


























































3.4 

120 DATA 38456,64872,98765 
130 DATA 32,384,72 
200 LET Q=INTeX/Y) 
210 LET R=X-Q*Y 
220 IF R=0 GOTO 300 
230 LET X=Y 
240 LET Y=R 
250 GO TO 200 
300 LET G=Y 
310 RETURN 
320 END 

RUN 

A B 
60 90 
38456 64872 
32 384 

1030 ERROR IN LINE 
OUT OF DATA 
READY 

INPUT 

20 

C GCD 
120 30 
98765 1 
72 8 

There are times when it is desirable to have data entered during the running of a program. 

This is particularly true when one person writes the program and enters it into the computer's memory, 

and other persons are to supply the data. This may be done by an INPUT statement, which acts as a 

READ statement but does not draw numbers from a DATA statement. If, for example, you want the user 

to supply values for X and Y into a program, you will type 

40 INPUT X, Y 

before the first statement which is to use either of these numbers. When it encounters this statement, 

BASIC will type a question mark. The user types two numbers, separated by a comma or blank, presses 

the RETURN key, and BASIC goes on with the rest of the program. 

Frequently an INPUT statement is combined with a PRINT statement to make sure that the user 

knows what the question mark is asking for. You might type: 

20 PRINT "YOUR VALUES OF X, Y, AND Z ARE"; 
30 INPUT X, Y, Z 

and BASIC wi II type out 

3-7 



YOUR VALUES OF X, Y, AND Z ARE? 

Without the semicolon at the end of line 20, the question mark would have been printed on the next line. 

Data entered via an INPUT statement is not saved with the program. Furthermore, it may 

take a long time to enter a large amount of data using INPUT. Therefore, INPUT should be used only 

when small amounts of data are to be entered, or when it is necessary to enter data during the running 

of the program such as with game-playing programs. 

3.5 MISCELLANEOUS STATEMENTS 

Several other BASIC statements that may be useful from time to time are STOP, REM and 

RESTORE. 

3.5.1 STOP Statement 

STOP is equivalent to GOTO xxxxx, where xxxxx is the line number of the END statement 

in the program. It is useful in programs having more than one natural finishing point. For example, 

the following two program portions are equivalent. 

250 GO TO 999 2513 STOP 

340 GO TO 999 340 STOr 

999 END 999 END 

3.5.2 REM Statement 

REM provides a means for inserting explanatory remarks in a program. BASIC completely 

ignores the remainder of that line,allowing the programmer to follow the REM with directions for using 

the program, with identifications of the parts of a long program, or with anything else that he wants. 

Although what forlows REM is ignored, its line number may be used in a GOTOor IF-THEN statement. 

100 REM INSERT DATA IN LINES ~00-998. THE FIRST 
110 REM NUMBER IS N, THE NUMBER OF POINTS. THEN 
120 REM THE DATA POINTS THEMSELVES ARE ENTERED, BY 

200 REM THIS IS A SUBROUTINE FOR SOLVING EQUATIONS 

300 RETURN 

520 GOSUB 200 

3-8 



3.5.3 RESTORE Statement 

Sometimes it is necessary to use the data in a program more than once. The RESTORE 

statement permits reading the data as many additional times as it is used. Whenever RESTORE is en­

countered in a program, BASIC restores the data to its original state. A subsequent READ statement 

will then start reading the data all over again. A word or warning: if the desired data are preceded 

by code numbers or parameters, superfluous READ statements should be used to pass over these numbers. 

As an example, the following program portion reads the data, restores the data to its original state, 

and reads the data again. Note the use of line 570 to "pass over II the value of N, which is already 

known. 

100 READ N 
110 FOR I = 1 TO N 
120 READ X 

200 NEXT I 

560 RESTORE 
570 READ X 
580 FOR I = 1 TO N 

3-9 





CHAPTER 4 

OPERATING TSS/8 BASIC SYSTEM 

After logging into TSS/8, and calling the BASIC program (see page I-I), BASIC then types 

NEW OR OLD? and you type the appropriate adjective: NEW if you are about to type a new problem 

and OLD if you want to recover a problem on which you have been working earlier and have stored in 

the computer's memory. 

BASIC then asks NEW PROGRAM NAME (or OLD PROGRAM NAME, as the case may be) 

and you type any combination of letters and digits you like, but no more than six. If you are recalling 

an old problem from the computer's memory, you must use exactly the same name as that which you 

gave the problem before you asked BASIC to save it. 

BASIC then types READY (which signals the start of the editing phase), and you should 

begin to type your program. If you type a line consisting of only a line number followed by the 

RETURN key, that line will be deleted. Make sure that each line begins with a line number which is 

greater than 0 and less than 2046 and contains no non-digit characters. Also be sure to type the 

RETURN key at the completion of each line. 

If, in the process of typing a statement, you make a typing error and notice it immediately, 

you can correct it by typing the RUBOUT key (right-hand side of the keyboard). This will delete the 

character in the preceding space and print a left arrow (-) for each rubout. You can then type in the 

correct character. Typing the RUBOUT key a number of times will erase from the current line one 

character (including spaces) to the left for each RUBOUT typed. (Caution: It sometimes takes several 

seconds for BASIC to accomplish a rubout.) Typing the key marked ALT MODE (left-hand side of the 

keyboard) will delete the entire line being typed. 

While in the editing phase, certain additional commands (which may not have line numbers) 

are available and are described below: 

a. If IOU type in SAVE followed by typing the RETURN key, the program you have just 
written (or changed) will be saved for use at a later time, under the name you gave when you started. 
If following the word SAVE you have typed one or more spaces, followed by a name followed by the 
RET URN key, the program wi II be saved under that name. 

b. If you type in UNSAVE, followed by a name, followed by the RETURN key, the program 
with the name you have just given will be deleted from your permanent file. 

c. If you type in CATALOG followed by the RETURN key, a listing of all the program 
names in your permanent file will be typed. 

NOTE 

Names of temporary files may also be shown. These 
wi" be of the form, BASn , and may be ignored. 

4-1 



d. If you type in LIST followed by two line numbers separated by a comma, a listing of 
that part of your current program, which lies between those line numbers, will be typed. If the comma 
and second line number are omitted, only the single line indicated will be listed. If no line numbers 
follow the word LIST (but only the RETURN key), your whole program will be listed. 

e. If you type in DELETE followed by two line numbers separated by a comma, all lines, 
between the two indicated, will be deleted. If the comma and second line number are omitted, only 
the single line specified will be omitted • 

f. When you are ready to leave the Teletype, sign off by typing BYE. This concludes 
operations and TSS/8 deletes any temporary files assigned to you. --

The editor phase control words (CATALOG, DELETE, LIST, NEW, OLD, RUN, SAVE, 

UNSAVE and BYE) may either be typed as shown or the equivalent effect may be obtained by typing in 

just the first letter. If information (other than the RETURN key) is to follow the control word, at least 

one blank must follow the control word (or character). 

After typing your complete program, you type RUN, press the RETURN key; BASIC will then 

analyze your program. If the program is one which BASIC can run, it will type out any results for 

which you have asked in your PRINT statements. This does not mean that your program is correct, but 

that it has no errors of the type known as syntactical or format errors. If it has errors of this type, 

BASIC will type an error message to you and return to the editing phase. A list of the error messages 

with the interpretation of each is contained in Appendix C. 

If it is obvious that you are getting the wrong answers to your problem, even while the 

program is running, you can press the ALT MODE key and computation will cease. The computer will 

than type READY to indicate that you are back in the editing phase. It may be necessary to type 

CTRL/B followed by S;ST 222J in order to stop processing and return to the Editor. 

4:-2 



APPENDIX A 

SUMMARY OF BASIC STATEMENTS 

A.1 ELEMENTARY BASIC STATEMENTS 

The following subset of the Dartmouth BASIC command repertoire includes the most commonly 

used commands and is sufficient for solving most problems. 

LET [variable] = [formula] 

DATA [data list] 

READ [variable list] 

PRINT [arguments] 

GO TO [line number] 

IF [formula] [relation] [formula] 

{ THEN ~[line number] 

GOTOj 

FOR [variable] = [formula1] 
TO [formula2] STEP [formula3] 

NEXT [variable] 

DIM [variable] [subscript] 

END 

Assign the value of the formula to the specified 
variable. 

DATA statements are used to supply one or more 
numbers to be accessed by READ statements. 

READ statements, in turn, assign the next available 
datum in the DATA string to the variables listed. 

Type the values of the specified arguments, which 
may be variables, text, or format control characters. 

Transfer control to the line number specified and 
continue execution from that point. 

If the stated relationship is true, then transfer con­
trol to the line number specified; if not, continue 
in sequence. 

Used for looping repetitively through a series of 
steps. The FOR statement initializes the variable 
to the value of formula1' If the increment is posi­
tive and the variable .s. formula2' the instructions 
following are executed until the NEXT statement is 
encountered. 

The NEXT statement increments the variable by the 
value of formula3 (if omitted, the increment value 
is +1). The variable is again tested as described 
above, and this process continues until the loop is 
repeated the specified number of times. When the 
variable becomes larger than formula2, control goes 
to the statement following the NEXT. If the incre­
ment (formula3) is negative, then the instructions 
between the FOR and NEXT statements are executed 
until the variable becomes less than the value of 
formula2' 

Enables the user to enter a table or array with the 
specified number of elements. 

Last statement to be executed in the program. This 
statement must be present. 

A-1 



FORMULAS: In addition to the common arithmetic operators of addition (+), subtraction (-), 

multiplication (*), division (/), and exponentiation (f), BASIC includes the following elementary 

functions: 

SIN (x) 

COS (x) 

TAN (x) 

A.2 ADVANCED BASIC STATEMENTS 

GOSUB [line number] 

{
[line number] • 

Subroutine 

RETURN 

INPUT [vaJ:iable(s)] 

STOP 

REM 

RESTORE 

ATN (x) 

EXP (x) 

LOG (x) 

ASS (x) 

SQR (x) 

Simplifies the execution of a subroutine at several 
different points in the program by providing an 
automatic return from the subroutine to the next 
sequential statement following the appropriate 
GOSUB (the GOSUB which sent control to the 
subroutine). 

Causes typeout of a ? to the user and waits for user 
to respond by typing the value(s) of the variable(s). 

Equivalent to GO TO [line number of END state­
ment] • 

Permits typing of remarks within the program. 

Sets pointer back to beginning of string of DATA 
values. 

FORMULAS: Some advanced functions include the following: 

INT (x) Find the greatest integer in x. 

RND (x) 

SGN (x) 

Generate random numbers between 0 and 1. The 
same set of random numbers can be generated 
repeatedly for purposes of program testing and 
debugging. The value of x is ignored. 

Assign a value of 1 if x is positive; 0 if x is 0; 
or -1 if x is negative. 

The user can also define his own functions by use of the DEFine statement. For example, 

[tine number] DEF FNC(x) = SIN(x) + TAN(x) -10 

(Defines the user function FNC as the formula SIN(x) + TAN(x) -10.) 

NOTE that DEFine statements are restricted to one line. 

A-2 



APPENDIX B 

SUMMARY OF EDIT AND CONTROL COMMANDS 

Several commands for editing BASIC programs and for controlling their execution enable you 

to: delete lines, list your program, save programs on a file-structured storage device (disk), delete or 

replace old programs on the storage devi ce with new programs, call in programs from the storage device, 

etc. These commands are summarized below. 

Command 

BYE 

DELETE n (or n J) 

DELETE n1' n2 

LIST 

LIST n 

LIST n1, n2 

NEW 

OLD 

RUN 

SAVE 

SAVE [name] 

UNSAVE 

UNSAVE [name] 

t B (CTRL/B) 

Action 

Exit to TSS/8 Monitor to conclude operations. 

Delete line number n (or simply the line number and RETURN key). 

Delete line numbers n1 through n2' 

List program 

List line number n. 

List program from line number n1 through n2' 

BASIC wi II ask for new program name. 

BASIC will ask for program name and will replace current contents 
of user core with existing program of that name from the storage 
device. 

Compile and run program currently in core. 

Save the contents of user core as file whose fi lename is current 
program name. 

Save user core as name 1 • 

Delete the program with the current program name from the storage 
device. 

Delete the name program from the storage device. 

To stop a running program, type t B followed by S; ST 222 J. CTRL/B 
is typed by holding down the CTRL key while typing the B key; it 
echoes the t B on the Teletype printer. 

1 SAVE commands will not overwrite an existing file of the same name (use UNSAVE first). 

B-1 





APPENDIX C 

ERROR MESSAGES 

Four types of error messages can occur in BASIC. The messages and their interpretation is 

shown below. 

C.1 DURING THE EDITING PHASE 

(Just retype the line to correct it.) 

//ERROR 00 

//ERROR 01 

//ERROR 02 

//ERROR 03 

//ERROR 04 

//ERROR 10 

//ERROR 11 

//ERROR 12 

//ERROR 20 

Machine malfunction. 

You didn't type in OLD or NEW when the information was requested. 

The new or old name you typed in wasn't a valid name. 

The new name you gave is already an active program. 

You asked for an old program name which isn't in your permanent 
file. 

The name you gave with the SAVE command is already in your 
permanent fi Ie. 

The SAVE or UNSAVE name you gave is not a valid name. 

The editor can1t understand the command you just gave. 

Invalid line number format or outside of the range 0 < line number 
<2047. 

C.2 DURING PROGRAM COMPILATION OR EXECUTION 

The message will be preceded by ERROR ON LINE nnnn, where nnnn is the line number on 

which the error was detected. (BASIC will type READY and you will be back in the editing 

phase.) 

PROGRAM TOO LARGE TO LOAD 

MISSING END STATEMENT 

DATA POOL OVERFLOW 

ILLEGAL STATEMENT 

ILLEGAL LINE FORMAT 

NOT CONSTANT IN DATA 

Your program is too large to be executed. Try to 
make it smaller. 

All programs must have an END statement. 

You have used too many constants and/or variables 
in your program. 

A statement was used which is not one of the 
legitimate BASIC statements. 

The structure of the statement does not agree with 
the BASIC syntax. 

You attempted to use something other than a con­
stant in a DATA statement. 

C-l 



ILLEGAL CHARACTER 

ILLEGAL CONSTANT 

INVALID NAME 

You attempted to use an illegal character for the 
statement you are processing. 

The format of a constant, in the statement being 
processed, is not valid. 

A name is being used which doesn't agree with the 
BASIC requirements. 

INVALID LINE NUMBER The format of th'e line number, being used in a GO 
TO or IF statement, is not correct. 

ARRAY USED BEFORE DEFINED You have attempted to use an array prior to its 
appearance in a DIM statement. 

EXPRESSION SYNTAX 

STACK OVERFLOW 

OUT OF DATA 

The expression being processed does not agree with 
the BASIC rules (probably this will be due to un­
matched parentheses). 

You have programmed a situation in which either 
DO, subroutines, or functions are nested too deeply 
or you have a function or subroutine which calls 
itself. 

An attempt has been made to READ more data than 
you have. 

ILLEGAL INPUT FORMAT The form of a constant, which you are attempting to 
INPUT, is not valid. 

DIMENSION SIZE 

UNDEFINED LINE NUMBER 

Too large an array. 

The line number appearing in a GO TO or an 
IF-THEN statement does not appear in the program. 

C.3 NON-FATAL EXECUTION ERRORS 

These errors are for notification purposes and indicate that you have performed a computa­

tional range error. They will all type the message XX IN nnnn, where nnnn is the line number and XX 

is as described below. 

Error Code 

/0 

OV 

UN 

LN 

Explanation 

ZERO DIVIDE - An attempt was made to divide a number by zero. 
The largest possible number will be used for the result. 

OVERFLOW - The result of a calculation was too large for the com­
puter to handle. The largest possible number will be used for the 
result. 

UNDERFLOW - The result of a calculation was too small for the com­
puter to handle. Zero will be used for the result. 

An attempt was made to compute the logarithm of zero or a negative 
number. Zero will be used for the result. 

C-2 



SQ 

PW 

C .4 SYSTEM ERROR 

An attempt was made to compute the square root of a negative 
number. The square root of the absolute value will be used for the 
result. 

An attempt was made to raise a negative number to a power. The 
absolute value raised to a power will be used. 

If a failure occurs in the I/o portion of the BASIC system, the message MACHINE MAL­

FUNCTION will be typed and control will return to the editing phase. 

C-3 





APPENDIX D 

D.1 LOADING TO DISK 

The system call routine (SYP) references a table called SYPTBA at EXEC locations 314-3328 • 

This table contains the disk address of the five (5) basi c programs. As is shown in the table, the pro­

grams are on the disk in the following order: 

EDITOR 
COMPILER 
LOADER 
INTERPRETER 
ERROR 

(BASED) 
(BASCOM) 
(BASLDR) 
(BASIN) 
(BAS ERR) 

Having gone once through all the preliminaries of Opening, Creating, Extending and setting 

the Protection Mask for BASIC, you can start with the loading of the disk. 

Load the EDITOR/EXEC (binary tape) using R LOAD. 

Check the AC on completion with a WHERE. If the AC -10 reload the tape. 

If AC=O perform a SAVE BASIC 0 0 4377. EDITOR will now occupy locations 0-4377 01'\ 

disk. The compiler is loaded next. Perform WHERE. If AC=O perform a 

SAVE BASIC 4400 400 5377 
~-----------------~-------------------- r-----------------~/'--------------------~ 

(First disk location used by the COMPILER~ (Starting location and 2's complement of the' 
length of the COMPILER 

This wi II butt the COMPILER up against the EDITOR/EXEC on the disk. This same procedure 

is used for each of the remaining programs. The succeeding SAVE's are: 

LOADER: 

INTERPRETER: 

ERROR: 

SAVE BASIC 11400 400 

SAVE BASIC 12000 400 

SAVE BASIC 20100 400 

NOTE 

Changes in the size of these programs will require altera­
tions to the table entries in SYPTBA and in the SAVE's 
performed in loading the disk. 

D-l 

777 

6477 

1777 





APPENDIX E 

IMPLEMENTATION NOTES 

TSS/8 BASIC language is compatible with Dartmouth BASIC except as noted below: 

1. There are no matrix operations. 

2. There are no character string instructions. 

3. The ON statement has not been implemented. 

The TAB function is not available in PRINT statements. 

5. BASIC has no features which allow reading or writing data on the disk. (Although 
programs may be saved on the disk for future use.) 

6. All array (subscripted) variables must appear in a DIM statement. 

7. The function INT{x) will give the greatest integer in x. Thus INT{-2.3) will give 
the value -2. 

8. Negative numbers may not be raised to integer powers. The absolute value will be 
used and an error message wi II be printed. 

9. The RANDOMIZE instruction is not available. 

10. User defined functions are restricted to one line. 

E-l 





HOW TO OBTAIN REVISIONS AND CORRECTIONS 

Notification of new or revised DEC software and manuals avai lable from the Program 
Library is published in: 

Digita I Software News for the PDP-8 Fami Iy 
Digital Software News for the PDP-9 Family 

If you are not receiving the publication appropriate to your computer, please notify Software Informa­
tion Service (see Reader's Comments card). 

Revised software products and documents are shipped only after the Program Library receives 
a specific request from a user (see title page for address) • 

Digital Equipment Computer User's Society (DECUS) maintains a library of user software 
and publishes them in DECUSCOPE, a magazine avai lable to both DECUS members and to non-members 
who request it. Return the request card below to receive further information or to place your name on 
the mailing list. 

To: Decus Office, 
Digital Equipment Corporation, 
Ma.ynard, Massachusetts 01754 

o Please send DECUS installation membership information. 

o Please send DECUS individual membership information. 

o Please add my name to the DECUSCOPE non-member mai ling list. 

Name ------------------------------
Company ----------------------------
Address 



Digital Equipment Corporation 
Maynard, Massachusetts 

printed in U.SA 

momODma 


