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Abstract

We present several sequential exact Euclidean distance transform algorithms. The algorithms are based on fundamental transforms of
convex analysis: The Legendre Conjugate or Legendre–Fenchel transform, and the Moreau envelope or Moreau-Yosida approximate.
They combine the separability of the Euclidean distance with convex properties to achieve an optimal linear-time complexity.

We compare them with a Parabolic Envelope distance transform, and provide several extensions. All the algorithms presented per-
form equally well in higher dimensions. They can naturally handle grayscale images, and their principles are generic enough to apply to
other transforms.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Consider an n · m binary image IMG stored as a 0–1
matrix. Its squared Euclidean distance transform is an
n · m image where each pixel p 2 {1, . . . ,n} · {1, . . . ,m}
has the value
DT2ðpÞ ¼ min
q
fkp � qk2

; IMGðqÞ ¼ 0g:
In other words, the EDT computes a new image in
which the value at each pixel is equal to the Euclidean dis-
tance from that pixel to the background. To avoid unnec-
essary floating point operations, the square EDT, which we
denote DT2, is usually computed. For example, the DT2 of
the binary image in Fig. 1 is displayed in Fig. 2. If you con-
sider the upper right pixel (5,1), its value in the transformed
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image becomes its square distance to the background pixel
(3,3): (5 � 3)2 + (1 � 3)2 = 8. The value of each pixel is
computed similarly.

A distance transform algorithm takes advantage of the
fact that the values for all the pixels have to be computed
(and there are relations between adjacent pixels) to speed
up the computation Fig. 3a shows a binary image and
Fig. 3b shows its distance image.

Distance transforms have long been recognised for their
importance [1–3], and their applications [4–7]. Starting
from non-Euclidean metrics like the city-block distance,
and Chamfer distances, several algorithms have been pro-
posed. Computational algorithms for the exact Euclidean
distance transform (EDT) appeared later [4,8–14], and sev-
eral linear-time algorithms are now known. Current
research focuses on providing simpler algorithms, now that
we have a better understanding of the properties of the
EDT, and on extending the distance transform to a more
general setting [6,10,13–20].

The three algorithms presented are optimal. They do not
rely on complex data structure like polygonal chain [14]
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Fig. 2. The Square Euclidean Distance transform of IMG. The value of
each pixel is now its square Euclidean distance to the closest background
pixel with value 0.

Fig. 1. Example of a binary image IMG. The value 0 is associated with the
background of the image.
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or on other concept like Voronoı̈ diagram [8,10]. They
manipulate one-dimensional arrays and are easily parallel-
izable since the computation on one row only depends on
that row and not on values in adjacent rows contrary to
for example [11].

Additionally, we consider an extension to the Euclidean
distance transform to handle grayscale images instead of
binary images. Our framework draws from convex analysis
as developed in [21–23]. Following standard convex analy-
sis formulations, we rewrite the constrained optimization
problem defining DT2 with an infinite penalization

DT2ðpÞ ¼ min
q
fkp � qk2 þ IðqÞg;

where I(q) = 0 if q is a background pixel (IMG(q) = 0) and
+1 otherwise (I is called the indicator function of the set
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Fig. 3. 35 · 32 binary image of a star and its distance transform. (a) Binary ima
image in (a).
{q; IMG(q) = 0}). In that formulation, a natural extension
is to consider a general function f instead of the indicator
function I. The problem then becomes

DT2ðpÞ ¼ min
q
fkp � qk2 þ f ðqÞg: ð1Þ

The function f could be naturally chosen as the graylevel
of the image for example. The resulting extended function
Eq. (1), which we still denote DT2, is well known in convex
analysis as the Moreau envelope (also named Moreau–
Yosida approximate, or Moreau–Yosida regularisation).
The difference between our first formulation of DT2 and
the Moreau envelope Eq. (1) is that the minimum is taken
over all the R2 plane in the later while it is taken only over
the pixel defining the image in the former.

Going back to the work of Yosida [24], the Moreau
envelope regularisation properties have been studied exten-
sively in convex and variational analysis [25–27,22]. Com-
puting the Moreau envelope is equivalent to computing
another fundamental transform in convex duality: The
Legendre conjugate (also called Legendre–Fenchel conju-
gate, or Legendre–Fenchel transform)

f �ðsÞ ¼ sup
x2R2

½hs; xi � f ðxÞ�; ð2Þ

where ÆÆ,Ææ denotes the standard dot product in R2. Histor-
ically, its computation was first motivated by the study of
Hamilton–Jacobi equations, and gave birth to several
numerical algorithms [28–32], and later to a linear-time
algorithm [33], with applications in numerous fields:
numerical simulation of Burger’s equation (see for example
[34–37]), robotics [38], network communication [39], pat-
tern recognition [40], numerical simulation of multiphasic
flows [41], and analysis of the distribution of chemical
compounds in the atmosphere [42].

The algorithms presented here rely on convex analysis
properties to achieve a worst-case linear computation time.
They either compute the Fenchel conjugate Eq. (2) or
(equivalently) the Moreau envelope Eq. (1). They include
the Linear-time Legendre Transform (LLT) [33], the para-
bolic envelope (PE) [12,13,20], and the non-expansive
proximal mapping (NEP) [20]. The algorithms were imple-
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Fig. 5. The function f generated from IMG by replacing any non-
background pixel with +1.

Fig. 6. The function g generated by replacing the value of any background
pixel (i, j) with the value (i2 + j2)/2.

Fig. 7. The partial conjugate of g computed by applying the one-
dimensional conjugate to the image row by row.

Fig. 8. The full conjugate of g obtained by applying the conjugacy
operation to the partial conjugate column by column.
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mented in Scilab to allow for future comparison with
known distance transform algorithms such as those avail-
able in the Scilab Image Processing toolbox (SIP) [43].

2. The LLT algorithm

We summarise the algorithm detailed in [40] to compute
DT2 the square EDT using the LLT algorithm. We write

DT2ðpÞ ¼ kpk2 � 2g�ðpÞ ð3Þ
where g*(p) = maxq[Æp,qæ � g(q)] is the Legendre conjugate
of the function g(q) = iqi2/2 + I(q), and Æ., .æ is the standard
scalar product. So the algorithm amounts to computing g

for all pixels q, then applying the LLT algorithm to obtain
g* for all pixels p, and finally deducing DT2 at all pixels p

by Eq. (3).
The LLT algorithm uses convexity to obtain a linear

running time. First, it factors the two-dimensional conju-
gate as several one-dimensional conjugates, which amounts
to processing rows in a first pass, and columns in a second
pass. Next, the computation of each one-dimensional
transform involves computing the lower convex envelope
of the function in linear time using the Beneath-Beyond
algorithm, and then merging two increasing sequences.
More precisely, to compute

g�ðp1; p2Þ ¼ max
q1

½p1q1 þmax
q2

½p2q2 � gðq1; q2Þ��

in linear time, we only need to be able to compute u* the
conjugate of a convex real-valued function u in linear time,
which can be achieved using the following property [33,
Lemma 3]: Assume u is a convex univariate function, and
define the finite difference slopes ci = (u(xi+1) � (u(xi))/
(xi+1 � xi). Then if ci�1 < p1 < ci, the maximum is attained
at xi, and if ci = p1, the maximum is attained at both xi and
xi+1. Since u is convex the sequence ci is non-decreasing, so
computing u* at all the xi, amounts to merging the sequenc-
es ci and xi.

Figs. 4–9 illustrate the LLT algorithm and its partial
computations. The binary image is transformed first into
another (binary) image with pixel values in {0, +1}, then
each background pixel (i, j) (pixels with value 0) is set to the
value (i2 + j2)/2. The Fenchel conjugate is then applied to
the resulting image first row by row, then column by col-
umn. Finally Formula Eq. (3) is used to deduced DT2.

As noted in [40] there is no need to compute the lower
convex envelope of the function g due to the particular
Fig. 4. The binary image IMG (the background pixels have value 0).
structure of g (it is the sum of a quadratic and an indicator
function, so the vertices of its convex envelope are the
points where g is finite). However, the convex envelope of
the partial conjugate has to be computed along each col-
umns, which can be done in linear time since the points
(i,g(i, j))i are naturally sorted along the first coordinate.

The complexity of computing DT2 using the LLT algo-
rithm is linear. The LLT algorithm requires a two-pass
scan of the image in addition to computing the function
g and applying Eq. (3).



Fig. 9. The resulting square Euclidean distance transform DT2 obtained
using Eq. (3): multiply the image in Fig. 8 by �2, then at each pixel (i, j),
add (i2 + j2).

Fig. 10. Binary image IMG.

Fig. 11. The function f obtained by substituting the value +1 at each
pixel with value 1.

Fig. 12. The partial transform Pp obtained by applying the operator P to
the image in Fig. 11 row by row (only row 2 and 3 are relevant).
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The LLT algorithm can be easily extended to non-indi-
cator functions i.e. to compute the Moreau envelope Eq.
(1) for any real-valued function f. For example, the func-
tion f can be defined as the gray level in a grayscale image.
It also naturally extends to higher dimensions: When the
data is d-dimensional, the LLT complexity is O(d N), where
N is the number of points in the grid (N = n2 for an n · n

image).
Fig. 13. The partial distance transform associated with the partial
transform in Fig. 12.

Fig. 14. The image resulting from applying the operator P to Fig. 13
column by column.
3. The NEP algorithm

The Non Expansive Proximal mapping (NEP) algorithm
relies on the non-expansiveness1 of the proximal mapping
P defined by

P ðpÞ ¼ Argminqfkp � qk2 þ f ðqÞg: ð4Þ

The mapping P associates the closest background pixel to
each pixel of the image (computing the distance between
the two pixels gives the distance transform).

The non-expansiveness property holds when the func-
tion f is finite at some point, lower semi-continuous, and
convex. When f is an indicator function of a binary image,
it amounts to the object in the image (pixels with zero val-
ue) being convex. In that case, the NEP algorithm is
extremely simple: Perform two scans first on the rows then
on the columns, so we only compute P on {1, . . . ,n} and
not on the two-dimensional grid. On each scan, we perform
a linear search to compute P(1). Then a single loop returns
all the values of P since under the assumptions above

0 6 P ðiþ 1Þ � P ðiÞ 6 iþ 1� i ¼ 1
1 A function P is non-expansive if for any x,y, iP(x) � P(y)i 6 ix � yi.
i.e. the value of P at the next pixel i + 1 is either P(i) or
P(i) + 1. The convexity assumption reduces the global
search to a very narrow local search.

We illustrate the algorithm on Figs. 10–15. First Fig. 10
is converted to Fig. 11 by replacing the value of non-back-
ground pixels (pixels with value 1) with +1. Next each row
of Fig. 11 is considered independently. The value of each
pixel becomes the index in the row to the closest back-
ground pixel. For example, for the second row there is only
one background pixel at column 2, so all the pixels in that



Fig. 15. The resulting DT2 computed from Figs. 14 and 13 column by
column.
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row take the value 2. Note that rows 1, 4, and 5 do not
have any background pixel. In that case, the algorithm
assigns arbitrary values (when the image is considered col-
umn by column, there will always be a pixel with a lower
value on that column and the arbitrary values will be
superceded by a relevant value).

Finally, starting from the partial distance transform in
Fig. 13, the algorithm is applied column by column. Again,
the value of each pixel becomes the index of the closest
background pixel in that column. Consider the second col-
umn. Pixel 2 is closest to pixel 1, so the value of pixel 1
becomes 2. Now the value of pixel 2 is either 2 or 3, and
a simple comparison gives it the value 2. Similarly, the val-
ue of pixel 3 is either 2 or 3, and after comparison it is
assigned value 3. The full DT2 in Fig. 15 is obtained by
reading Figs. 14 and 13 column by column and assigning
to each pixel (i, j) with value Pi,j in Fig. 14 and value Di,j

in Fig. 13 the value (Pi,j � i)2 + Di,j.
When the data is not convex like the example in Fig. 4,

the algorithm fails as Fig. 16 shows: Line 2 of the partial
feature transform Pp cannot return the index 4 since its dis-
tance to the previous value is more than 1. Hence DT2

returns errors as shown by Fig. 17 (the right answer is
shown in Fig. 9).
Fig. 16. Partial feature transform Pp of the image in Fig. 4.

Fig. 17. Erroneous DT2 computed from Fig. 16. Fig. 9 shows the right
answer.
The NEP principle extends to any transform having a
non-expansive argmin or argmax. In effect, the NEP
principle reduces a global search to a local search. As
soon as the distance between the pixels realising the min-
imum is bounded by a constant, a linear-time algorithm
exists.
4. The PE algorithm

To initiate comparison with other distance transform
algorithms, we recall the parabolic envelope (PE) algorithm
[12,13,20]. It reduces computation to one dimension and
uses properties of parabolas to obtain a linear-time algo-
rithm. Namely, given two parabolas p1 = (. � i)2 + j and
p2 = (. � i 0)2 + j 0, we can compute their intersection in con-
stant time O(1). So computing the lower envelope of the
family of parabolas (. � i)2 + j takes linear time. The algo-
rithm is a two-pass scan. The first pass considers each row
and computes the parabolic envelope, then evaluates the
distance transform on that parabolic envelope. The second
pass performs the same operations on the columns result-
ing from the first pass.

For the binary image shown in Fig. 4, Fig. 18 shows the
results of the algorithm after the first pass: The parabolic
envelope computed for each row is evaluated on the grid.
Fig. 19 shows the resulting exact square EDT.

The PE algorithm runs in linear time. When the data
are d dimensional, its complexity becomes O(d N), for a
grid containing N points (for an n · m binary picture
N = nm). Its underlying principle is applicable to the com-
putation of any family of functions provided the intersec-
tion of two such functions can be computed in constant
time. Felzenszwalb [13] gave several examples of such
Fig. 18. Partial DT2 resulting from applying the PE algorithm to the rows
of Fig. 4.

Fig. 19. DT2 computed by applying the PE algorithm column by column
to Fig. 18.
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Fig. 20. Numerical validation of the linear-time complexity of the LLT, NEP, and PE algorithms. (a) Complexity for one-dimensional data. (b)
Complexity for two-dimensional data such as distance transforms.
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cases, including replacing the Euclidean distance with the
l1 distance.

Note that no assumption is made on the function f, all
assumptions are on the distance function.

While the PE algorithm considers a family of parabol-
ic functions, one can consider a family of affine functions
and apply the same principle as the PE algorithm to
compute the lower envelope. The resulting envelope is
the lower convex envelope of the points. Hence, the
LLT algorithm can be seen as following the same princi-
ple for the family of affine functions going through two
consecutive pixels of the image. The only difference lies
in how much computation is performed during each
pass.

5. Numerical comparisons and complexity

Computing the EDT of an n · n binary image having
N = n2 pixels can be achieved by brute force at an
O(N2) = O(n4) cost as the following function shows.
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0 function M = brute2d (Xr, Xc, f, Sr, Sc)

1 [n1,n2]=size(f);

2 m1=length(Sr);m2=length(Sc);

3 M=zeros(m1,m2);

4 for p1=1:m1

5 for p2=1:m2

6 t1 = (Xr-Sr(p1)).̂ 2 * ones(1,n2);

7 t2 = ones(n1,1) * ((Xc-Sc(p2)).2̂)’;
8 t = t1 + t2 + f;

9 M(p1,p2) = min(t);//O(n ˆ 2) cost

10 end;

11 end;

12 endfunction

Using the fact the Euclidean distance is a separable
function (it can be written as the sum of two one-dimen-
sional functions) one can build a direct computation algo-
rithm with complexity O(N3/2) = O(n3). Compare the
following with the brute2d function above (the function
me_direct(X,f,S) is the one-dimensional brute force
computation and runs in O(n2) when X and S have size n).

0 function M = direct2d (Xr, Xc, f, Sr, Sc)

1 for i=1:length(Xr)

2 F = me_direct(Xc, f(i,:)’, Sc);
3 r1(i,:) = F’;

4 end

5 M = ones(size(Sr, 1), size(Sc, 1));

6 for i=1:size(Sc, 1)

7 M(:,i) = me_direct(Xr, r1(:,i), Sr);
8 end

9 endfunction

Fig. 20(a) numerically validates the linear-time complex-
ity of the algorithms for the univariate quadratic function
f(x) = x2 while Fig. 20(b) illustrates the same algorithms
for two-dimensional data such as computing the EDT. In
the later figure, the brute force algorithm is not represented
since its cost is too prohibitive.
6. Conclusion

We have presented new exact Euclidean Distance Trans-
form (EDT) algorithms for binary images which all share
an optimal linear-time complexity of H(N) = H(n2) for an
n · n image. By taking advantage of the separability of
the Euclidean distance, and using convex properties, the
algorithms reduce to simple calculations on a line. In addi-
tion to scaling to higher dimension and being trivially par-
allelizable, all the algorithms compute the more general
Moreau envelope, of which the distance transform is a spe-
cial case.

The principles used in each algorithm can be applied to
different transforms. The LLT algorithms uses convex
properties, the NEP algorithm uses non-expansiveness,
and the PE algorithm uses a O(1) intersection cost. The last
two properties are easy to identify and are sufficient to
guarantee a linear-time algorithm.

Our implementation of the algorithms show that the
NEP algorithm is generally faster than the LLT algorithm,
which is faster than the PE algorithm. So if one has an
image with a convex object in the background, the NEP
algorithm is indicated. In the absence of convexity, the
LLT algorithm performs quite well even though it intro-
duces intermediate steps. However, the intermediate steps
are very quick to perform in a matrix-optimized language
such as Scilab. Another implementation in a non matrix-
optimized language will probably find the PE algorithm
very competitive.
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Legendre–Fenchel discrètes, C. R. Acad. Sci. Paris Sér. I Math. 308
(1989) 587–589.
[29] L. Corrias, Fast Legendre–Fenchel transform and applications to
Hamilton–Jacobi equations and conservation laws, SIAM J. Numer.
Anal. 33 (4) (1996) 1534–1558.

[30] Y. Lucet, A fast computational algorithm for the Legendre–Fenchel
transform, Comput. Optimizat. Appl. 6 (1) (1996) 27–57.

[31] A. Noullez, M. Vergassola, A fast Legendre transform algorithm and
applications to the adhesion model, J. Scient. Comput. 9 (3) (1994)
259–281.

[32] Z.-S. She, E. Aurell, U. Frisch, The inviscid Burgers equation with
initial data of brownian type, Comm. Math. Phys. 148 (3) (1992) 623–
641.

[33] Y. Lucet, Faster than the fast legendre transform, the linear-time
legendre transform, Numer. Algorithms 16 (2) (1997) 171–185.

[34] J. Bec, U. Frisch, K. Khanin, Kicked Burger turbulence, J. Fluid
Mech. 416 (2000) 239–267.

[35] U. Frisch, J. Bec, Burgulence, in: A.M. Lesieur, E.F. David (Eds.),
Les Houches 2000: New Trends in Turbulence, Springer EDP-
Sciences, 2001, pp. 341–383.

[36] U. Frisch, J. Bec, B. Villone, Singularities and the distribution of
density in the Burgers/adhesion model, Phys. D 152-153 (2001) 620–
635.

[37] A. Noullez, S.N. Gurbatov, E. Aurell, S.I. Simdyankin, The global
picture of self-similar and not self-similar decay in Burgers turbu-
lence, Tech. Rep. nlin.CD/0409022, arXiv.org eprint archive (Sep.
2004).

[38] B. Koopen, Contact of bodies in 2D-space: Implementing the
Discrete Legendre Transform, AI Master’s thesis, Intelligent Auton-
omous Systems Group, University of Amsterdam (Feb. 2002).

[39] T. Hisakado, K. Okumura, V. Vukadinovic, L. Trajkovic, Charac-
terization of a simple communication network using Legendre
transform, in: Proc. IEEE Int. Symp. Circuits and Systems, vol. 3,
2003, pp. 738–741.

[40] Y. Lucet, A linear Euclidean distance transform algorithm based on
the Linear-time Legendre Transform, in: Proceedings of the Second
Canadian Conference on Computer and Robot Vision (CRV 2005),
IEEE Computer Society Press, Victoria BC, 2005.

[41] P. Helluy, Simulation numérique des écoulements multiphasiques :
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habilitation à Diriger des Recherches (Jan. 2005).

[42] B. Legras, I. Pisso, G. Berthet, F. Lefvre, Variability of the
Lagrangian turbulent diffusion in the lower stratosphere, Atmospher-
ic Chem. Phys. 5 (2005) 1605–1622.

[43] R. Fabbri, Scilab image processing toolbox, 2005. http://siptool-
box.sourceforge.net/.

http://www.cs.rug.nl/~wim/pub/mans.html
http://www.acm.caltech.edu/seanm/projects/cpt/cpt.pdf
http://www.acm.caltech.edu/seanm/projects/cpt/cpt.pdf
http://siptoolbox.sourceforge.net/
http://siptoolbox.sourceforge.net/

	New sequential exact Euclidean distance transform algorithms based  on convex analysis
	Introduction
	The LLT algorithm
	The NEP algorithm
	The PE algorithm
	Numerical comparisons and complexity
	Conclusion
	Acknowledgements
	References


