the top-most directory, look out for something called bin
or a build subdirectory.
Finally you might want to add the installation directory to your $PATH environment
variable.

4.3.6.2 pip

pip is a widespread tool to install additional Python modules. To install these modules
into your home diretory, you need to use the parameter --user on every pip call:

pip3 install --user package_name

4.4 Resource management
LiDO3 uses the Slurm Workload Manager 45 to control batch jobs and cluster resources.
Slurm takes care of running the users’ jobs on allocated nodes and keeps track of the
users’ processes. Processes that are started directly on individual nodes – circumventing
the queuing system – are immediately killed without further notification.

44https://cmake.org/
45https://slurm.schedmd.com/

LiDO3 | First Contact page 49 of 120

https://cmake.org/
https://slurm.schedmd.com/
https://cmake.org/
https://slurm.schedmd.com/

IT & Medien Centrum | LiDO3 | First Contact

Slurm comes with a built-in scheduling system with the purpose of finding and allocat-
ing the necessary resources for a user’s job and organizes the usage between different
users and jobs taking scheduling policies, dynamic priorities, reservations, and fairshare
capabilities into account.
The entities managed by Slurm include:
nodes are the compute resource in Slurm.
partitions group nodes into logical – possibly overlapping – sets.
jobs allocate resources – inside a partition – to a user for a specified amount

of time.
job steps are sets of – possibly parallel – tasks within a job (see page 101).
tasks The actual runing code.

Figure 4.19: Slurm entities.

“The partitions can be considered job queues, each of which has an assortment of
constraints such as job size limit, job time limit, users permitted to use it, etc. Priority-
ordered jobs are allocated nodes within a partition until the resources (nodes, proces-
sors, memory, etc.) within that partition are exhausted. Once a job is assigned a
set of nodes, the user is able to initiate parallel work in the form of job steps in any

LiDO3 | First Contact page 50 of 120

IT & Medien Centrum | LiDO3 | First Contact

configuration within the allocation. For instance, a single job step may be started that
utilizes all nodes allocated to the job, or several job steps may independently use a
portion of the allocation.”

— Quoted from Slurm Quick Start User Guide

LiDO3 | First Contact page 51 of 120

IT & Medien Centrum | LiDO3 | First Contact

4.4.1 Partition
There are different partitions available on the LiDO3 cluster.

Table 4.2: Standard partitions

Queue max. walltime remarks
short 02:00:00 —
med 08:00:00 —
long 2-00:00:00 —
ultralong 28-00:00:00 no GPU or "non-blocking" nodes
testpart 02:00:00 use when instructed by LiDO3 ad-

ministrators

Table 4.3: Partitions with faculty hardware

Queue max. walltime remarks
ext_phy_prio 28-00:00:0 Xeon Phi “KNL”
ext_phy_norm 02:00:0 Xeon Phi “KNL”
ext_iom_prio 28-00:00:0 members group iom only
ext_iom_norm 02:00:00 —
ext_trr188 28-00:00:0 members group tr188 only
ext_vwl_prio 28-00:00:0 members group vwl only
ext_vwl_norm 02:00:0 —
ext_math_prio 28-00:00:0 members group math only
ext_math_norm 02:00:0 —
ext_chem_prio 28-00:00:0 members group chem only
ext_chem_norm 02:00:0 —
ext_biochem_
prio 28-00:00:0 members group kayserlab only
ext_biochem_
norm 02:00:0 —

The command sinfo provides an overview over the partitions.

LiDO3 | First Contact page 52 of 120

IT & Medien Centrum | LiDO3 | First Contact

Figure 4.20: Gathering information about the partitions.

4.4.2 Working with partitions
Working with jobs is done by using Slurm commands that describe the resource char-
acteristics of the job, e.g. number of nodes, processor cores needed and Walltime. This
can be done interactively from the shell or in a job script.
To start a job in Slurm, it must be put into a Partition. This is done with one of these
three commands:
srun “Run a parallel job on cluster managed by Slurm. If necessary, srun will first

create a resource allocation in which to run the parallel job.”
— Quoted from the srun manpage.

srun is typically used to start jobsteps inside a shell script that was launched
with sbatch. This way the code for preparing the job and clean-up afterwards
can run even if a job is terminated.

sbatch “sbatch submits a batch script to Slurm. The batch script may be given to
sbatch through a file name on the command line, or if no file name is spec-
ified, sbatch will read in a script from standard input. The batch script may
contain options preceded with "#SBATCH" before any executable commands in

LiDO3 | First Contact page 53 of 120

IT & Medien Centrum | LiDO3 | First Contact

the script.
sbatch exits immediately after the script is successfully transferred to the Slurm
controller and assigned a Slurm job ID. The batch script is not necessarily granted
resources immediately, it may sit in the queue of pending jobs for some time be-
fore its required resources become available.
By default both standard output and standard error are directed to a file of the
name "slurm-%j.out", where the "%j" is replaced with the job allocation
number. The file will be generated on the first node of the job allocation. Other
than the batch script itself, Slurm does no movement of user files.

When the job allocation is finally granted for the batch script, Slurm runs a
single copy of the batch script on the first node in the set of allocated nodes.

When the job allocation is finally granted for the batch script, Slurm runs a
single copy of the batch script on the first node in the set of allocated nodes. ”

— Quoted from the sbatch manpage.

salloc “salloc - Obtain a Slurm job allocation (a set of nodes), execute a command,
and then release the allocation when the command is finished.”

— Quoted from the salloc manpage.

Partitions with long configured walltimes are popular from the users view but on the
other hand they are somehow an unloved child from the cluster administrators per-
spective.

◾ When you as a user put a job inside a partition with a long configured walltime,
chances are high that you have to wait quite a long time before your job gets
even started. Statistics teaches us that the average waiting time is half of the
maximum configured walltime per partition.

◾ The same goes for maintenance windows. We have to drain those partitions
(i.e. starting of jobs is prohibited, submissions of jobs is still possible) very early
to make sure that not too many jobs are still running when we shut down the
cluster. All jobs still running need to be canceled when the maintenance starts.
Closing those partitions early can have a negative impact on the utilization of the
cluster: with long running jobs ending one by one and no new long running jobs
being allowed to start, compute nodes may become idle if not enough requests
are made for partitions with shorter maximum walltimes that are still open.

LiDO3 | First Contact page 54 of 120

IT & Medien Centrum | LiDO3 | First Contact

◾ In case of an emergeny shutdown of the cluster all currently running
jobs will get canceled. This, obviously, translates to data loss for all those jobs.
In a worst case scenario all calculated data from long running jobs gets lost
maybe just a few minutes before its planned end of runtime.

This is no mere theoretical risk, unscheduled emergency downtimes have hap-
pened before.

So, please consider to use checkpointing in your jobs and in your code in a way that
enables you to restart a canceled job and resume the work after the last checkpoint.
And while you are at it, think about breaking your long running job up in to smaller
parts that can run one after another in a partition with a shorter maximum walltime.
Best aim for under two hours, so your job(s) will fit in the short partition.
LiDO4 will – like most HPC clusters – probably not provide partitions with a walltime
greater than 24 hours.

4.4.2.1 srun - interactive execution and jobsteps

Slurm offers the possibility to execute jobs interactively. Execution of srun with the
command line option --pty bash results in Slurm reserving the requested node –
by using salloc under the hood (see page 60) – and starts bash on that node with
a login prompt due to the --pty option and waits for its execution. Since no partition
was given, the default short ist used. The user can then start his program from that
interactive shell.
Example session:

[<username>@gw01 ~]$ srun --pty bash
[<username>@cstd01-214 ~]$ echo $SLURM_TASK_PID
163545
[<username>@cstd01-214 ~]$ exit
[<username>@gw01 ~]$

As soon as the walltime is exceeded, the shell is automatically terminated!
Other options to srun include number of nodes, Walltime etc., see also section Slurm
statements.
Example session with 4 nodes and 3 tasks per node:

LiDO3 | First Contact page 55 of 120

IT & Medien Centrum | LiDO3 | First Contact

[<username>@gw01 ~]$ srun --nodes=4 --ntasks-per-node=3 --pty bash
[<username>@cstd01-214 ~]$ echo $SLURM_TASK_PID
166178
[<username>@cstd01-214 ~]$ exit
exit
[<username>@gw01 ~]$

If the --pty option is omitted, no login prompt will be given and any input will get
run 12 = (–nodes=4) × (–ntasks-per-node=3) times.
Example session with multiple times:

[<username>@gw01 ~]$ srun --nodes=4 --ntasks-per-node=3 bash
there is no prompt, so enter blindly:
echo $SLURM_TASK_PID
121395
104316
105574
167463
121396
104317
121397
104318
167464
105575
167465
105576
exit
[<username>@gw01 ~]$

The following shell script demoscript.sh is used to start a job non-interactive:

#!/bin/bash -l
echo "START SLURM_JOB_ID $SLURM_JOB_ID (SLURM_TASK_PID
↪ $SLURM_TASK_PID) on $SLURMD_NODENAME"

sleep 60
echo "STOP on $SLURMD_NODENAME"

Example session:

[<username>@gw01 ~]$ srun --nodes=2 --tasks-per-node=4
↪ demoscript.sh

START SLURM_JOB_ID 10894 (SLURM_TASK_PID 173171) on cstd01-214

LiDO3 | First Contact page 56 of 120

IT & Medien Centrum | LiDO3 | First Contact

START SLURM_JOB_ID 10894 (SLURM_TASK_PID 126888) on cstd01-215
START SLURM_JOB_ID 10894 (SLURM_TASK_PID 173173) on cstd01-214
START SLURM_JOB_ID 10894 (SLURM_TASK_PID 126889) on cstd01-215
START SLURM_JOB_ID 10894 (SLURM_TASK_PID 173174) on cstd01-214
START SLURM_JOB_ID 10894 (SLURM_TASK_PID 126891) on cstd01-215
START SLURM_JOB_ID 10894 (SLURM_TASK_PID 173172) on cstd01-214
START SLURM_JOB_ID 10894 (SLURM_TASK_PID 126890) on cstd01-215
STOP on cstd01-214
STOP on cstd01-214
STOP on cstd01-214
STOP on cstd01-215
STOP on cstd01-214
STOP on cstd01-215
STOP on cstd01-215
STOP on cstd01-215
[<username>@gw01 ~]$

Note that the execution with srun blocks your session. Only after demoscript.sh
is run 8 = (− − nodes = 2) × (− − ntasks − per − node = 4) times, you return to your
login prompt.

If you close your SSH session, all jobs started by srun – directly from your shell
– will be terminated!

4.4.2.2 sbatch - Submit a job script

If don’t want to submit your jobs details by hand and stay in front of the terminal
everytime, you can wrap the needed information into a job script for later execution.
A job script is basically a shell script that contains Slurm statements in the header
section. The rest of the script is code that should be executed AKA the job itself.

#!/bin/bash -l

#SBATCH --partition=short
#SBATCH --nodes=4
#SBATCH --ntasks-per-node=3
#SBATCH --time=2:00
#SBATCH --mem-per-cpu=100
#SBATCH --job-name=demoscript
#SBATCH --output=/work/<username>/job.out.txt
...some code...

LiDO3 | First Contact page 57 of 120

IT & Medien Centrum | LiDO3 | First Contact

A script can be submitted to the batch system with the command sbatch, followed
by <SCRIPT_NAME>. By using salloc under the hood (see page 60) the requested
nodes are reserved and used for job execution.

sbatch my_submit_script.sh

Example of a job script:

#!/bin/bash -l
#SBATCH --partition=short
#SBATCH --nodes=4
#SBATCH --ntasks-per-node=3
#SBATCH --time=0:30
#SBATCH --job-name=demoscript
#SBATCH --output=/work/<username>/demo.out.txt
echo "sbatch: START SLURM_JOB_ID $SLURM_JOB_ID \
(SLURM_TASK_PID $SLURM_TASK_PID) on $SLURMD_NODENAME"
echo "sbatch: SLURM_JOB_NODELIST $SLURM_JOB_NODELIST"
echo "sbatch: SLURM_JOB_ACCOUNT $SLURM_JOB_ACCOUNT"
srun /home/<username>/workerscript.sh &
wait
echo "sbatch: STOP"

The job script spawns 12 job steps, each calling workerscript.sh:

#!/bin/bash -l
echo "worker ($SLURMD_NODENAME): start"
echo "executing SLURM_JOB_ID $SLURM_JOB_ID \
(SLURM_TASK_PID $SLURM_TASK_PID) \
on $SLURMD_NODENAME"
sleep 10
echo "worker ($SLURMD_NODENAME): stop"

Executing the job script:

[<username>@gw01 ~]$ sbatch my_submit_script.sh
Submitted batch job 11283

waiting 10 seconds

[<username>@gw01 ~]$ cat /work/<username>/demo.out.txt

LiDO3 | First Contact page 58 of 120

IT & Medien Centrum | LiDO3 | First Contact

sbatch: START SLURM_JOB_ID 37170 (SLURM_TASK_PID 68044) on
↪ cstd01-205

sbatch: SLURM_JOB_NODELIST cstd01-[205-208]
sbatch: SLURM_JOB_ACCOUNT itmc
worker (cstd01-206): start
worker (cstd01-208): start
worker (cstd01-205): start
executing SLURM_JOB_ID 37170 (SLURM_TASK_PID 68077) on cstd01-205
worker (cstd01-207): start
executing SLURM_JOB_ID 37170 (SLURM_TASK_PID 66025) on cstd01-206
worker (cstd01-208): start
worker (cstd01-205): start
executing SLURM_JOB_ID 37170 (SLURM_TASK_PID 68078) on cstd01-205
executing SLURM_JOB_ID 37170 (SLURM_TASK_PID 72998) on cstd01-207
worker (cstd01-206): start
executing SLURM_JOB_ID 37170 (SLURM_TASK_PID 82054) on cstd01-208
worker (cstd01-205): start
worker (cstd01-207): start
executing SLURM_JOB_ID 37170 (SLURM_TASK_PID 66026) on cstd01-206
executing SLURM_JOB_ID 37170 (SLURM_TASK_PID 82053) on cstd01-208
executing SLURM_JOB_ID 37170 (SLURM_TASK_PID 68079) on cstd01-205
executing SLURM_JOB_ID 37170 (SLURM_TASK_PID 72999) on cstd01-207
worker (cstd01-206): start
worker (cstd01-208): start
executing SLURM_JOB_ID 37170 (SLURM_TASK_PID 82055) on cstd01-208
worker (cstd01-207): start
executing SLURM_JOB_ID 37170 (SLURM_TASK_PID 66027) on cstd01-206
executing SLURM_JOB_ID 37170 (SLURM_TASK_PID 73000) on cstd01-207
worker (cstd01-206): stop
worker (cstd01-208): stop
worker (cstd01-205): stop
worker (cstd01-207): stop
worker (cstd01-208): stop
worker (cstd01-206): stop
worker (cstd01-206): stop
worker (cstd01-208): stop
worker (cstd01-205): stop
worker (cstd01-205): stop
worker (cstd01-207): stop
worker (cstd01-207): stop
sbatch: STOP

Due to race conditions, the order is not predictable.

If you need to use third party software in your job script that is available via the
module system, see section Modules in job scripts on page 46.

LiDO3 | First Contact page 59 of 120

IT & Medien Centrum | LiDO3 | First Contact

If the path to the output file does not exist or can not be written to (e.g.
points outside of /work), the Slurm job will seemingly fail silently (unless mail noti-
fication is enabled). One can query the Slurm database explicitly for such failed jobs
with sacct --starttime=HH:MM --state=FAILED.

4.4.2.3 salloc - Allocate nodes

Resources for a job can be allocated in real time with the command salloc. Those
allocated resources are typically used to spawn a shell and – interactively – execute
srun commands to launch parallel tasks.
Whereas srun uses salloc under the hood to acquire the needed resources, using
salloc as a discrete command enables you to initiate different job steps inside an
allocated set of nodes.
To allocate 10 nodes using the --exclusive option so no other users will be running
jobs on the allocated nodes at the same time, enter

[<username>@gw01 ~]$ salloc --nodes=10 --exclusive
salloc: Granted job allocation 14008
salloc: Waiting for resource configuration
salloc: Nodes cstd01-[001-010] are ready for job

Now we will start 3 job steps on those 10 allocated nodes:
1. using 2 nodes (--nodes=2) starting with the first node (--relative=0) of

the allocated range.
2. using 4 nodes (--nodes=4) starting with the third node (--relative=2)

of the allocated range.
3. using 2 nodes (--nodes=4) starting with the seventh node (--relative=6)

of the allocated range.

[<username>@gw01 ~]$ srun --nodes=2 --relative=0 --jobid=14008
↪ /usr/bin/sleep 300&

[<username>@gw01 ~]$ srun --nodes=4 --relative=2 --jobid=14008
↪ /usr/bin/sleep 300&

[<username>@gw01 ~]$ srun --nodes=4 --relative=6 --jobid=14008
↪ /usr/bin/sleep 300&

LiDO3 | First Contact page 60 of 120

IT & Medien Centrum | LiDO3 | First Contact

Since no --time option was used with salloc, the allocation will last as
long as the timelimit of the partition. Further job steps can be initiated during that
timespan.
Allocations can also be used to start a session with the X Window System.

[<username>@gw01 ~]$ salloc --nodes=1 --exclusive
↪ --constraint=cstd01

salloc: Granted job allocation 14037
salloc: Waiting for resource configuration
salloc: Nodes cstd01-003 are ready for job
[<username>@gw01 ~]$ ssh -X cstd01-003
Warning: Permanently added 'cstd01-003,10.10.3.3' (ECDSA) to the

↪ list of known hosts.
[<username>@cstd01-003 ~]$ start-my-x-program
[<username>@cgpu01-003 ~]$ exit
logout
Connection to cgpu01-003 closed.
[<username>@gw01 ~]$ scancel 14037
[<username>@gw01 ~]$ salloc: Job allocation 14037 has been
↪ revoked.

4.4.2.4 scontrol, squeue, showq - Query Job status

The status of each Slurm job can be queried with scontrol show job <job_id>
and squeue.

[<username>@gw01 ~]$ scontrol show job 11283
JobId=11283 JobName=demoscript

UserId=<username>(<uid>) GroupId=<username>(<gid>)
↪ MCS_label=N/A
Priority=21149 Nice=0 Account=itmc QOS=normal
JobState=RUNNING Reason=None Dependency=(null)
Requeue=1 Restarts=0 BatchFlag=1 Reboot=0 ExitCode=0:0
RunTime=00:00:47 TimeLimit=00:02:00 TimeMin=N/A
SubmitTime=2017-08-11T14:20:13 EligibleTime=2017-08-11T14:20:13
StartTime=2017-08-11T14:20:13 EndTime=2017-08-11T14:22:13
↪ Deadline=N/A
PreemptTime=None SuspendTime=None SecsPreSuspend=0
Partition=short AllocNode:Sid=gw01:60481
ReqNodeList=(null) ExcNodeList=(null)
NodeList=cstd01-[001-004]
BatchHost=cstd01-001

LiDO3 | First Contact page 61 of 120

IT & Medien Centrum | LiDO3 | First Contact

NumNodes=4 NumCPUs=12 NumTasks=12 CPUs/Task=1
↪ ReqB:S:C:T=0:0:*:*
TRES=cpu=12,mem=1200M,node=4
Socks/Node=* NtasksPerN:B:S:C=3:0:*:* CoreSpec=*
MinCPUsNode=3 MinMemoryCPU=100M MinTmpDiskNode=0
Features=(null) DelayBoot=00:00:00
Gres=(null) Reservation=(null)
OverSubscribe=OK Contiguous=0 Licenses=(null) Network=(null)
Command=/home/<username>/my_submit_script.sh
WorkDir=/home/<username>
StdErr=/work/<username>/demo.out.txt
StdIn=/dev/null
StdOut=/work/<username>/demo.out.txt
Power=

and squeue respectively.
Example session to get all own jobs:

[<username>@gw01 ~]$ squeue -u $USER
JOBID PARTITION NAME USER ST TIME NODES
↪ NODELIST(REASON)

14004 short demoscri <username> R 0:03 2
↪ cgpu01-[002-003]

13977 short bash <username> R 9:36 1 cgpu01-001
13978 med glidein <username> R 8:08 1 cstd01-021
^
|
|
R = running
PD = pending

Example session to get information for a specific job:

[<username>@gw01 ~]$ squeue --jobs=14005
JOBID PARTITION NAME USER ST TIME NODES
↪ NODELIST(REASON)

14005 short demoscri <username> R 0:04 2
↪ cgpu01-[002-003]

Example session to get information for a specific job including job steps:

[<username>@gw01 ~]$ squeue --job=14008 --steps
STEPID NAME PARTITION USER TIME NODELIST

LiDO3 | First Contact page 62 of 120

IT & Medien Centrum | LiDO3 | First Contact

14008.0 sleep short <username> 0:35 cstd01-[001-002]
14008.1 sleep short <username> 0:23 cstd01-[003-006]
14008.2 sleep short <username> 0:13 cstd01-[007-010]
14008.Extern extern short <username> 2:09 cstd01-[001-010]

Example session to get estimated starting time for all own jobs:

[<username>@gw01 ~]$ squeue --start -u $USER
JOBID PARTITION NAME USER ST START_TIME NODES
↪ NODELIST(REASON)

14005 short demoscri <username> PD 2015-10-15T16:36:49 2
↪ (Ressources)

The estimated starting time needs to be taken with a grain truckload of salt:
The slurm scheduler has to solve an NP-hard problem in optimising the cluster usage:

◾ The cluster should always be fully utilized. This is particulary achieved via back-
filling, i.e. to start jobs with a smaller priority to use the reserved job slots, as
long as these jobs do not delay the start of another job.

◾ Large jobs require the cluster to be nearly empty to start.
◾ The runtime estimates users provide in their SLURM job files (using the options
-t or --time) are often not very accurate, typically they largely overestimate
the actual runtime. Unanticipated program abortions (node failures, codes crash-
ing etc.) completely thwart any prognosis the scheduler has come up with before
about when compute nodes become idle.

◾ Arbitrary nodes may need to be drained for unplanned maintenance (for hardware
repairs or to install critical security fixes)

That said, your average waiting time will be smaller if the total amount of computa-
tional time (number of computes cores times the wall clock time) is less. The lesser
resources you request, the higher your job gets prioritised which – ignoring the back-
filling mechanism – leads to the job getting started quicker. Hence:

◾ Do not simply request the maximum time limit a particular partitions allows if
you know beforehand that your job will need less. E.g. do not ask for 28 days
in partition ultralong if you know that your simulation will finish with 4-5 days.

LiDO3 | First Contact page 63 of 120

IT & Medien Centrum | LiDO3 | First Contact

◾ Statistics teaches us that the average waiting time for a particular partition is,
in general, half the maxium time limit of said partition. Hence, your average
waiting time will be, in comparison to the waiting times in partitions large or
ultralong, much smaller if you use the short or med partition where possible.

◾ The fewer compute cores you request, the more likely your Slurm job will start.
◾ If applicable, do not request compute nodes exclusively such that compute nodes
do not need to be completely drained for your job to start.

The third-party tool showq46 mimics the functionality of the PBS/Torque tool showq.
In particular, it gives a good sorted overview about all jobs and their respective status.
Example session to get all your jobs:

gw02: ~>$ showq -u $USER

SUMMARY OF JOBS FOR USER: <smdiribb>
ACTIVE JOBS--------------------
JOBID JOBNAME USERNAME STATE CORE REMAINING
↪ STARTTIME

==

WAITING JOBS------------------------
JOBID JOBNAME USERNAME STATE CORE WCLIMIT
↪ QUEUETIME

==
11048282 OSU smdiribb Waiting 2 0:15:00 Thu
↪ Jun 4 10:46:54

11566299 feat smdiribb Waiting 16 8:00:00 Thu
↪ Aug 13 00:30:01

Total Jobs: 2 Active Jobs: 0 Idle Jobs: 2 Blocked Jobs:
↪ 0

4.4.2.5 scancel - Cancel a queued job

A Slurm job can be removed from the job queue via scancel <job_id>.

[<username>@gw01 ~]$ sbatch my_submit_script.sh
Submitted batch job 11284
[<username>@gw01 ~]$ scancel 11284
[<username>@gw01 ~]$ scontrol show job 11284
JobId=11284 JobName=demoscript

46https://github.com/fasrc/slurm_showq

LiDO3 | First Contact page 64 of 120

https://github.com/fasrc/slurm_showq
https://github.com/fasrc/slurm_showq

IT & Medien Centrum | LiDO3 | First Contact

UserId=<username>(<uid>) GroupId=<username>(<gid>)
↪ MCS_label=N/A
Priority=21158 Nice=0 Account=itmc QOS=normal
JobState=CANCELLED Reason=None Dependency=(null)

4.4.2.6 Decreasing job priority with scontrol, sbatch

You can manually decrease the job’s priority by increasing the so-called nice value of a
pending job. This can be appropriate if some of your jobs are not critical in terms of
time, e.g. cleanup tasks. As it is very hard to estimate the effect of some specific nice
value setting one usually goes all in and sets the nice value to the maximum possible
value: 2147483645.
The nice value can be set at job submission via

sbatch --nice=2147483645 myjobscript.slurm

or afterwards via

scontrol update job myjobid nice=2147483645

4.4.2.7 seff, sacct - show post job performance analysis

In order to be able to see for yourself whether your job has efficently used the allocated
ressources, the tool seff is available on LiDO3. Using this tool, one can run a short
analysis on completed Slurm jobs. seff takes a the job ID as argument, example usage:
seff 12345. Note that for job arrays, the full job ID is required, i.e. for example
seff 12345_7, otherwise seff processes only the last array entry.

gw01: ~>$ seff 11401523
Job ID: 11401523
Cluster: lido3
User/Group: smdiribb/smdiribb
State: COMPLETED (exit code 0)
Nodes: 1
Cores per node: 20
CPU Utilized: 00:03:54
CPU Efficiency: 2.79% of 02:19:40 core-walltime
Job Wall-clock time: 00:06:59
Memory Utilized: 376.64 MB
Memory Efficiency: 0.61% of 60.00 GB

LiDO3 | First Contact page 65 of 120

IT & Medien Centrum | LiDO3 | First Contact

The product of ’Nodes’ and ’Cores per node’ is the allocated CPU core number. In
this example 2*20=40. The CPU time is the product of the ’Job Wall-clock time’
and the number of cores. If the resulting ’CPU efficiency’ is much smaller than 100%,
there may be several reasons for this:

◾ the application used fewer cores than the allocated amount of cores;
◾ the application used all cores for part of the time, but not all cores were used
for a significant period of time;

◾ the application is limited by memory size or memory transfer speed and thus
CPU usage is no meaningful metric at all.

On the other hand is a high cpu efficiency not unconditionally equivalent to an optimal
ressource usage. It can happen, that your applications starts a huge amount of threads
(sometime hundreds) and thus the operationg system is busy switching contexts and
your own application does not get cpu time at all. Despite your application making no
progress, seff will asure you a high cpu efficiency.
Another approach is to use sacct for information gathering.

gw01: ~>$ sacct --format="CPUTime,AveCPU,MaxDiskWrite" -j
↪ 11401523
CPUTime AveCPU MaxDiskWrite
---------- ---------- ------------
02:19:40
02:19:40 00:03:50 82.88M
02:20:00 00:00:00 0

A complete list of possible data can be retrieved by

gw01: ~>$ sacct -e
Account AdminComment AllocCPUS
↪ AllocGRES

AllocNodes AllocTRES AssocID AveCPU
AveCPUFreq AveDiskRead AveDiskWrite
↪ AvePages

AveRSS AveVMSize BlockID
↪ Cluster

Comment Constraints ConsumedEnergy
↪ ConsumedEnergyRaw

CPUTime CPUTimeRAW DBIndex
↪ DerivedExitCode

Elapsed ElapsedRaw Eligible End
ExitCode Flags GID Group

LiDO3 | First Contact page 66 of 120

IT & Medien Centrum | LiDO3 | First Contact

JobID JobIDRaw JobName Layout
MaxDiskRead MaxDiskReadNode MaxDiskReadTask
↪ MaxDiskWrite

MaxDiskWriteNode MaxDiskWriteTask MaxPages
↪ MaxPagesNode

MaxPagesTask MaxRSS MaxRSSNode
↪ MaxRSSTask

MaxVMSize MaxVMSizeNode MaxVMSizeTask
↪ McsLabel

MinCPU MinCPUNode MinCPUTask NCPUS
NNodes NodeList NTasks
↪ Priority

Partition QOS QOSRAW Reason
ReqCPUFreq ReqCPUFreqMin ReqCPUFreqMax
↪ ReqCPUFreqGov

ReqCPUS ReqGRES ReqMem
↪ ReqNodes

ReqTRES Reservation ReservationId
↪ Reserved

ResvCPU ResvCPURAW Start State
Submit Suspended SystemCPU
↪ SystemComment

Timelimit TimelimitRaw TotalCPU
↪ TRESUsageInAve

TRESUsageInMax TRESUsageInMaxNode TRESUsageInMaxTask
↪ TRESUsageInMin

TRESUsageInMinNode TRESUsageInMinTask TRESUsageInTot
↪ TRESUsageOutAve

TRESUsageOutMax TRESUsageOutMaxNode TRESUsageOutMaxTask
↪ TRESUsageOutMin

TRESUsageOutMinNode TRESUsageOutMinTask TRESUsageOutTot UID
User UserCPU WCKey
↪ WCKeyID

WorkDir

4.4.3 Constraints on node-features
The LiDO3-Team has assigned so-called features to the different nodes in the LiDO3-
cluster. Those features can specifically requested with the --constraint parameter
of the srun, sbatch and salloc commands.

LiDO3 | First Contact page 67 of 120

IT & Medien Centrum | LiDO3 | First Contact

Table 4.4: List of features.

Nodelist Features CPU Type max. max.
GPU Type cores memory

cgpu01-[001-020] all
public
cgpu01
xeon_e52640v4
gpu
tesla_k40
ib_1to3

2 × Intel®Xeon E5 2640v4
2.4 GHz, L3 cache 25 MB

2 × Nvidia®Tesla K40

20 64 GB

MaxMemPerNode=64300
cgpu02-[001-002] all

public
cgpu02
xeon_e52690v4
p100
gpu
tesla_p100
ib_1to3

2 × Intel®Xeon E5 2690v4
2.4 GHz, L3 cache 25 MB

1 × Nvidia®Tesla P100

28 256 GB

MaxMemPerNode=257800
cknl01-[001-003] all

private
cknl01
xeon_phi7210
ib_1to3

1 × Intel®Xeon Phi
“KNL”7210

64 192 GB

MaxMemPerNode=209400
cquad01-[001-
028]

all
public
cquad01
xeon_e54640v4
ib_1to3

4 × Intel®Xeon E5 4640v4
2.1 GHz, L3 cache 30 MB

48 256 GB

MaxMemPerNode=257800
cquad02-[001-
002]

all
public
cquad02
xeon_e54640v4
ib_1to3

4 × Intel®Xeon E5 4640v4
2.1 GHz, L3 cache 30 MB

48 1024 GB

MaxMemPerNode=1031900
cquad03-[001-
002]

all
public
cquad03
xeon_gold_6230
ib_1to3

4 × Intel®Xeon Gold 6230
2.1 GHz, L3 cache 28 MB

80 512 GB

MaxMemPerNode=498952
continued on next page . . .

LiDO3 | First Contact page 68 of 120

IT & Medien Centrum | LiDO3 | First Contact

. . . continued from previous page

Nodelist Features CPU Type max. max.
GPU Type cores memory

cstd01-[001-244] all
public
cstd01
xeon_e52640v4
ib_1to3

2 × Intel®Xeon E5 2640v4
2.4 GHz, L3 cache 25 MB

20 64 GB

MaxMemPerNode=64300
cstd02-[001-072] all

public
cstd02
xeon_e52640v4
ib_1to1
nonblocking_comm

2 × Intel®Xeon E5 2640v4
2.4 GHz, L3 cache 25 MB

20 64 GB

MaxMemPerNode=64300
cstd03[001-004] all

public
cstd03
xeon_e52690v4
ib_1to3

2 × Intel®Xeon E5 2690v4
2.4 GHz, L3 cache 35 MB

28 256 GB

MaxMemPerNode=257800
cstd04[001-004] all

public
cstd04
xeon_gold_6134
ib_1to3

2 × Intel®Gold 6134 CPU
2.4 GHz, L3 cache 24 MB

16 192 GB

MaxMemPerNode=190000
cstd05[001-003] all

public
cstd05
epyc_7542
ib_1to3

2 × AMD EPYC 7542 CPU
2.49 GHz, L3 cache 128 MB

64 1024 GB

MaxMemPerNode=1031900
cstd06[001] all

public
cstd06
xeon_gold_6242r
ib_1to3

2 × Intel Xeon Gold 6242R
CPU

3.1 GHz, L3 cache 35 MB

40 96 GB

MaxMemPerNode=94500
cstd07[001] all

public
cstd07
epyc_7542
ib_1to3

2 × AMD EPYC 7542 CPU
2.49 GHz, L3 cache 128 MB

64 256 GB

MaxMemPerNode=257800

Example session for srun

LiDO3 | First Contact page 69 of 120

IT & Medien Centrum | LiDO3 | First Contact

[<username>@gw01 ~]$ srun --constraint=cstd01 --pty bash
[<username>@cstd01-019 ~]$ echo $SLURM_TASK_PID
166178
[<username>@cstd01-019 ~]$ exit
exit

Example session for sbatch

[<username>@gw01 ~]$ cat my_submit_script.sh
#!/bin/bash -l
#SBATCH --partition=short
#SBATCH --nodes=2
#SBATCH --ntasks-per-node=3
#SBATCH --time=2:00
#SBATCH --mem-per-cpu=100
#SBATCH --job-name=demoscript
#SBATCH --output=/work/<username>/demo.out.txt
#SBATCH --constraint=cstd01
srun echo "START SLURM_JOB_ID $SLURM_JOB_ID (SLURM_TASK_PID

↪ $SLURM_TASK_PID) on $SLURMD_NODENAME"
srun echo "STOP on $SLURMD_NODENAME"

[<username>@gw01 ~]$ sbatch my_submit_script.sh
Submitted batch job 13891
[<username>@gw01 ~]$ scontrol show job 13891
JobId=13891 JobName=demoscript

UserId=<username>(<uid>) GroupId=<username>(<gid>)
↪ MCS_label=N/A
Priority=28436 Nice=0 Account=itmc QOS=normal
JobState=COMPLETED Reason=None Dependency=(null)
(...)

#[<username>@gw01 ~]$ cat /work/<username>/demo.out.txt
START SLURM_JOB_ID 13891 (SLURM_TASK_PID 6217) on cstd01-019
START SLURM_JOB_ID 13891 (SLURM_TASK_PID 6217) on cstd01-019
START SLURM_JOB_ID 13891 (SLURM_TASK_PID 6217) on cstd01-019
START SLURM_JOB_ID 13891 (SLURM_TASK_PID 6217) on cstd01-019
START SLURM_JOB_ID 13891 (SLURM_TASK_PID 6217) on cstd01-019
START SLURM_JOB_ID 13891 (SLURM_TASK_PID 6217) on cstd01-019
STOP on cstd01-019
STOP on cstd01-019
STOP on cstd01-019
STOP on cstd01-019
STOP on cstd01-019
STOP on cstd01-019

LiDO3 | First Contact page 70 of 120

IT & Medien Centrum | LiDO3 | First Contact

[<username>@gw01 ~]$

As you can see with man sbatch, nodes can have features assigned to them by
the Slurm administrator. Users can specify which of these features are required by
their job using the constraint option. Only nodes having features matching the job
constraints will be used to satisfy the request. Multiple constraints may be specified
with AND, OR, matching OR, resource counts, etc. (some operators are not supported
on all system types). Supported constraint options include:

Single Name Only nodes which have the specified feature will be used. For example,
--constraint="ib_1to1"

Node Count A request can specify the number of nodes needed with some feature by append-
ing an asterisk and count after the feature name. For example, --nodes=16
↪ --constraint=cstd01*4 indicates that the job requires 16 nodes and
that at least four of those nodes must have the feature "cstd01."

AND If only nodes with all of specified features will be used. The ampersand is used for
an AND operator. For example, --constraint="xeon_e52640v4&gpu"

OR If only nodes with at least one of specified features will be used.
The vertical bar is used for an OR operator. For example,
--constraint="xeon_e52640v4|e54640v4"

Matching OR If only one of a set of possible options should be used for all allocated nodes,
then use the OR operator and enclose the options within square brackets. For
example: "--constraint=[rack1|rack2|rack3|rack4]" might be
used to specify that all nodes must be allocated on a single rack of the cluster,
but any of those four racks can be used.

Multiple Counts Specific counts of multiple resources may be specified by using the AND
operator and enclosing the options within square brackets. For example:
"--constraint=[rack1*2&rack2*4]" might be used to specify that
two nodes must be allocated from nodes with the feature of "rack1" and four
nodes must be allocated from nodes with the feature "rack2".

4.4.4 Generic Resource (GRES) - request a GPU
Reserving a GPU node by using constraints (see page 67) is only one half of the story.
Other users may be already using the GPU when your job starts on one of those nodes
and they seem too valuable to use them just for CPU-bound tasks.

LiDO3 | First Contact page 71 of 120

IT & Medien Centrum | LiDO3 | First Contact

GPUs are defined as a Generic Resorce (short GRES) in Slurm and can be requested
with the --gres=gpu:tesla[:count] option which is supported by the salloc,
sbatch and srun commands. Where count specifies how many resources are re-
quired and has a default value of 1.

◾ For the 20 nodes with 2 GPU NVIDIA® K40 GPUs each, count has a valid
maximum of 2.

◾ For the 2 nodes with 1 GPU NVIDIA® P100 GPU each, count has a valid
maximum of 1.

Each K40 GPU is bound to one CPU socket. Thus an allocation of more than
10 CPU cores and more than 1 GPU goes side by side. It is actually not possible
to allocate 11 or more CPU cores without allocating both GPUs. This procedure is
embedded to ensure that each GPU can be accessed by a process running on the cor-
responding CPU socket.
If one wants to use only one CPU socket and only one GPU, the Slurm parameter
--gres-flags=enforce-binding ensures that only those CPU cores corre-
sponding to the corresponding CPU socket are allocated.

reserve 1 non-exclusive node and both GPUs on it
[<username>@gw01 ~]$ salloc --nodes=1 --gres=gpu:tesla:2
salloc: Granted job allocation 14037
salloc: Waiting for resource configuration
salloc: Nodes cgpu01-003 are ready for job
[<username>@gw01 ~]$ ssh -X cgpu01-003
Warning: Permanently added 'cgpu01-003,10.10.3.3' (ECDSA) to the

↪ list of known hosts.
[<username>@cgpu01-003 ~]$ module load nvidia/cuda/8.0
[<username>@cgpu01-003 ~]$ nvvp -data $WORK -configuration $WORK

LiDO3 | First Contact page 72 of 120

IT & Medien Centrum | LiDO3 | First Contact

Figure 4.21: NVIDIA Visual Profiler on a Windows client.

[<username>@cgpu01-003 ~]$ exit
logout
Connection to cgpu01-003 closed.
[<username>@gw01 ~]$ scancel 14037
[<username>@gw01 ~]$ salloc: Job allocation 14037 has been
↪ revoked.

For each job step the environment variable CUDA_VISIBLE_DEVICES is set to
determine which GPUs are available for its use on each node
Example script that is executed on GPU nodes:

#!/bin/bash -l
echo "worker ($SLURMD_NODENAME): start"
echo "executing SLURM_JOB_ID $SLURM_JOB_ID \
(SLURM_TASK_PID $SLURM_TASK_PID, \
CUDA_VISIBLE_DEVICES $CUDA_VISIBLE_DEVICES) \
on $SLURMD_NODENAME"

LiDO3 | First Contact page 73 of 120

IT & Medien Centrum | LiDO3 | First Contact

sleep 10
echo "worker ($SLURMD_NODENAME): stop"

Example batch script that is used to run workerscript.sh on each GPU node:

#!/bin/bash -l
#SBATCH --partition=short
#SBATCH --nodes=4
#SBATCH --exclusive
#SBATCH --gres=gpu:tesla:2
#SBATCH --job-name=demoscript
#SBATCH --output=/work/<username>/demo.out.txt
echo "sbatch: START SLURM_JOB_ID $SLURM_JOB_ID \
(SLURM_TASK_PID $SLURM_TASK_PID, \
CUDA_VISIBLE_DEVICES $CUDA_VISIBLE_DEVICES) \
on $SLURMD_NODENAME"
echo "sbatch: SLURM_JOB_NODELIST $SLURM_JOB_NODELIST"
echo "sbatch: SLURM_JOB_ACCOUNT $SLURM_JOB_ACCOUNT"
for RELATIVENODE in 0 1 2 3
do

srun --nodes=1 \
--relative=${RELATIVENODE} \
--gres=gpu:tesla:$(($RELATIVENODE%2+1)) \
--jobid=$SLURM_JOB_ID \
/home/<username>/workerscript.sh &

done
wait
echo "sbatch: STOP"

Finally the excecution and output:

[<username>@gw01 ~]$ sbatch my_submit_script.sh
Submitted batch job 37141
[<username>@gw01 ~]$ cat /work/<username>/demo.out.txt
sbatch: START SLURM_JOB_ID 37171 (SLURM_TASK_PID 31707,
↪ CUDA_VISIBLE_DEVICES 0,1) on cgpu01-001

sbatch: SLURM_JOB_NODELIST cgpu01-[001-004]
sbatch: SLURM_JOB_ACCOUNT itmc
worker (cgpu01-004): start
executing SLURM_JOB_ID 37171 (SLURM_TASK_PID 8348,

↪ CUDA_VISIBLE_DEVICES 0,1) on cgpu01-004
worker (cgpu01-002): start
executing SLURM_JOB_ID 37171 (SLURM_TASK_PID 13088,

↪ CUDA_VISIBLE_DEVICES 0,1) on cgpu01-002
worker (cgpu01-003): start

LiDO3 | First Contact page 74 of 120

IT & Medien Centrum | LiDO3 | First Contact

executing SLURM_JOB_ID 37171 (SLURM_TASK_PID 8950,
↪ CUDA_VISIBLE_DEVICES 0) on cgpu01-003

worker (cgpu01-001): start
executing SLURM_JOB_ID 37171 (SLURM_TASK_PID 31755,

↪ CUDA_VISIBLE_DEVICES 0) on cgpu01-001
worker (cgpu01-002): stop
worker (cgpu01-004): stop
worker (cgpu01-001): stop
worker (cgpu01-003): stop
sbatch: STOP

Due to race conditions the order is not predictable. Although the option #SBATCH
↪ --gres=gpu:tesla:2 is used, the number of GPUs must be expliticly required.
The script alternated between --gres=gpu:tesla:1 and --gres=gpu:tesla:2
for every srun-call to show that effect

4.4.5 Memory management
Slurm monitors memory usage of a job in two different flavours:

◾ memory usage per node
◾ memory usage per core

Only one limit can be active at any time. If a job exceeds this limit, it is immediately
abborted. The larger the data processed by your job, the larger this limit needs to
be. The lower you set this limit, the easier it is for the Slurm scheduler to find
a place for your job to run in the partition. The maximum upper limit per node
(MaxMemPerNode) can be seen in table 4.4 on page 68. The maximum upper limit
per core can be derived with the inequality

cpus − per − task ×mem − per − cpu <MaxMemPerNode

The number of cores times the memory per core must not exceed the maximum upper
limit (MaxMemPerNode).
If no limit is provided by the job, a memory limit per core is set to DefMemPerCPU
= 512 per node (512MB per core). If a job uses more than that, it is terminated with
job Exceeded job memory limit error message.
You can set a larger limit per core by using the --mem-per-cpu <memory> option,
where <memory> is the limit in MB — different units can be specified by using the
suffix [K|M|G|T].

LiDO3 | First Contact page 75 of 120

IT & Medien Centrum | LiDO3 | First Contact

[<username>@gw01 ~]$ cat my_submit_script.sh
#!/bin/bash -l
#SBATCH --partition=short
#SBATCH --nodes=2
#SBATCH --ntasks-per-node=3
#SBATCH --time=2:00
#SBATCH --mem-per-cpu=500M
#SBATCH --job-name=demoscript
#SBATCH --output=/work/<username>/demo.out.txt
#SBATCH --constraint=cstd01
srun echo "START SLURM_JOB_ID $SLURM_JOB_ID (SLURM_TASK_PID

↪ $SLURM_TASK_PID) on $SLURMD_NODENAME"
srun sleep 30
srun sleep 30
srun sleep 30
srun echo "STOP on $SLURMD_NODENAME"
[<username>@gw01 ~]$ sbatch my_submit_script.sh
Submitted batch job 16571

If you are not sure what a good setting would be, you can try to determine an appro-
priate value by starting your job with a short runtime and a relatively large memory
limit and then use the sacct command to monitor how much your job is actually
using or has used.

[<username>@gw01 ~]$ sacct --format MaxRSS --job=16571
MaxRSS

284K
88K
92K

[<username>@gw01 ~]$

To set the alternative limit for the full node memory consumption, one uses the
--mem <memory> option, where <memory> is the limit in MB — different units
can be specified by using the suffix [K|M|G|T]. The maximum upper limit per node
(MaxMemPerNode) can be seen in table 4.4 on page 68.
Example session:

LiDO3 | First Contact page 76 of 120

IT & Medien Centrum | LiDO3 | First Contact

[<username>@gw01 ~]$ cat my_submit_script.sh
#!/bin/bash -l
#SBATCH --partition=short
#SBATCH --nodes=2
#SBATCH --ntasks-per-node=3
#SBATCH --time=2:00
#SBATCH --mem=500M
#SBATCH --job-name=demoscript
#SBATCH --output=/work/<username>/demo.out.txt
#SBATCH --constraint=cstd01
srun echo "START SLURM_JOB_ID $SLURM_JOB_ID (SLURM_TASK_PID

↪ $SLURM_TASK_PID) on $SLURMD_NODENAME"
srun sleep 30
srun sleep 30
srun sleep 30
srun echo "STOP on $SLURMD_NODENAME"
[<username>@gw01 ~]$ sbatch my_submit_script.sh
Submitted batch job 16572

If you are not sure what a good setting would be, you can try to determine an appro-
priate value by starting your job with a short runtime and a relatively large memory
limit and then use the sacct command to monitor how much your job is actually
using or has used.
Example session:

[<username>@gw01 ~]$ sacct --format MaxRSS --job=16572
MaxRSS

84K

[<username>@gw01 ~]$

The output is in KB, so divide by 1024 to get a rough idea of what setting to use
with --mem (since you’re defining a hard upper limit, round up that number a little
bit). You can tell sacct to look further back in time by adding a start time with
--starttime YYYY-MM-DD if your job ran too far in the past.

[<username>@gw01 ~]$ sacct --format MaxRSS --job=16572 \
--starttime 2017-08-23

MaxRSS

3512K
0

LiDO3 | First Contact page 77 of 120

IT & Medien Centrum | LiDO3 | First Contact

84K
92K
92K
92K
84K

[<username>@gw01 ~]$

The --mem options sets the maximum memory used on any one node running your
job parallel spanning multiple nodes; to get an even distribution of tasks per node, you
can use run using the --ntasks-per-node option, otherwise the same job could
have very different values when run at different times.

A memory size specification of zero is treated as a special case and grants the
job access to all of the memory on each node. If multiple nodes with different memory
layout are allocated for your job in the LiDO3 cluster, the node with the smallest
memory size in the allocation defines the memory limit for each node of the allocation
— the same limit will apply to every node.

The --mem option and the the --mem-per-cpu option are mutually exclu-
sive!

4.4.6 Utilize complete nodes
If a user submits a job, it is very well possible that other jobs will run on the same
nodes. To make a reservation for a complete node, use a --exlusive statement.

Example reservation for 1 node:
[<username>@gw01 ~]$ salloc --nodes=1 --exclusive
salloc: Granted job allocation 140042
salloc: Waiting for resource configuration
salloc: Node cstd01-017 is ready for job

4.4.7 Slurm statements
Here is a non-exhaustive list of frequently used Slurm statements that can be used
inside of a job script generated with help of man sbatch.

◾ #SBATCH --job-name=<jobname>

LiDO3 | First Contact page 78 of 120

IT & Medien Centrum | LiDO3 | First Contact

Specify a name for the job allocation. The specified name will appear along with
the job ID number when querying running jobs on the system. The default is
the name of the batch script, or just "sbatch" if the script is read on sbatch’s
standard input.

◾ #SBATCH --nodes=<minnodes[-maxnodes]>

Request that a minimum of minnodes nodes be allocated to this job. A maxi-
mum node count may also be specified with maxnodes. If only one number is
specified, this is used as both the minimum and maximum node count. The
partition’s node limits supersede those of the job. If a job’s node limits are
outside of the range permitted for its associated partition, the job will be left
in a PENDING state. This permits possible execution at a later time, when
the partition limit is changed. If a job node limit exceeds the number of nodes
configured in the partition, the job will be rejected. Note that the environment
variable SLURM_NNODES will be set to the count of nodes actually allocated to
the job. If -N is not specified, the default behavior is to allocate enough nodes
to satisfy the requirements of the -n and -c options. The job will be allocated
as many nodes as possible within the range specified and without delaying the
initiation of the job. The node count specification may include a numeric value
followed by a suffix of "k" (multiplies numeric value by 1,024) or "m" (multiplies
numeric value by 1,048,576).

◾ #SBATCH --partition=<partition_names>

Request a specific partition for the resource allocation. If not specified, the
default behavior is to allow the Slurm controller to select the default partition
as designated by the system administrator. If the job can use more than one
partition, specify their names in a comma separate list and the one offering
earliest initiation will be used with no regard given to the partition name ordering
(although higher priority partitions will be considered first). When the job is
initiated, the name of the partition used will be placed first in the job record
partition string.

◾ #SBATCH --time=<time>

Set a limit on the total run time of the job allocation. If the requested time limit
exceeds the partition’s time limit, the job will be left in a PENDING state (possi-
bly indefinitely). The default time limit is the partition’s default time limit. When
the time limit is reached, each task in each job step is sent SIGTERM followed
by SIGKILL. The interval between signals is specified by the Slurm config-
uration parameter KillWait. (On LiDO3, KillWait is set to 30 s.) The
OverTimeLimit configuration parameter may permit the job to run longer

LiDO3 | First Contact page 79 of 120

IT & Medien Centrum | LiDO3 | First Contact

than scheduled. (On LiDO3, OverTimeLimit is not configured.) Time res-
olution is one minute and second values are rounded up to the next minute.
A time limit of zero requests that no time limit be imposed. Acceptable time
formats include "minutes", "minutes:seconds", "hours:minutes:seconds", "days-
hours", "days-hours:minutes" and "days-hours:minutes:seconds".

◾ #SBATCH --output=<filename pattern>

Instruct Slurm to connect the batch script’s standard output directly to the file
name specified in the “filename pattern”. By default both standard output and
standard error are directed to the same file. For job arrays, the default file name
is "slurm-%A_%a.out", "%A" is replaced by the job ID and "%a" with the
array index. For other jobs, the default file name is "slurm-%j.out", where
the "%j" is replaced by the job ID.

◾ #SBATCH --error=<filename pattern>

Instruct Slurm to connect the batch script’s standard error directly to the file
name specified in the "filename pattern". By default both standard output and
standard error are directed to the same file. For job arrays, the default file name
is "slurm-%A_%a.out", "%A" is replaced by the job ID and "%a" with the
array index. For other jobs, the default file name is "slurm-%j.out", where
the "%j" is replaced by the job ID.

◾ #SBATCH --mail-type=<type>

Notify user by email when certain event types occur. Valid type values are
NONE, BEGIN, END, FAIL, REQUEUE, ALL (equivalent to BEGIN, END,
FAIL, REQUEUE and STAGE_OUT), STAGE_OUT (burst buffer stage out
and teardown completed), TIME_LIMIT, TIME_LIMIT_90 (reached 90 per-
cent of time limit), TIME_LIMIT_80 (reached 80 percent of time limit),
TIME_LIMIT_50 (reached 50 percent of time limit) and ARRAY_TASKS (send
emails for each array task). Multiple type values may be specified in a comma
separated list. The user to be notified is indicated with --mail-user. Unless
the ARRAY_TASKS option is specified, mail notifications on job BEGIN, END
and FAIL apply to a job array as a whole rather than generating individual email
messages for each task in the job array. Omit for no email notification.

◾ #SBATCH --mail-user=<user>

LiDO3 | First Contact page 80 of 120

IT & Medien Centrum | LiDO3 | First Contact

User’s email-address to receive email notification of state changes as defined by
--mail-type. The default value is the submitting user. In contrast to the
depiction in the man-page the value for --mail-user must be set if email
notifcation is wanted for a submitting user (AKA Slurm account47) that is not
the login user.

◾ #SBATCH --export=<environment variables | ALL | NONE>

Identify which environment variables are propagated to the batch job. Mul-
tiple environment variable names should be comma separated. Environment
variable names may be specified to propagate the current value of those vari-
ables (e.g. "--export=EDITOR") or specific values for the variables may be
exported (e.g.. "--export=EDITOR=/bin/vi") in addition to the environ-
ment variables that would otherwise be set. This option is particularly important
for jobs that are submitted on one cluster and execute on a different cluster
(e.g. with different paths). By default all environment variables are propa-
gated. If the argument is NONE or specific environment variable names, then
the --get-user-env option will implicitly be set to load other environment
variables based upon the user’s configuration on the cluster which executes the
job.

4.4.8 Slurm cheat sheet
Table 4.5: Slurm cheat sheet.

Action Slurm
Job information squeue <job_id>

scontrol show job <job_id>
Job information (all) squeue -al

scontrol show job
Job information (user) squeue -u $USER

showq -u $USER
Queue information squeue
Delete a job scancel <job_id>
Submit a job srun <jobfile>

sbatch <jobfile>
salloc <jobfile>

Interactive job salloc -N <minnodes[-maxnodes]> \
-p <partition> sh

Free processors srun -test-only -p <partition> \
-n 1 -t <time limit> sh

Expected start time 48 squeue --start -j <job_id>
Queues/partitions scontrol show partition
Node list sinfo -N

scontrol show nodes
continued on next page . . .

47Usually the login user has the same name as the Slurm account. Some factulties use a different
slum account to submit jobs so that they can share the job management and the results.

48See also section scontrol, squeue, showq - Query Job status on page 61 for background
informations.

LiDO3 | First Contact page 81 of 120

IT & Medien Centrum | LiDO3 | First Contact

. . . continued from previous page
Action Slurm
Node details scontrol show node <nodename>
Queue 49 sinfo

sinfo -o "%P %l %c %D "
Start job scontrol update JobId=<job_id> \

StartTime=now
Hold job scontrol update JobId=<job_id> \

StartTime=now+30days
Release hold job scontrol update JobId=<job_id> \

StartTime=now
Pending job scontrol requeue <job_id>
Graphical Frontend sview
set priority scontrol update JobId=<job_id> \

-nice=-10000
preempt job scontrol requeue <job_id>
suspend job scontrol suspend <job_id>
resume job scontrol resume <job_id>
QoS details sacctmgr show QOS
Performance metrics seff <job_id>

49See also section Format options for slurm commands on page 83.

LiDO3 | First Contact page 82 of 120

IT & Medien Centrum | LiDO3 | First Contact

4.4.9 List of job states
Table 4.6: Job state.

Short Long Explanation
CA CANCELLED Job was explicitly cancelled by the user or system administrator. The

job may or may not have been initiated.
CD COMPLETED Job has terminated all processes on all nodes.

CF CONFIGURING Job has been allocated resources, but are waiting for them to become
ready for use (e.g. booting).

CG COMPLETING Job is in the process of completing. Some processes on some nodes
may still be active.

F FAILED Job terminated with non-zero exit code or other failure condition.
NF NODE_-

FAIL

Job terminated due to failure of one or more allocated nodes.

PD PENDING Job is awaiting resource allocation.
PR PREEMPTED Job terminated due to preemption.

R RUNNING Job currently has an allocation.
S SUSPENDED Job has an allocation, but execution has been suspended.

TO TIMEOUT Job terminated upon reaching its time limit.

4.4.10 Format options for slurm commands
The available field specifications include:

Table 4.7: Field specifications.

Field Explanation
%a State/availability of a partition
%A Number of nodes by state in the format “allocated/idle”. Do not use this with a node

state option (“%t” or “%T”) or the different node states will be placed on separate lines.
%c Number of CPUs per node
%d Size of temporary disk space per node in megabytes
%D Number of nodes
%f Features associated with the nodes
%F Number of nodes by state in the format “allocated/idle/other/total”. Do not use this

with a node state option (“%t” or “%T”) or the different node states will be placed on
separate lines.

%g Groups which may use the nodes
%h Jobs may share nodes, “yes”, “no”, or “force”’
%l Maximum time for any job in the format “days-hours:minutes:seconds”
%m Size of memory per node in megabytes
%N List of node names

continued on next page . . .

LiDO3 | First Contact page 83 of 120

IT & Medien Centrum | LiDO3 | First Contact

. . . continued from previous page

Field Explanation
%P Partition name
%r Only user root may initiate jobs, “yes” or “no”
%R The reason a node is unavailable (down, drained, or draining states)
%s Maximum job size in nodes
%t State of nodes, compact form
%T State of nodes, extended form
%w Scheduling weight of the nodes
%.<*> right justification of the field
%<*> size of field

4.4.11 Job variables
The available field specifications include:

Table 4.8: Job variables.

Environment Slurm
Job ID SLURM_JOB_ID / SLURM_JOBID

Job name SLURM_JOB_NAME

Node list SLURM_JOB_NODELIST / SLURM_NODELIST

Submit directory SLURM_SUBMIT_DIR

Submit host SLURM_SUBMIT_HOST

Job array index SLURM_ARRAY_TASK_ID

User SLURM_JOB_USER

LiDO3 | First Contact page 84 of 120

IT & Medien Centrum | LiDO3 | First Contact

4.5 Examples

4.5.1 Basic slurm script example
The following script asks for usage of 1 compute node with 20 cores for 10 minutes.
See ’man sbatch’ for details.

#!/bin/bash -l
#SBATCH --time=00:10:00
#SBATCH --nodes=1 --cpus-per-task=20 --constraint=cstd01
#SBATCH --partition=short
Maximum 'mem' values depending on constraint (values in MB):
cstd01/xeon_e52640v4/ib_1to3/cgpu01 AND
cstd02/xeon_e52640v4/ib_1to1/nonblocking_comm: 62264
cquad01: 255800
cquad02: 1029944
#SBATCH --mem=60000

#SBATCH --mail-user=test.user@tu-dortmund.de
Possible 'mail-type' values: NONE, BEGIN, END, FAIL, ALL
↪ (=BEGIN,END,FAIL)

#SBATCH --mail-type=ALL

cd /work/user/workdir
module purge
module load pgi/17.5
export OMP_NUM_THREADS=20
echo "sbatch: START SLURM_JOB_ID $SLURM_JOB_ID (SLURM_TASK_PID
↪ $SLURM_TASK_PID) on $SLURMD_NODENAME"

echo "sbatch: SLURM_JOB_NODELIST $SLURM_JOB_NODELIST"
echo "sbatch: SLURM_JOB_ACCOUNT $SLURM_JOB_ACCOUNT"
srun ./myapp

4.5.2 Example using multiple GPU nodes
The following script asks for usage of 2 compute node with 20 cores each and 2 GPUs
per node for 10 minutes. See ’man sbatch’ for details.

#!/bin/bash -l
for details.
#SBATCH --time=00:10:00
#SBATCH --nodes=2 --cpus-per-task=20 --constraint=cgpu01
↪ --gres=gpu:2

#SBATCH --partition=short
Maximum 'mem' values depending on constraint (values in MB):

LiDO3 | First Contact page 85 of 120

IT & Medien Centrum | LiDO3 | First Contact

cstd01/xeon_e52640v4/ib_1to3/cgpu01 AND
cstd02/xeon_e52640v4/ib_1to1/nonblocking_comm: 62264
cquad01: 255800
cquad02: 1029944
#SBATCH --mem=60000

#SBATCH --mail-user=test.user@tu-dortmund.de
Possible 'mail-type' values: NONE, BEGIN, END, FAIL, ALL
↪ (=BEGIN,END,FAIL)

#SBATCH --mail-type=ALL

cd /work/user/workdir
module purge
module load cuda
echo "sbatch: START SLURM_JOB_ID $SLURM_JOB_ID (SLURM_TASK_PID
↪ $SLURM_TASK_PID) on $SLURMD_NODENAME"

echo "sbatch: SLURM_JOB_NODELIST $SLURM_JOB_NODELIST"
echo "sbatch: SLURM_JOB_ACCOUNT $SLURM_JOB_ACCOUNT"
nvidia-smi -a

4.5.3 Common software example: ANSYS CFX
To run ANSYS CFX on a single compute node, invoke the following script via

sbatch run_cfx_single_node_through_slurm.sh

It asks for 1 compute node with 20 cores for 90 minutes:

#!/bin/bash -l

#SBATCH --job-name phi1
#SBATCH --partition=short
#SBATCH --time 01:30:00
#SBATCH --exclusive
#SBATCH --nodes=1-1 # min 1 node, max 1 node
#SBATCH --ntasks-per-node=20
#SBATCH --cpus-per-task=1 # one cpu per job (hence, 20 cpus)
#SBATCH -o %N-%j.out # STDOUT
#SBATCH -e %N-%j.err # STDERR
send mail when jobs starts, end,
fails, gets requeued etc.
#SBATCH --mail-type=ALL
#SBATCH --mail-user=my.name@tu-dortmund.de

LiDO3 | First Contact page 86 of 120

IT & Medien Centrum | LiDO3 | First Contact

change to directory where job file got submitted
cd $SLURM_SUBMIT_DIR

show a number of interesting environment variables
echo "sbatch: START SLURM_JOB_ID ${SLURM_JOB_ID}"
echo " (SLURM_TASK_PID ${SLURM_TASK_PID})"
echo " on ${SLURMD_NODENAME}"
echo "sbatch: SLURM_JOB_NODELIST ${SLURM_JOB_NODELIST}"
echo "sbatch: SLURM_JOB_ACCOUNT ${SLURM_JOB_ACCOUNT}"
echo "sbatch: SLURM_NTASKS ${SLURM_NTASKS}"
echo "sbatch: SLURM_CPUS_ON_NODE ${SLURM_CPUS_ON_NODE}"
echo "sbatch: SLURM_JOB_NAME ${SLURM_JOB_NAME}"

locate CFX
module load cfx/19.1

run CFX
cfx5solve \

-batch \
-def Fluid_Flow_CFX.def \
-initial Start_Values.res \
-start-method "Intel MPI Local Parallel" \
-partition ${SLURM_NTASKS} \
-double

With newer CFX versions, you might want to try as well
#module load openmpi/mpi_thread_multiple/no_cuda/4.0.3 cfx/2019R3
#cfx5solve \
-batch \
-def Fluid_Flow_CFX.def \
-initial Start_Values.res \
-start-method "Open MPI Local Parallel" \
-partition ${SLURM_NTASKS} \
-double

Listing 4.1: Contents of file ’run_cfx_single_node_through_slurm.sh’

The files

Fluid_Flow_CFX.def Start_Values.res

should obviously be replaced with your own ANSYS CFX Solver Input File and ANSYS
CFX Results File, respectively.
To use multiple compute nodes at once, one firstly has to pass a list of hosts to
CFX. This is done by first assembling this list via

LiDO3 | First Contact page 87 of 120

IT & Medien Centrum | LiDO3 | First Contact

Generate a comma-separated list of hostnames of compute nodes
↪ (plus multiplicity)

MYHOSTLIST=$(srun hostname | sort | uniq -c | awk '{print $2 "*"
↪ $1}' | paste -sd,)

echo $MYHOSTLIST

Later on, this list is passed to CFX with the additional parameter

cfx5solve -par-dist "$MYHOSTLIST"

Secondly, the Slurm job script needs to be slightly tweaked. The following listing shows
a setup that uses 60 cores on 3 compute nodes:

#!/bin/bash -l

#SBATCH --job-name phi1
#SBATCH --partition=short
#SBATCH --time 01:30:00
#SBATCH --exclusive
#SBATCH --nodes=3-3 # min 3 nodes, max 3 nodes
#SBATCH --ntasks-per-node=20
#SBATCH --cpus-per-task=1 # one cpu per job (hence, 20 cpus)
#SBATCH -o %N-%j.out # STDOUT
#SBATCH -e %N-%j.err # STDERR
send mail when jobs starts, end,
fails, gets requeued etc.
#SBATCH --mail-type=ALL
#SBATCH --mail-user=my.name@tu-dortmund.de

change to directory where job file got submitted
cd $SLURM_SUBMIT_DIR

show a number of interesting environment variables
echo "sbatch: START SLURM_JOB_ID ${SLURM_JOB_ID}"
echo " (SLURM_TASK_PID ${SLURM_TASK_PID})"
echo " on ${SLURMD_NODENAME}"
echo "sbatch: SLURM_JOB_NODELIST ${SLURM_JOB_NODELIST}"
echo "sbatch: SLURM_JOB_ACCOUNT ${SLURM_JOB_ACCOUNT}"
echo "sbatch: SLURM_NTASKS ${SLURM_NTASKS}"
echo "sbatch: SLURM_CPUS_ON_NODE ${SLURM_CPUS_ON_NODE}"
echo "sbatch: SLURM_JOB_NAME ${SLURM_JOB_NAME}"

Generate a comma-separated list of hostnames of compute nodes

LiDO3 | First Contact page 88 of 120

IT & Medien Centrum | LiDO3 | First Contact

(plus multiplicity)
MYHOSTLIST=$(srun hostname | sort | uniq -c | \

awk '{print $2 "*" $1}' | paste -sd,)

locate CFX
module load cfx/19.1

run CFX
cfx5solve \

-batch \
-def Fluid_Flow_CFX.def \
-initial Start_Values.res \
-parallel \
-start-method "Intel MPI Distributed Parallel" \
-par-dist "${MYHOSTLIST}" \
-partition ${SLURM_NTASKS} \
-double

Listing 4.2: Contents of file ’run_cfx_multiple_nodes_through_slurm.sh’

Thirdly, CFX uses SSH for the communication between nodes. Thus you need to setup
inter-node SSH access (see section 4.2.3 on page 31), if you are using multiple nodes
at once.

4.5.4 Common software example: ANSYS Fluent
Preliminary note: Fluent uses SSH for the communication between ranks. Thus you
need to setup inter-node SSH access (see section 4.2.3 on page 31), even if you are
only using multiple ranks on one single node.
The following script, when invoked via

sbatch run_fluent_trichter2D.sh

asks for 1 compute node with 20 cores for 60 minutes:

#!/bin/bash -l

#SBATCH --job-name trichter2D
#SBATCH --partition=short
#SBATCH --time 00:60:00
#SBATCH --exclusive
#SBATCH --nodes=1
#SBATCH --ntasks-per-node=20

LiDO3 | First Contact page 89 of 120

IT & Medien Centrum | LiDO3 | First Contact

#SBATCH -e error_file.e
#SBATCH -o output_file.o
send mail when jobs starts, end, fails, gets requeued etc.
#SBATCH --mail-type=ALL
#SBATCH --mail-user=my.name@tu-dortmund.de

Gather the number of nodes and tasks
numnodes=$SLURM_JOB_NUM_NODES
numtasks=$SLURM_NTASKS
mpi_tasks_per_node=$(echo "$SLURM_TASKS_PER_NODE" | sed -e
↪ 's/^\([0-9][0-9]*\).*$/\1/')

store hostname in txt file
srun hostname -s > slurmhosts.$SLURM_JOB_ID.txt

calculate slurm task count
if ["x$SLURM_NPROCS" = "x"]; then

if ["x$SLURM_NTASKS_PER_NODE" = "x"];then
SLURM_NTASKS_PER_NODE=1

fi
SLURM_NPROCS=`expr $SLURM_JOB_NUM_NODES *
↪ $SLURM_NTASKS_PER_NODE`

fi

export OMP_NUM_THREADS=1
export I_MPI_PIN_DOMAIN=omp:compact # Domains are
↪ $OMP_NUM_THREADS cores in size

export I_MPI_PIN_ORDER=scatter # Adjacent domains have minimal
↪ sharing of caches/sockets

Number of MPI tasks to be started by the application per node
↪ and in total (do not change):

np=$[${numnodes}*${mpi_tasks_per_node}]

load necessary modules
module purge
module add intel/mpi/2018.3
module add fluent/2019R1

run the fluent simulation
fluent 2ddp -ssh -t$np -mpi=intel -pib

↪ -cnf=slurmhosts.$SLURM_JOB_ID.txt -g -i
↪ mycase_trichter2D.jou

delete temp file

LiDO3 | First Contact page 90 of 120

IT & Medien Centrum | LiDO3 | First Contact

rm slurmhosts.$SLURM_JOB_ID.txt

Listing 4.3: Contents of file ’run_fluent_trichter2D.sh’

The file

mycase_trichter2D.jou

should obviously be replaced with your own ANSYS Fluent problem description file.

4.5.5 Common software example: Matlab
The following script, when invoked via

sbatch StartMatlabBatchJobViaSLURM.sh

asks for 1 compute node with 10 cores for 90 minutes:

#!/bin/bash -l
#SBATCH --job-name=MatlabSimulation
run at most for 0 days, 1 hour, 30 minutes and 15 seconds
#SBATCH --time=0-01:30:15
#SBATCH --partition=short
ask for ten compute cores on one compute node
#SBATCH --nodes=1 --ntasks-per-node=1 --cpus-per-task=10
memory requirement per core in megabytes
#SBATCH --mem-per-cpu=1536
#SBATCH --output=/work/myusername/tmp/slurm_job
#SBATCH --error=/work/myusername/tmp/slurm_job
send mail when jobs starts, end, fails, gets requeued etc.
#SBATCH --mail-type=ALL
#SBATCH --mail-user=my.name@tu-dortmund.de

cd /work/myusername/tmp
module purge
module load matlab/r2019b

Run the Matlab simulation, stored in
↪ /work/myusername/tmp/matlab_main.m

srun matlab -nodisplay -nosplash -r 'matlab_main; quit;'

Listing 4.4: Contents of file ’StartMatlabBatchJobViaSLURM.sh’

LiDO3 | First Contact page 91 of 120

IT & Medien Centrum | LiDO3 | First Contact

Once Slurm grants these resources, Matlab’s command line interface get invoked on the
assigned compute node, spawns as many Matlab worker processes as cores requested
in the Slurm job script in order to calculate in parallel an estimate for the value of π:

pc = parcluster('local')

% use a fixed number of Matlab worker processes, e.g. 5
%% parpool(pc, 5)

% automatically choose as many Matlab worker processes as cores
↪ requested in

% Slurm job file
parpool(pc, str2num(getenv('SLURM_CPUS_ON_NODE')))

% run Matlab simulation that uses commands like 'parfor',
↪ 'parfeval',

% 'parfevalOnAll', 'spmd' or 'distributed' to have Matlab
↪ automatically

% distribute the workload on multiple worker processes
EstimatePi

Listing 4.5: Contents of file ’matlab_main.m’

relying on the helper script

% Calculate the value of Pi using a Monte Carlo simulation
itmax=1e9;
n=0;

tic;
parfor i = 1:itmax

x=rand;
y=rand;
if (x^2 + y^2 < 1.0)

n=n+1;
end

end
elapsedTime = toc;

pi = 4.0 * n / itmax;
fprintf("Calculating pi = %.10f took %s seconds\n", pi,
↪ elapsedTime);

Listing 4.6: Contents of file ’EstimatePi.m’

LiDO3 | First Contact page 92 of 120

IT & Medien Centrum | LiDO3 | First Contact

4.5.6 Common software example: R
A user can build additional R modules and store them in his home directory. That is
the preferred way over having to install them systemwide to avoid conflict situations
where user A needs a set of R modules in a certain version and user B needing them
in older or newer versions. Installing them to a user’s home directory allows the user
to quickly check whether up- or downgrading R modules resolves issues he is having
with them.
Given that the home directory is writable only on both gateway servers, a user should
not try to build R modules on any of the compute nodes (unless he redefines HOME to
point to some writable location inside a Slurm job). The following convenience script
facilitates downloading optional R packages:

#!/bin/bash -l

extra=""
if test -z "$@"; then

extra="-O index.html"
fi
file=$(grep ">"$1_ index.html | awk -F'>' '{ print $7 }' | sed

↪ 's|</a||' | tail -n 1)
wget http://cran.r-project.org/src/contrib/$file $extra

Copy this content to a new file named load_r_module, set the executable bit for
the script

chmod 755 load_r_module

When invoked without arguments, the script downloads the index of the directory
https://cran.r-project.org/src/contrib/ and stores it as index.html
in the local directory:

rm -f index.html*
./load_r_module

When invoked with an argument, the script queries the cache file index.html in
the local directory for that given argument string and tries to download the tarball if
a R module is found that matches this string. Example:

LiDO3 | First Contact page 93 of 120

IT & Medien Centrum | LiDO3 | First Contact

./load_r_module digest

will download the most recent version of the R module digest, at the time of writing
digest_0.6.23.tar.gz.
Subsequently, the user can compile and install this R module as follows:

module purge
module load R/<version of your liking>

for package in <list of desired R modules>; do ./load_r_module
↪ ${package} && R CMD INSTALL
↪ --configure-args=--with-mpi=${OMPI_HOME}
↪ ${package}_*.tar.gz || (echo "ERROR"; read junk); done

Make sure to replace the strings <version of your liking> and <list
↪ of desired modules> in the instructions above appropriately. In case the R
module(s) you want to install have unfulfilled dependencies, the R install command
will fail, reporting the name of the missing dependency:

for package in spdep ; do ./load_r_module ${package} && R CMD
↪ INSTALL --configure-args=--with-mpi=${OMPI_HOME}
↪ ${package}_*.tar.gz || (echo "ERROR. Press any key to
↪ continue"; read junk); done

--2020-04-11 15:21:32--
↪ http://cran.r-project.org/src/contrib/sp_1.4-1.tar.gz

Resolving cran.r-project.org (cran.r-project.org)... 137.208.57.37
Connecting to cran.r-project.org
↪ (cran.r-project.org)|137.208.57.37|:80... connected.

HTTP request sent, awaiting response... 200 OK
Length: 1698902 (1.6M) [application/x-gzip]
Saving to: 'sp_1.4-1.tar.gz'

100%[==============================>] 1,698,902 --.-K/s in
↪ 0.1s

2020-04-11 15:21:32 (12.7 MB/s) - 'sp_1.4-1.tar.gz' saved
↪ [1132945/1132945]

ERROR: dependencies 'sp', 'spData', 'sf', 'deldir', 'LearnBayes',
↪ 'coda', 'expm', 'gmodels' are not available for package
↪ 'spdep'

* removing
↪ '/home/msvebuij/R/x86_64-pc-linux-gnu-library/3.6.1/rgdal'

LiDO3 | First Contact page 94 of 120

IT & Medien Centrum | LiDO3 | First Contact

ERROR. Press any key to continue

In this particular example, where one wanted to install the R module spdep, we
needed to first compile and install sp and then a lot of others which had dependencies
of their own. Prepend iteratively all the missing R modules to <list of desired
↪ modules> in ascending order of dependency and start over until the compilations
succeeds. This approach easily requires a dozen or so iterations, depending on the
particular R module a user wants to use. For this example, the complete instruction
would look like:

for package in sp raster spData e1071 classInt DBI units sf
↪ deldir LearnBayes coda expm gmodels spdep ; do ./load_r_mod
↪ ${package} && R CMD INSTALL
↪ --configure-args=--with-mpi=${OMPI_HOME}
↪ ${package}_*.tar.gz || (echo "ERROR"; read junk); done

It may turn out, however, that some system software needs to installed as well upon
which an R module relies. In that case, please inform the LiDO team what system
software is required and, better yet, additionally what R module you are trying to
compile.
The following script, when invoked via

sbatch StartRBatchJobViaSLURM.sh

asks for 1 compute node with 1 cores for 90 minutes and 15 seconds:

#!/bin/bash -l
#SBATCH --job-name=Ranalysis
run at most for 0 days, 1 hour, 30 minutes and 15 seconds
#SBATCH --time=0-01:30:15
#SBATCH --partition=short
ask for a single compute core on one compute node
#SBATCH --nodes=1 --ntasks-per-node=1 --cpus-per-task=1
memory requirement per CPU in megabytes
#SBATCH --mem-per-cpu=1536
#SBATCH --output=/work/myusername/tmp/slurm_job
#SBATCH --error=/work/myusername/tmp/slurm_job
send mail when jobs starts, end, fails, gets requeued etc.
#SBATCH --mail-type=ALL
#SBATCH --mail-user=my.name@tu-dortmund.de

LiDO3 | First Contact page 95 of 120

IT & Medien Centrum | LiDO3 | First Contact

cd /work/myusername/tmp
module purge
module load R/3.6.1-gcc73-base
↪ openmpi/mpi_thread_multiple/no_cuda/4.0.1

Run the R analysis, use an external script for the R
↪ instructions

Rscript my_script.R

4.5.6.1 Using multiple versions of R along with additional R modules

When building additional R modules yourself, please be aware that R requires that all
R modules are built by the very same R version and that this R version is the one
you invoke. Given that on LiDO3 multiple R versions are available, it might happen
that you compiled an additional R module with R/3.6.3-gcc93-base, but tried
to invoke R after loading the modulefile R/4.0.0-gcc93-base some time later.
In these cases of conflicting R versions involved, R will bail out.
To avoid this, use a slightly more complicated ~/.Rprofile than the default one.
Instead of

.libPaths("/work/<user>/R")

Listing 4.7: Default contents of file ’.Rprofile’, problematic when using multiple R
versions

use

Source: https://stackoverflow.com/a/54555489

Set version specific local libraries
get current R version (in semantic format)
version <- paste0(R.Version()$major,".",R.Version()$minor)
get username on Unix
(note: use USERNAME under Microsoft Windows)
uname <- Sys.getenv("USER")
generate R library path for parent directory
libPath <- paste0("/work/", uname, "/R/")

setLibs <- function(libPath, ver) {
combine parent and version for full path
libfull <- paste0(libPath, ver)
create a new directory for this R version
if it does not exist

LiDO3 | First Contact page 96 of 120

IT & Medien Centrum | LiDO3 | First Contact

if(!dir.exists(libPath)) {
dir.create(libPath)

}
if(!dir.exists(libfull)) {

Warn user (the necessity of creating
a new library may indicate an inadvertant
choice of the wrong R version)
warning(paste0("Library for R version '", ver, "'

↪ does not exist; it will be created at: ", libfull))
dir.create(libfull)

}
.libPaths(c(libfull, .libPaths()))

}

setLibs(libPath, version)

Listing 4.8: Contents of file ’.Rprofile’, compatible with using multiple R versions

Note that you need to compile additional R modules for every R version you intend to
use. The compiled R libraries will end up in subdirectories of /work/<user>/R/<R
↪ version>/.

4.5.7 Third-party node usage example
In this case, the partition is related to the nodes itself and no additional constraint is
needed to identify the nodes to be used.

#!/bin/bash -l
#SBATCH --time=00:10:00
#SBATCH --nodes=1 --cpus-per-task=20
#SBATCH --partition=ext_vwl_prio
#SBATCH --mem=250000

#SBATCH --mail-user=test.user@tu-dortmund.de
Possible 'mail-type' values: NONE, BEGIN, END, FAIL, ALL
↪ (=BEGIN,END,FAIL)

#SBATCH --mail-type=ALL

cd /work/user/workdir
module purge
module load pgi/17.5
export OMP_NUM_THREADS=20
echo "sbatch: START SLURM_JOB_ID $SLURM_JOB_ID (SLURM_TASK_PID
↪ $SLURM_TASK_PID) on $SLURMD_NODENAME"

echo "sbatch: SLURM_JOB_NODELIST $SLURM_JOB_NODELIST"
echo "sbatch: SLURM_JOB_ACCOUNT $SLURM_JOB_ACCOUNT"

LiDO3 | First Contact page 97 of 120

IT & Medien Centrum | LiDO3 | First Contact

srun ./myapp

4.5.8 Have a job automatically clean up when risking to exceed
the configured walltime

By default, Slurm (up to version 20.02) sends the signal SIGQUIT and, after waiting
for the amount of time defined by the Slurm configuration parameter KillWait
which on LiDO3 is to 30 s –, the signal SIGTERM to a job that exceeded its requested
walltime at the same time. If one needs more time between these two signals, i.e. the
first signal that indicates that action needs to be taken and the second signal that
definitely pulls the plug on your simulation, for instance, to move result files from
the /scratch file system to the parallel file system and to clean up any remaining
temporary files, the user needs to set up three things in the Slurm job script:

1. A SBATCH instruction when to send what kind of signal. This can be done
by including the following lines (only the #SBATCH instruction is the actual
workhorse, the preceding lines are mere comments for the reader) in the header
section of the Slurm job script

When a job is within 120 seconds of its end time,
send it the signal SIGQUIT.
Note 1: due to the resolution of event handling
by Slurm, the signal may be sent up to 60
seconds earlier than specified.
Note 2: only *one* signal can be defined. Later
Slurm signal definition override earlier
definitions.
#SBATCH --signal=B:SIGQUIT@120

which sends approximately 2 minutes before exceeding the wall time the signal
SIGQUIT.

2. A shell trap trying to catch the signal and defining an action to undertake upon
receiving it. Example:

trap -- 'echo \"Got SIGQUIT at $(date). Starting cleanup\";
↪ test -d /scratch/${USER}/${SLURM_JOB_ID} && rm -rf
↪ /scratch/${USER}/${SLURM_JOB_ID}' SIGQUIT;

This oneliner is hard to read such that some users may prefer the alternative of
a custom shell function defining the actions near job end:

LiDO3 | First Contact page 98 of 120

IT & Medien Centrum | LiDO3 | First Contact

cleanup_before_exiting() {
echo -n 'Got SIGQUIT at $(date),';
echo -n 'roughly 2 minutes before exceeding the';
echo 'walltime. Starting clean up.';
test -d /scratch/${USER}/${SLURM_JOB_ID} && \

rm -rf /scratch/${USER}/${SLURM_JOB_ID}
exit 0;

}
trap -- 'cleanup_before_exiting' SIGQUIT

3. Finally, it is absolutely mandatory to send any of the long-running processes
your Slurm job will execute immediately to the background by adding a trailing
ampersand to that process’ command and to subsequently add a ’wait’ shell
command that causes the Slurm job file to wait for the completion of the long-
running process before continuing. Example:

Start the actual worker process (a simple 'sleep'
in this example).
Note: It is absolutely mandatory to immediately
send the job to the background with the
trailing ampersand and then use the 'wait'
shell command to wait for the completion of
the worker process. Otherwise the Slurm
signal is *not* caught by this Slurm job
script and the configured action to run
shortly before exceeding the requested
walltime will *not* run!
sleep 600 &
wait

A complete Slurm job file example is given below:

#!/bin/sh -l

#SBATCH --time=00:04:00
#SBATCH --nodes=1 --ntasks-per-node=1 --cpus-per-task=1
#SBATCH --partition=short
#SBATCH --mail-type=NONE
When a job is within 120 seconds of its end time,
send it the signal SIGQUIT.
Note 1: due to the resolution of event handling
by Slurm, the signal may be sent up to 60
seconds earlier than specified.
Note 2: only *one* signal can be defined. Later

LiDO3 | First Contact page 99 of 120

IT & Medien Centrum | LiDO3 | First Contact

Slurm signal definition override earlier
definitions.
#SBATCH --signal=B:SIGQUIT@120

useTrapVariant=2

if test ${useTrapVariant} = 1; then
###################################
Example 1: Simple signal handling with a
one-liner: print a message, then start
cleaning up in /scratch before job exceeds
requested walltime.
trap -- 'echo \"Got SIGQUIT at $(date). Starting
↪ cleanup\"; \

test -d /scratch/${USER}/${SLURM_JOB_ID} && \
rm -rf /scratch/${USER}/${SLURM_JOB_ID}' SIGQUIT;

else
###################################
Example 2: Same prupose, but more readable
with a user function; print a message, then
start cleaning up in /scratch before job
exceeds requested walltime.
cleanup_before_exiting() {

echo -n 'Got SIGQUIT at $(date),';
echo -n 'roughly 2 minutes before exceeding the';
echo 'walltime. Starting clean up.';
test -d /scratch/${USER}/${SLURM_JOB_ID} && \

rm -rf /scratch/${USER}/${SLURM_JOB_ID}
exit 0;

}
trap -- 'cleanup_before_exiting' SIGQUIT

fi

Start the actual worker process (a simple 'sleep'
in this example).
Note: It is absolutely mandatory to immediately
send the job to the background with the
trailing ampersand and then use the 'wait'
shell command to wait for the completion of
the worker process. Otherwise the Slurm
signal is *not* caught by this Slurm job
script and the configured action to run
shortly before exceeding the requested
walltime will *not* run!
sleep 600 &
wait

LiDO3 | First Contact page 100 of 120

IT & Medien Centrum | LiDO3 | First Contact

4.5.9 Example for job steps
A job consists of

◾ one or more steps,
◾ each step executing one or more tasks,
◾ each task using one or more CPU.

Typically jobs are created with the sbatch command, containing steps that are cre-
ated with the srun command.
Tasks are requested (at the job level or the step level) with --ntasks and CPUs50

are requested per task with --cpus-per-task.
Note that jobs submitted with sbatch have one implicit step — the Bash script itself.

#!/bin/bash -l
#SBATCH --nodes 7
#SBATCH --tasks-per-node 6
#SBATCH --cpus-per-task 1
The job requests 42 CPUs, on 7 nodes, every task will use 1 cpu.

STEP 01:
request 7 nodes,
sub-allocate 7 tasks (one per node) to create a directory in
↪ /scratch.

Must run on every node but only only one task per node needed.
srun --nodes 7 --tasks 7 mkdir -p /scratch/${USER}_${SLURM_JOBID}

STEP 02:
No explicit allocation, hence use all 64 tasks to run an MPI
↪ program

on some data to produce some output.
srun mpi_process.mpi <input.dat > output.txt &

STEP 03:
sub-allocate of 24 tasks for a not well scaling program.
srun --ntasks 24 --nodes 4 --exclusive reduce_mpi_data <
↪ output.txt > result.txt &

STEP 04:
sub-allocate a single node.
The gzip cannot run on separate nodes to compress output.txt.
Thanks to the ampersand `&` this step runs at the same time as
↪ the

50CPU cores to be more precise.

LiDO3 | First Contact page 101 of 120

IT & Medien Centrum | LiDO3 | First Contact

previous step
OMP_NUM_THREAD=10; srun --ntasks 10 --nodes 1 --exclusive gzip
↪ output.txt &

wait for the steps to finish
wait

4.5.10 Example for parallel debugging with TotalView
TotalView 51 is a HPC debugging software for parallel debugging of C/C++, Fortran
and mixed-language python applications. It is a available as a module 53.

The TotalView remote debugging setup consists of three elements:
◾ The GUI visualisation on the user’s computer, received from the gateway
◾ The TotalView master running on the gateway/frontend
◾ The tvconnect debugger client, running on the compute nodes

Figure 4.22: TotalView debugging overview

To start the debugging process, you need to make shure that you are able to start
a GUI application on LiDO3. If you happen to have an X server on your side of the
connection, you may simply use ssh with the -X parameter to tunnel the applications

51TotalView52 website
53see section Modules in job scripts on page 46

LiDO3 | First Contact page 102 of 120

https://totalview.io/product/totalview/

IT & Medien Centrum | LiDO3 | First Contact

rendering to your workstation or you may use a ThinLinc connection to use a Desktop
on a LiDO3 gateway server.

TotalView organises the communication between the debugger on the compute node
(tvconnect) and the GUI on the gateway server (totalview) via a shared direc-
tory, that needs to adhere to special file permissions 54. The easiest way to ensure
these constrains is to let TotalView itself create the directory on the /work/$USER
directory. Thus one needs to define the shell variable TV_REVERSE_CONNECT_DIR
whenever calling any TotalView binary. We will use /work/$USER/.totalview
in the reminder of this section. This can be easily achieved by adding

export TV_REVERSE_CONNECT_DIR=/work/$USER/.totalview

to your shell rc file, e.g. .bashrc or .cshrc.
The next step is to preprend the usual mpirun or srun call in your Slurm job script
with tvconnect.

tvconnect mpirun -n 80 ./helloworld

Obviously, your program should be compiled with debugging symbols and maybe
without any optimisations. For example with GCC that would mean using the flags
-O0 -g.
To start the actual debugging, you must make sure, that the totalview GUI ap-
plication is running on the gateway server (i.e. shows a windows on your screen) and
that your job to be debugged is executing with the aforementioned changes. In this
case, a dialog will be presented in the GUI whether you want to start debugging your
application.

54see the documentation55 for a detailed description

LiDO3 | First Contact page 103 of 120

https://docs.roguewave.com/en/totalview/2020/html/index.html#page/TotalView/totalviewlhug-reverse-connect.17.03.html

IT & Medien Centrum | LiDO3 | First Contact

Figure 4.23: TotalView dialog for incoming debugging process

Note that your slurm job will be on hold until you start debugging in the GUI or the
maximum walltime is reached. That is it, now the TotalView debugger is hooked to
your program and you can begin the actual debugging process.

LiDO3 | First Contact page 104 of 120

IT & Medien Centrum | LiDO3 | First Contact

4.6 System overview
◾ name: LiDO3
◾ architecture: Distributed Memory
◾ vendor: Megware
◾ installation: 2017

standard
Intel® Xeon E5-2640v4

244 nodes

2x CPU (2.4 GHz)

10 core Broadwell

64 GB RAM

standard 1:1
Intel® Xeon E5-2640v4

72 nodes

2x CPU (2.4 GHz)

10 core Broadwell

64 GB RAM

…

GPU
Intel® Xeon E5-2640v4

20 nodes

2x CPU (2.4 GHz)

10 core Broadwell

64 GB RAM

2x GPU NVIDIA® K40

…

University network

…

quad-fat
Intel® Xeon E5-4640v4

2 nodes

4x CPU (2.1 GHz)

12 core Broadwell

1024 GB RAM

……

quad
Intel® Xeon E5-4640v4

28 nodes

4x CPU (2.1 GHz)

12 core Broadwell

256 GB RAM

© TU Dortmund / ITMC / CC:HPC / jg / 2017-06-06

LiDO3

schematic representation

HPC Cluster

LiDO3

highspeed

network

Intel® True Scale

QDR-40

Fat Tree

blocking ratio

1:3

1:1

(non-blocking)

service/

management-

network

Ethernet

1 & 10 Gbit/s

metadata

server
2 server

…

object storage

server
5 server

1.28 PB (net)

disk storage
11.5 TB (net)

fileserver

/home
2 server

NFS

gateway server
Intel® Xeon E5-4620v4

2 server

4x CPU (2.1 GHz)

10 core Broadwell

256 GB RAM

parallel filesystem

40 free

slots for

additional

nodes

…

Figure 4.24: Schematic representation of the LiDO3 architecture.

LiDO3 | First Contact page 105 of 120

IT & Medien Centrum | LiDO3 | First Contact

4.7 Dictionary

4.7.1 Walltime
Walltime, or Wall-Clock Time is the passage of time from the moment a job is as-
signed one or multiple compute nodes and started until it ends, seen from the human
perspective. In other words, if the job is started but some necessary resource is missing
or becomes unavailable while the job is still running (e.g., filesystem, network, results
from a previous computation as input data), walltime increases. In this case, whether
or not CPU time increases depends on whether the processes started by the job per-
form a busy-wait or put the CPU to sleep while waiting for the necessary resource to
become available again. So, if a requested CPU waits for seven hours for resources
and intermittendly uses the CPU for one hour, walltime is 8 hours, CPU time is 1
hour. When using multiple cores, the CPU time is accordingly scaled - walltime is not,
obviously.

Figure 4.25: A job waiting more than utilizing the CPU uses eight hours walltime total.

4.7.2 Backfilling
Backfilling is a mechanism that allows starting a job with lower priority before a job
with higher priority in the queue without delaying the job with the higher priority. By
doing this Backfilling helps to maximize cluster utilization and throughput.
Let Job A be a job that just has started. Job B needs the nodes that are currently
used by Job A and some extra nodes. Thus it can only start after Job A has been
finished.

LiDO3 | First Contact page 106 of 120

IT & Medien Centrum | LiDO3 | First Contact

Figure 4.26: Job B is waiting for nodes used by Job A.

Job C is smaller than Job A - it will use less Walltime. And it does not depend on
nodes that are used by Job A. This means that Job C can be started before Job B
without delaying Job B.

Figure 4.27: Job C is started before Job B because it will be finished before Job B
can start.

LiDO3 | First Contact page 107 of 120

IT & Medien Centrum | LiDO3 | First Contact

Filling those gaps in the execution plan is called Backfilling.

4.8 Get support
For support and further assistance, please write an email to
the LiDO team mailing list56

(lido-team.itmc@lists.tu-dortmund.de).

4.9 Frequently asked questions

4.9.1 My Slurm job exits with can't open /dev/ipath,
↪ network down (err=26)

Your job encountered a race conditions, described in detail at bugs.schedmd.com57.
This sometimes happens if multiple users try to use MPI on the same node indepen-
dently.
Until this is fixed by the MPI vendors, a common work-around is to use the nodes all
alone by adding

##SBATCH --exclusive

to your Slurm job script.
If you happen to use Intel MPI, another solution may be to define a certain environment
variable by adding

export I_MPI_HYDRA_UUID=`uuidgen`

to your job script and thus inhibit the race condition.

4.9.2 No GPU is visible on a GPU node
In order to actively use a GPU, you need to add

#SBATCH --gres=gpu:n

56mailto:lido-team.itmc@lists.tu-dortmund.de?subject=LiDO3:
%20support%20needed

57https://bugs.schedmd.com/show_bug.cgi?id=5956

LiDO3 | First Contact page 108 of 120

mailto:lido-team.itmc@lists.tu-dortmund.de?subject=LiDO3:%20support%20needed
https://bugs.schedmd.com/show_bug.cgi?id=5956
mailto:lido-team.itmc@lists.tu-dortmund.de?subject=LiDO3:%20support%20needed
mailto:lido-team.itmc@lists.tu-dortmund.de?subject=LiDO3:%20support%20needed
https://bugs.schedmd.com/show_bug.cgi?id=5956

IT & Medien Centrum | LiDO3 | First Contact

to your Slurm job script, where n denotes the number of GPUs you want to use.

4.9.3 How can i use more than one CPU socket on a GPU
node?

Every CPU socket is bound to one GPU. Thus if you want to use more than one CPU
socket (i.e. more than 10 cores), you need to allocate both GPUs with

#SBATCH --gres=gpu:2

LiDO3 | First Contact page 109 of 120

IT & Medien Centrum | LiDO3 | First Contact

4.10 Appendix

4.10.1 Symbolic links for non-writable home directory
Here is an example of some software that needs to write in the home directory during
runtime. ${NEWUSER} contains the name of the user that is affected.

Software like 'matplotlib' (standalone or inside ParaView)
↪ tries to write a

lock file to
↪ $HOME/.cache/matplotlib/tex.cache/.matplotlib_lock-*.
↪ Without

this symbolic link, matplotlib would fail when run on compute
↪ nodes.

$ ssh gw01
$ mkdir /work/${NEWUSER}/.allinea
$ ln -s /work/${NEWUSER}/.allinea /home/${NEWUSER}/.allinea
$ mkdir /work/${NEWUSER}/.ansys
$ ln -s /work/${NEWUSER}/.ansys /home/${NEWUSER}/.ansys
$ mkdir /work/${NEWUSER}/.cache
$ ln -s /work/${NEWUSER}/.cache /home/${NEWUSER}/.cache
$ mkdir -p /work/${NEWUSER}/.ccache
$ ln -s /work/${NEWUSER}/.ccache /home/${NEWUSER}/.ccache
$ mkdir -p /work/${NEWUSER}/.cmake/packages
↪ /home/${NEWUSER}/.cmake

$ mkdir /work/${NEWUSER}/.cfx
$ ln -s /work/${NEWUSER}/.cfx /home/${NEWUSER}/.cfx
$ ln -s /work/${NEWUSER}/.cmake/packages
↪ /home/${NEWUSER}/.cmake/packages

$ mkdir /work/${NEWUSER}/.config
$ ln -s /work/${NEWUSER}/.config /home/${NEWUSER}/.config
$ mkdir /work/${NEWUSER}/.felix
$ ln -s /work/${NEWUSER}/.felix /home/${NEWUSER}/.felix
$ mkdir /work/${NEWUSER}/felix-cache
$ ln -s /work/${NEWUSER}/felix-cache /home/${NEWUSER}/felix-cache
$ mkdir /work/${NEWUSER}/.java
$ ln -s /work/${NEWUSER}/.java /home/${NEWUSER}/.java
$ touch /work/${NEWUSER}/.lesshst
$ ln -s /work/${NEWUSER}/.lesshst /home/${NEWUSER}/.lesshst
$ mkdir /work/${NEWUSER}/.matlab
$ ln -s /work/${NEWUSER}/.matlab /home/${NEWUSER}/.matlab
$ mkdir /work/${NEWUSER}/.oracle_jre_usage
$ ln -s /work/${NEWUSER}/.oracle_jre_usage
↪ /home/${NEWUSER}/.oracle_jre_usage

$ mkdir -p /work/${NEWUSER}/.ssh
$ ln -s /work/${NEWUSER}/.ssh /home/${NEWUSER}/.ssh
$ mkdir /work/${NEWUSER}/.subversion

LiDO3 | First Contact page 110 of 120

IT & Medien Centrum | LiDO3 | First Contact

$ ln -s /work/${NEWUSER}/.subversion /home/${NEWUSER}/.subversion
#does not work $ touch /work/${NEWUSER}/.viminfo
#does not work $ ln -s /work/${NEWUSER}/.viminfo
↪ /home/${NEWUSER}/.viminfo

$ touch /work/${NEWUSER}/.Xauthority
$ ln -s /work/${NEWUSER}/.Xauthority /home/${NEWUSER}/.Xauthority

LiDO3 | First Contact page 111 of 120

IT & Medien Centrum | LiDO3 | First Contact

4.10.2 Migrating your Slurm scripts to full node usage
The following approaches have proven to work for a wide variety of use cases. Each
of them assumes that your current calculation executed by a single program call is not
able to utilize a complete LiDO3 node. It further assumes that you want to execute this
program multiple times, possibly for differing input data. It is up to you (for example
inside a short benchmarking session) to know or figure out how many program calls
can be done in parallel on a single node to utilize – but not overutilize – the available
resources (e.g. CPU cores or amount of memory or memory bandwidth).
Obviously, this guide cannot provide any solution for cases where you only want to
execute one serial, single-threaded program call at a time – this usage model is not
suited for a compute cluster at all.

4.10.2.1 Executing several processes concurrently in the background

If your programs are not compiled with MPI support at all, you can exploit a com-
mon shell feature: every command is executed in the background if followed by the
ampersand character, &. In other words, the command is run, but – unlike when run
in foreground mode – control is immediately passed back to the shell such that one
can interactively enter and invoke other commands. Or have another program start in
non-interactive, i.e. batch, mode.
To explicitly wait for all programs started by your Slurm script and that are being
executed in the background to finish, before control is passed back to the shell (i.e.
the shell is ready to execute a new command), issue the command wait.

As there is no Slurm logic involved in the program startup at all, this approach
does only work on a single node. If you want to allocate multiple nodes at once, this
approach won’t work for you because the Slurm script is only executed on the first of
those compute nodes.

As there is now only one Slurm script executing multiple programs at once, it
might be a good idea to redirect stdout and stderr to disjunct files for improved
clarity and a reasonable chance to debug any arising issue. The syntax &> filename
means to catch both stdout and stderr in a single file named filename. The
alternative syntax catches them in separate files, with &1> outputfile catching
ordinary terminal output and &2> errorfile catching any error output.

LiDO3 | First Contact page 112 of 120

IT & Medien Centrum | LiDO3 | First Contact

Listing 4.9: List every command individually
#!/bin/bash -l
#SBATCH --partition=short
#SBATCH --nodes=1
#SBATCH --ntasks-per-node=2
#SBATCH --time=02:00:00
#SBATCH --job-name=demoscript
#SBATCH --output=/work/<username>/demo.out.txt
#SBATCH --constraint=cstd01
#SBATCH --exclusive

cd project_folder
call-to-single-threaded-program-a parameter1_1 parameter2_1 &>

↪ out-and-err.1 &
call-to-single-threaded-program-a parameter1_2 parameter2_2 &>
↪ out-and-err.2 &

call-to-single-threaded-program-b parameter1_3 parameter2_3 1>
↪ out.3 2> err.3 &

wait

Obviously, you are not restricted to calling the same program over and over again.
It is, however, advised to group your program calls by similar execution time per node
to avoid that a compute node is partially idle and gets underutilized once the first
programs finish.
If your parameters follow some sort of scheme or logic, you might want to use a simple
for loop to start all calculations with fewer lines of code.

LiDO3 | First Contact page 113 of 120

IT & Medien Centrum | LiDO3 | First Contact

Listing 4.10: Use a for loop to invoke commands
#!/bin/bash -l
#SBATCH --partition=short
#SBATCH --nodes=1
#SBATCH --ntasks-per-node=20
#SBATCH --time=02:00:00
#SBATCH --job-name=demoscript
#SBATCH --output=/work/<username>/demo.out.txt
#SBATCH --constraint=cstd01
#SBATCH --exclusive

cd project_folder
for ((i=0; i < $SLURM_NTASKS ; ++i)); do

call-to-single-threaded-program $i &> out-and-err.$i &
done
wait

In this example, we start 20 programs and pass a running number between 0 and 19
to each program. Here we simply assume that the program will then decide on its own
how to react: which input parameters to use based on the number passed as command
line argument.

4.10.2.2 Slurm’s srun --multi-prog option

The --multi-prog option of srun allows to start multiple programs (or the same
program multiple times) with different sets of parameters as long as the additional
parameters, e.g. --cpus-per-task, are identical.
For this purpose, srun parses a configuration file one needs to provide and that steers
the actual program execution.

LiDO3 | First Contact page 114 of 120

IT & Medien Centrum | LiDO3 | First Contact

The following configuration file srun.conf mimicks the commands run in exam-
ple 4.9: Listing 4.11: Example for srun.conf
0 call-to-single-threaded-program-a parameter1_1 parameter2_1 &>
↪ out-and-err.1

1 call-to-single-threaded-program-b parameter1_2 parameter2_2 &>
↪ out-and-err.2

2 call-to-single-threaded-program-b parameter1_3 parameter2_3 1>
↪ out.3 2> err.3

It tells srun to invoke call-to-single-threaded-program-a as the first
task, call-to-single-threaded-program-b as the second task and third
task.
The executable arguments may be augmented by expression %t which gets replaced
by the task number, and %o which gets replaced with task’s offset within this range.
If a line should be executed more than once, you can list multiple task ranks per line.
Multiple values may be comma separated. Ranges may be indicated with two numbers
separated with a ’-’ with the smaller number first (e.g. "0-4" and not "4-0"). To
indicate all tasks, specify a rank of ’*’ (in which case you probably should not be using
this option). If an attempt is made to initiate a task for which no executable program
is defined, the following error message will be produced "No executable program spec-
ified for this task".

Listing 4.12: Example for srun.conf with 6 tasks in total
0,5 call-to-single-threaded-program-a parameter1_1 parameter2_1

↪ &> out-and-err.%t
1-3 call-to-single-threaded-program-b parameter1_2 parameter2_2
↪ &> out-and-err.%t

4 call-to-single-threaded-program-b parameter1_3 parameter2_3 1>
↪ out.%t 2> err.%t

As is common in multiple programming environments, 0 references the first task
and $SLURM_NTASKS - 1 references the last task.
The corresponding Slurm script would look like this:

#!/bin/bash -l
#SBATCH --partition=short
#SBATCH --nodes=1
#SBATCH --ntasks-per-node=3
#SBATCH --time=02:00:00

LiDO3 | First Contact page 115 of 120

IT & Medien Centrum | LiDO3 | First Contact

#SBATCH --job-name=demoscript
#SBATCH --output=/work/<username>/demo.out.txt
#SBATCH --constraint=cstd01
#SBATCH --exclusive

cd project_folder
srun --multi-prog ./srun.conf

Note that with srun and its ability to spread jobs across multiple allocated compute
nodes, we could ask for more than a single compute node for this Slurm job, i.e.
increase the node count in the line #SBATCH --nodes=x to more than 1. Obviously,
we would then need to add many more lines to srun.conf to cater for a higher
workload.

4.10.2.3 GNU Parallel

GNU Parallel overcomes the disadvantage of the former approaches and relieves the
user from the burden of providing a matching number of program calls and matching
the execution times. In the simplest use case, one provides a file with one arbitrary
program execution per line. The amount of lines does not need to match the amount
of cores, allocated by your Slurm job scripts. GNU Parallel will process the next open
line, if any previously processed line finishes.

It is, however, advised to put those lines in front of all others that trigger a long
running simulation such that such a line will not get executed as one of the last.

Let us say we have a file similar to the above srun example:Listing 4.13: Example commands.txt
call-to-single-threaded-program-a parameter1_1 parameter2_1 &>
↪ out-and-err.1

call-to-single-threaded-program-b parameter1_2 parameter2_2 &>
↪ out-and-err.2

call-to-single-threaded-program-b parameter1_3 parameter2_3 1>
↪ out.3 2> err.3

Then this commands can be processed via

#!/bin/bash -l
#SBATCH --partition=short
#SBATCH --nodes=1

LiDO3 | First Contact page 116 of 120

IT & Medien Centrum | LiDO3 | First Contact

#SBATCH --ntasks-per-node=2
#SBATCH --time=02:00:00
#SBATCH --job-name=demoscript
#SBATCH --output=/work/<username>/demo.out.txt
#SBATCH --constraint=cstd01
#SBATCH --exclusive

cd project_folder
parallel < commands.txt

By default, GNU Parallel detects the number of cores of a node and starts one command
per core. You can use the parameter --jobs to specify the number of concurrent
commands explicitly.

parallel --jobs ${SLURM_NTASKS_PER_NODE} < commands.txt

If you want to use GNU Parallel with multiple nodes at once, you can provide a nodelist
via --sshloginfile. Note, that --jobs now controls the number of concurrent
programm calls per node.

scontrol show hostnames $SLURM_JOB_NODELIST > node_list
parallel --sshloginfile node_list --jobs ${SLURM_NTASKS_PER_NODE}
↪ < commands.txt

You may need to set up a proper inter-node SSH connections (see section 4.2.3
on page 31) to make this work.

Note that GNU Parallel does not load any module environment on the remote site. You
might simply want to ensure this in the commands.txt or by using the env_parallel
bash function.

LiDO3 | First Contact page 117 of 120

IT & Medien Centrum | LiDO3 | First Contact

4.10.3 Slurm for Torque/PBS users
A Torque queue is a Slurm partition.

Table 4.9: Job control.
Action Slurm Torque/PBS Maui
Job information squeue <job_id>

scontrol show job <job_id>
qstat <job_id>
qstat -f <job_-
id>

checkjob

Job information (all) squeue -al
scontrol show job

qstat -f

Job information (user) squeue -u $USER qstat -u $USER
Queue information squeue qstat showq
Delete a job scancel <job_id> qdel
Clean up leftover job momctl -c <job_-

id>
Submit a job srun <jobfile>

sbatch <jobfile>
salloc <jobfile>

qusb <jobfile> msub

Interactive job salloc -N
<minnodes[-maxnodes]> \
-p <partition> sh

qsub -I

Free processors srun -test-only -p
<partition> \
-n 1 -t <time limit> sh

showbf

Expected start time squeue --start -j <job_id> showstart
<job_id>

Blocked jobs squeue --start mdiag -b
showq -b

Queues/partitions scontrol show partition qstat -Qf mdiag -c
Node list sinfo -N

scontrol show nodes
pbsnode -l

Node details scontrol show node <nodename> pbsnode
<nodename>

Queue 58 sinfo
sinfo -o "%P %l %c %D "

qstat -q

Start job scontrol update JobId=<job_-
id> \
StartTime=now

qrun runjob

Hold job scontrol update JobId=<job_-
id> \
StartTime=now+30days

qhold <job_id> sethold

Release hold job scontrol update JobId=<job_-
id> \
StartTime=now

qrls <job_id> releasehold

Pending job scontrol requeue <job_id>
Graphical Frontend sview xpbs
set priority scontrol update JobId=<job_-

id> \
-nice=-10000

setspri 10000 \
<job_id>

preempt job scontrol requeue <job_id> mjobctl -R
<job_id>

suspend job scontrol suspend <job_id> mjobctl -s
<job_id>

resume job scontrol resume <job_id> mjobctl -r
<job_id>

QoS details sacctmgr show QOS mdiag -q

58See also section Format options for slurm commands on page 83.

LiDO3 | First Contact page 118 of 120

IT & Medien Centrum | LiDO3 | First Contact

4.10.3.1 Job variables in Slurm and Torque

The available field specifications include:

Table 4.10: Job variables.

Environment Torque/PBS Slurm
Job ID PBS_JOBID SLURM_JOB_ID / SLURM_JOBID

Job name PBS_JOBNAME SLURM_JOB_NAME

Node list s PBS_NODELIST

PBS_NODEFILE

SLURM_JOB_NODELIST / SLURM_NODELIST

Submit directory PBS_O_WORKDIR SLURM_SUBMIT_DIR

Submit host PBS_O_HOST SLURM_SUBMIT_HOST

Job array index PBS_PBS_ARRAY_INDEX SLURM_ARRAY_TASK_ID

User PBS_USER SLURM_JOB_USER

LiDO3 | First Contact page 119 of 120

IT & Medien Centrum | LiDO3 | First Contact

4.10.4 Picture credits
◾ Windows Logo - Wiki Commons59

◾ Apple Logo - Wiki Commons60

◾ Tux Logo - Wiki Commons61

◾ Computer shape - Openclipart62

◾ Server shape Openclipart63

◾ Light bulb - Openclipart64

◾ Warning triangle - Openclipart65

◾ Clock - Openclipart66

◾ TU Dortmund ITMC - itmc.tu-dortmund.de67

◾ Mordor Meme generated with imgflip68

◾ TotalView pictures - PC2 TotalView HowTo69

◾ Remaining screeshots and figures - created by the LiDO Team

59http://commons.wikimedia.org/wiki/Category:Microsoft_Windows_logos
60http://commons.wikimedia.org/wiki/File:Apple_logo_black.svg?

uselang=de
61http://commons.wikimedia.org/wiki/Tux#/media/File:Tux.svg
62https://openclipart.org/detail/17391/computer
63https://openclipart.org/detail/171414/router
64https://openclipart.org/detail/211389/lightbulb
65https://openclipart.org/detail/14428/h0us3s-Signs-Hazard-Warning-

9-by-h0us3s
66https://openclipart.org/detail/217065/3-oclock
67https://www.itmc.tu-dortmund.de/cms/de/home/anfahrt/anfahrt-

hauptgebaeude/index.html
68https://imgflip.com/memegenerator/One-Does-Not-Simply
69https://wikis.uni-paderborn.de/pc2doc/Noctua-Software-TotalView

LiDO3 | First Contact page 120 of 120

http://commons.wikimedia.org/wiki/Category:Microsoft_Windows_logos
http://commons.wikimedia.org/wiki/File:Apple_logo_black.svg?uselang=de
http://commons.wikimedia.org/wiki/Tux#/media/File:Tux.svg
https://openclipart.org/detail/17391/computer
https://openclipart.org/detail/171414/router
https://openclipart.org/detail/211389/lightbulb
https://openclipart.org/detail/14428/h0us3s-Signs-Hazard-Warning-9-by-h0us3s
https://openclipart.org/detail/217065/3-oclock
https://www.itmc.tu-dortmund.de/cms/de/home/anfahrt/anfahrt-hauptgebaeude/index.html
https://imgflip.com/memegenerator/One-Does-Not-Simply
https://wikis.uni-paderborn.de/pc2doc/Noctua-Software-TotalView
http://commons.wikimedia.org/wiki/Category:Microsoft_Windows_logos
http://commons.wikimedia.org/wiki/File:Apple_logo_black.svg?uselang=de
http://commons.wikimedia.org/wiki/File:Apple_logo_black.svg?uselang=de
http://commons.wikimedia.org/wiki/Tux#/media/File:Tux.svg
https://openclipart.org/detail/17391/computer
https://openclipart.org/detail/171414/router
https://openclipart.org/detail/211389/lightbulb
https://openclipart.org/detail/14428/h0us3s-Signs-Hazard-Warning-9-by-h0us3s
https://openclipart.org/detail/14428/h0us3s-Signs-Hazard-Warning-9-by-h0us3s
https://openclipart.org/detail/217065/3-oclock
https://www.itmc.tu-dortmund.de/cms/de/home/anfahrt/anfahrt-hauptgebaeude/index.html
https://www.itmc.tu-dortmund.de/cms/de/home/anfahrt/anfahrt-hauptgebaeude/index.html
https://imgflip.com/memegenerator/One-Does-Not-Simply
https://wikis.uni-paderborn.de/pc2doc/Noctua-Software-TotalView

	LiDO3 - first contact
	Introduction
	Scope
	Non-scope

	Prerequisites
	How do I get / extend a user account?
	Application
	Approval
	Account creation

	SSH Key
	Create SSH Key on Unix
	Create SSH Key on Windows
	Changing your SSH public key

	Publications
	Working with LiDO3
	Basic workflow
	Connect
	Unix
	Windows
	PuTTY
	WinSCP

	Inter-node connections
	Troubleshooting
	Keyfile permissions
	Getting prompted for a password on login
	Rejected connections

	Linux Environment
	Working with the Linux shell
	Editing files

	Filesystems
	/home and /work file systems
	Read-only !/home! directory on compute nodes
	Dealing with the disk space quotas
	Compressing application data

	/scratch file system

	Filetransfer between LiDO3 and external computers
	Shared file access
	Software modules
	Loaded modules
	Available modules
	Load a module
	Unload a module
	Modules in job scripts
	Compiler modules

	Installing your own software
	configure-make-install
	pip

	Resource management
	Partition
	Working with partitions
	srun - interactive execution and jobsteps
	sbatch - Submit a job script
	salloc - Allocate nodes
	scontrol, squeue, showq - Query Job status
	scancel - Cancel a queued job
	Decreasing job priority with scontrol, sbatch
	seff, sacct - show post job performance analysis

	Constraints on node-features
	Generic Resource (GRES) - request a GPU
	Memory management
	Utilize complete nodes
	Slurm statements
	Slurm cheat sheet
	List of job states
	Format options for slurm commands
	Job variables

	Examples
	Basic slurm script example
	Example using multiple GPU nodes
	Common software example: ANSYS CFX
	Common software example: ANSYS Fluent
	Common software example: Matlab
	Common software example: R
	Using multiple versions of R along with additional R modules

	Third-party node usage example
	Have a job automatically clean up when risking to exceed the configured walltime
	Example for job steps
	Example for parallel debugging with TotalView

	System overview
	Dictionary
	Walltime
	Backfilling

	Get support
	Frequently asked questions
	My Slurm job exits with !can't open /dev/ipath, network down (err=26)!
	No GPU is visible on a GPU node
	How can i use more than one CPU socket on a GPU node?

	Appendix
	Symbolic links for non-writable home directory
	Migrating your Slurm scripts to full node usage
	Executing several processes concurrently in the background
	Slurm's !srun! !–multi-prog! option
	GNU Parallel

	Slurm for Torque/PBS users
	Job variables in Slurm and Torque

	Picture credits

