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Abstract

Cuisenaire and Macq [Comp. Vis. Image Understand., 76(2) (1999) 163] proposed a fast

Euclidean distance transformation (EDT) by propagation using multiple neighborhoods

and bucket sorting. To save the time for bucket sorting and to reduce the complexity of multi-

ple neighborhoods, we propose a new, simple and fast EDT in two scans using a 3� 3 neigh-

borhood. By recording the relative x- and y-coordinates, an optimal two-scan algorithm can be

developed to achieve the EDT correctly and efficiently in a constant time without iterations.

� 2003 Elsevier Inc. All rights reserved.
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1. Introduction

Distance transformation (DT) is to convert a digital binary image that consists of

object (foreground) and non-object (background) pixels into another image in which

each object pixel has a value corresponding to the minimum distance from the back-

ground by a distance function. The interior of a closed boundary is considered as

object pixels and exterior as background pixels in this paper. By simply exchanging

the roles of object and background, DT can be applied on the outside pixels of a

closed boundary as in [2].
Let S be a set of pairs of integers. The function d mapping from S � S to non-neg-

ative integers is called a distance function, if it is
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(a) Positive definite: That is dðp; qÞP 0, and¼ 0, if and only if p ¼ q, for all p; q 2 S.
(b) Symmetric: That is dðp; qÞ ¼ dðq; pÞ, for all p; q 2 S.
(c) Triangular: That is dðp; rÞ6 dðp; qÞ þ dðq; rÞ, for all p; q; r 2 S.
Among different kinds of distance transformation, the Euclidean distance trans-

form (EDT) is often-used because of its rotation invariance property, but it involves
the time-consuming calculations such as square, square-root, and the minimum over

a set of floating-point numbers. In [3–5,10–12], a mathematical morphology approach

was proposed to realize the EDT using gray-scale erosions with successive small dis-

tance structuring elements by decomposition. Furthermore, a squared Euclidean-dis-

tance structuring element was used to perform the squared Euclidean distance

transform (SEDT). Shih and Wu [4] decomposed the squared Euclidean-distance

structuring element into successive dilations of a set of 3� 3 structuring components.

Hence, the SEDT is equivalent to the successive erosions of the result at the preced-
ing stage by each structuring component. EDT can be finally obtained simply by a

square-root operation over the image. In particular, image analysis tasks can directly

take the result of SEDT as input.

The approaches to achieve distance transformation do not adopt directly the def-

inition of the minimum distance from an object pixel to all background border pix-

els, since their computations are extremely time-consuming. Previous researches in

[1–9] represent a sampled set of successful efforts in improving the speed efficiency.

In general, the algorithms of DT can be categorized into two classes: one is the iter-
ative method which is efficient in a cellular array computer since all the pixels at each

iteration can be processed in parallel, and the other is sequential (or recursive) meth-

od which is suited for a conventional computer by avoiding iterations with the effi-

ciency to be independent of object size. Using the general machines that most people

working in digital image processing have access to, sequential algorithms are often

much more efficient than iterative ones.

Although many techniques have been presented for obtaining Euclidean distance

transform, most of them are either inefficient or complex to implement and under-
stand. Cuisenaire and Macq [1] proposed a fast EDT by propagation using multiple

neighborhoods and bucket sorting. In this paper, a size-independent two-scan algo-

rithm is presented to achieve the EDT correctly and efficiently. It is organized as fol-

lows. In Section 2, we reviews the distance transforms. Section 3 introduces the

technique for the two-scan algorithm by using a 3� 3 neighborhood. Its mathemat-

ical proof is shown in Section 4. Some examples of the two-scan algorithm is

presented in Section 5. Finally, the conclusions are made in Section 6.
2. Distance transforms

2.1. The definitions of three commonly used distance transforms

Three distance functions are often used in digital image processing. If there exist

two points p ¼ ðx; yÞ and q ¼ ðu; vÞ in a digital image, the distance function is defined

as follows:
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(a) City-block distance: d4ðp; qÞ ¼ jx� uj þ jy � vj.
(b) Chessboard distance: d8ðp; qÞ ¼ maxðjx� uj; jy � vjÞ.
(c) Euclidean distance: deðp; qÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� uÞ2 þ ðy � vÞ2

q
.

Note that the pixels with city-block distance 1 counting from p correspond to 4-

neighbors of p, and with chessboard distance 1 correspond to 8-neighbors of p. These
d4 and d8 are integer-valued; however, de is not.
2.2. Iterative and two-scan methods for achieving city-block and chessboard distance

transforms

City-block and chessboard distances are very easy to compute since they can be

recursively accumulated by considering only 4- or 8-neighbors, respectively, at one

time. The iterative algorithm works for city-block or chessboard distances is as fol-
lows. Given an Xs, which is 1 at the pixels of S and 0 elsewhere, Xm

s is defined recur-

sively for m ¼ 1; 2; � � � as

Xm
s ðpÞ ¼ X 0

s þ min
dðq;pÞ6 1

Xm�1
s ðqÞ; ð1Þ
where X 0
s ¼ Xs is the initial binary image. Thus Xm

s can be computed by performing a

local operation on the pair of arrays X 0
s and Xm�1

s at each point.

The iterative algorithm is very efficient on a cellular array computer since each it-

eration can be performed at all points in parallel, and the number of iterations is at

most the radius of the picture. However in a conventional computer, each iteration

requires the processing of the entire image that presents inefficiency. A two-scan

algorithm is therefore developed as below.

Assume that the border and background of a picture consist entirely of 0s. Let
N1ðpÞ be the set of (4- or 8-) neighbors that precede p in a row-by-row (left to right,

top to bottom) scan of the picture, and let N2ðpÞ be the remaining neighbors of p. For
example, N1ðx; yÞ consists of the 4-neighbors (x� 1; y) and (x; y þ 1), as well as (if for

8-neighbors) (x� 1; y þ 1) and (xþ 1; y þ 1). The algorithm is
X 0
SðpÞ ¼

0 if p 2 �SS;
min
q2N1

X 0
SðqÞ þ 1 otherwise;

(
ð2Þ

X 00
S ðpÞ ¼ min

q2N2

½X 0
sðpÞ;X 00

S ðqÞ þ 1�; ð3Þ
where X 0
SðpÞ is computed in a left to right, top to bottom scan, since for each p, X 0

S

has already been computed for the qs in N1. Similarly, X 00
S is computed in a reverse

scan (right to left, bottom to top). Another algorithm only needs two operations in

opposite orders of image scanning: one scan is in the left-to-right top-to-bottom

direction, and the other is in the right-to-left bottom-to-top direction [8,13].

Adisadvantage of city-block and chessboarddistances is that bothdistancemeasures

are very sensitive to the orientation of an object. TheEuclidean distance by definition is

rotation-invariant.However, its square-root calculation is costly and its global compu-
tation of distance computation is very difficult to decompose into small neighborhood
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operations due to its non-linearity of Euclidean distance variations. Thus, the algo-

rithms to approximate the EDT have been extensively investigated [2–4,6,7].
3. The two-scan algorithm by using a 3� 3 neighborhood

Borgefors [6] has presented a two-scan recursive algorithm on EDT by consider-

ing a 3� 3 neighborhood and has analyzed the errors produced. We further develop

the exact EDT to solve the error problem by recording the x- and y-coordinates in a

3� 3 neighborhood. The algorithm only requires two image scans that are forward

and backward raster scans.

Let 8 neighbors of p be denoted by q1; q2; . . . ; q8 as illustrated in Fig. 1. Thus

N1ðpÞ ¼ fq1; q2; q3; q4g and N2ðpÞ ¼ fq5; q6; q7; q8g. Prior to discussing the algorithm,
the notations used are first introduced.

f : A binary image.

F : The set of foreground (or object) pixels.

F 0: The set of background pixels.

O: The set of background boundary pixels (i.e., 8-adjacent to foreground pixels).

Q: The set of foreground pixels which already have the minimum squared Euclid-

ean distances and the closest background boundary pixel is located anywhere.

RðpÞ: The relative-coordinates vector RðpÞ ¼ ðRx;RyÞ of pixel p, which records the
horizontal and vertical pixel-distances between p and the closest background pixel. It

is initialized as all (0,0). Note that, RxðpÞ and RyðpÞ indicate the horizontal and ver-

tical pixel-distances, respectively.

hðp; qÞ: The difference of the squared Euclidean distances of p and q, where

q 2 N1 [ N2.

Gðp; qÞ: The difference of the relative coordinates of p and q, where q 2 N1 [ N2.

The hðp; qÞ and Gðp; qÞ can be computed as follows, where h function is further

explained in the proof of the Algorithm.
hðp; qÞ ¼
2RxðqÞ þ 1 if q 2 q1; q5f g;
2RyðqÞ þ 1 if q 2 q3; q7f g;
2ðRxðqÞ þ RyðqÞ þ 1Þ if q 2 q2; q4; q6; q8f g;

8<
: ð4Þ

Gðp; qÞ ¼
ð1; 0Þ if q 2 q1; q5f g;
ð0; 1Þ if q 2 q3; q7f g;
ð1; 1Þ if q 2 q2; q4; q6; q8f g:

8<
: ð5Þ
The two-scan algorithm is shown below and its flowchart is shown in Fig. 2.
Fig. 1. The 8 neighborhoods of p.



Fig. 2. The flowchart of the two-scan algorithm by using a 3� 3 neighborhood.
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Algorithm.

1. (Forward) Raster-Scan:

if p 2 F f
f ðpÞ ¼ 1;
for q ¼ q1 to q4
f ðpÞ ¼ minðf ðpÞ; f ðqÞ þ hðp; qÞÞ;
if exist q that containing minimum (f ðqÞ þ hðp; qÞ) and

(f ðqÞ þ hðp; qÞ < f ðpÞ)
RðpÞ ¼ RðqÞ þ Gðp; qÞ;

}

2. Backward (Reverse) Raster-Scan:

if p 2 F {
for q ¼ q5 to q8
f ðpÞ ¼ minðf ðpÞ; f ðqÞ þ hðp; qÞÞ;
if exist q that containing minimum (f ðqÞ þ hðp; qÞ) and

(f ðqÞ þ hðp; qÞ < f ðpÞ)
RðpÞ ¼ RðqÞ þ Gðp; qÞ;
EðpÞ ¼

ffiffiffiffiffiffiffiffiffi
f ðpÞ

p
;

}

4. The proof of the two-scan algorithm

4.1. The proof of the equations for achieving SEDT

4.1.1. The nearest background pixel located on the left-top side

For a raster scan in this paper, the concerned neighborhoods can be categorized

into four cases when calculating the SEDT of pixel p . Fig. 3 shows a forward raster



Fig. 3. The four cases when o is located on the left-top side of p.
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scan when and the nearest background pixel, o, is located on the left-top part of p.
The difference of the squared Euclidean distances of p and q in the four cases can be

obtained by the following equations.

Case 1. The smallest SED is obtained from q1.
Assume q1 2 Q: Let the relative coordinates of q1 be Rðq1Þ ¼ ðRx � 1;RyÞ that are

counted from o, where o 2 O: The squared Euclidean distance (SED) at q1 is

oq21 ¼ ðRx � 1Þ2 þ R2
y . Therefore, the SED at p will be op2 ¼ R2

x þ R2
y since p is located

on the one pixel away from q1. Note that oq21 is the smallest SED from all back-

ground pixels and the location of o is not necessarily unique but may not more than

4 places. The difference of the SED of p and q1 is
hðp; q1Þ ¼ op2 � oq21 ¼ ½R2
x þ R2

y � � ½ðRx � 1Þ2 þ R2
y � ¼ 2Rx � 1 ¼ 2ðRx � 1Þ þ 1:
Since Rxðq1Þ ¼ ðRx � 1Þ and Gðp; q1Þ ¼ ð1; 0Þ, we obtain hðp; q1Þ ¼ 2Rxðq1Þ þ 1 and

RðpÞ ¼ ðRxðq1Þ þ 1;Ryðq1ÞÞ.

Case 2. The smallest SED is obtained from q2.
Assume q2 2 Q: Let the relative coordinates of q2 be Rðq2Þ ¼ ðRx � 1;Ry � 1Þ

that is counted from o, where o 2 O: Similarly, the difference of the SED of p and

q2 is
hðp; q2Þ ¼ op2 � oq22 ¼ ½R2
x þ R2

y � � ½ðRx � 1Þ2 þ ðRy � 1Þ2� ¼ 2Rx þ 2Ry � 2

¼ 2ððRx � 1Þ þ ðRy � 1Þ þ 1Þ:
Since Rxðq2Þ ¼ ðRx � 1Þ;Ryðq2Þ ¼ ðRy � 1Þ and Gðp; q2Þ ¼ ð1; 1Þ, we obtain

hðp; q2Þ ¼ 2ðRxðq2Þ þ Ryðq2Þ þ 1Þ and RðpÞ ¼ ðRxðq2Þ þ 1;Ryðq2Þ þ 1Þ.
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Case 3. The smallest SED is obtained from q3.
Assume q3 2 Q: Let the relative coordinates of q3 be Rðq3Þ ¼ ðRx;Ry � 1Þ that are

counted from o, where o 2 O: The difference of the SED of p and q3 is
hðp; q3Þ ¼ op2 � oq23 ¼ ½R2
x þ R2

y � � ½R2
x þ ðRy � 1Þ2� ¼ 2Ry � 1 ¼ 2ðRy � 1Þ þ 1:
Since Ryðq3Þ ¼ ðRy � 1Þ and Gðp; q3Þ ¼ ð0; 1Þ, we obtain hðp; q3Þ ¼ 2Ryðq3Þ þ 1
and RðpÞ ¼ ðRxðq3Þ;Ryðq3Þ þ 1Þ.

Case 4. The smallest SED is obtained from q4.
Assume q4 2 Q: Let the relative coordinates of q4 be Rðq4Þ ¼ ðRx þ 1;Ry � 1Þ that

are counted from o, where o 2 O: In this case, there exists Rðq3Þ ¼ ðRx;Ry � 1Þ which
is closer to o than q4 and derive a smaller SEDT to p. Therefore, q4 is useless for cal-
culating SEDT of p.

4.1.2. The nearest background pixel located on the right-top side

In Section 4.1.1, we have proved the equations for achieving EDT in a forward

raster scan if the nearest background pixel is located on the left-top side of the object

pixel p. On the other hand, if the nearest background is located on the right-top side

of the object pixel as shown in Fig. 4, the relative-coordinate vectors of q1; q2; q3, and
q4 are Rðq1Þ ¼ ðRx þ 1;RyÞ;Rðq2Þ ¼ ðRx þ 1;Ry � 1Þ;Rðq3Þ ¼ ðRx;Ry � 1Þ, and Rðq4Þ
¼ ðRx � 1;Ry � 1Þ, respectively.

Since oq21 ¼ ðRx þ 1Þ2 þ R2
y is larger than op2 ¼ R2

x þ R2
y , it is obviously that q1 can-

not derive the SED of p. The relative-coordinates vector of q2 is Rðq2Þ ¼
ðRx þ 1;Ry � 1Þ that is the same as q4 in Section 4.1.1. Therefore, q2 is useless in this con-
dition.The relative-coordinates vector of q3 isRðq3Þ ¼ ðRx;Ry � 1Þ that is the sameas in

Section 4.1.1. Therefore, we can derive SED of p by the same equation.

Now, considering pixel q4, the relative coordinates of q4 is Rðq4Þ ¼ ðRx � 1;Ry � 1Þ
that is the same as q2 in Section 4.1.1. Therefore, the difference of the SEDof p and q4 is
hðp; q4Þ ¼ op2 � oq24 ¼ 2ððRx � 1Þ þ ðRy � 1Þ þ 1Þ:

Since Rxðq4Þ ¼ ðRx � 1Þ, Ryðq4Þ ¼ ðRy � 1Þ, and Gðp; q4Þ ¼ ð1; 1Þ, we obtain

hðp; q4Þ ¼ 2ðRxðq2Þ þ Ryðq2Þ þ 1Þ and RðpÞ ¼ ðRxðq4Þ þ 1;Ryðq4Þ þ 1Þ.
Go over the main points in Sections 4.1.1 and 4.1.2, no matter the background

pixel is located on the left-top side or right-top side in the forward raster scan pro-

cedure, the SED of p can be obtained by its four neighborhoods, q1; q2; q3; and q4
Fig. 4. The four cases when o is located on the right-top side of p.
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using Eqs. (4) and (5). In the same way, when processing a backward raster scan, the

SED of p can also be obtained by another four neighborhoods, q5; q6; q7; and q8
using Eqs. (4) and (5).

4.2. The proof of achieving the minimum SEDT

The two-scan algorithmby using a 3� 3 neighborhood can be proved bymathemat-

ical induction. Suppose l indicates the chessboard distance of the background pixel o.
For example, in Fig. 5, if l ¼ 1, the concerned pixels are the eight neighborhoods of

o, that is, the first layer from o. Note that, only one background pixel o in Fig. 5.
Fig. 5. The representation of object pixels and o.

Fig. 6. The difficult case for EDT.
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A. Base case. When l ¼ 1. It is obviously that the minimum SED of the eight

neighborhoods of the background pixel o can be obtained.

B. Induction hypothesis. When l ¼ k. An assumption is made that the object pixels

located on layer k can have their minimum SEDs from those pixels on layer k � 1.
Fig. 7. The example of the two-scan algorithm (A) Forward, (B) Backward and that is the result of SEDT.



Fig. 8. The EDT on a real image.

204 F.Y. Shih, Y.-T. Wu / Computer Vision and Image Understanding 93 (2004) 195–205
C. Induction case. When l ¼ k þ 1. From inductive hypothesis we know that the

object pixels located on layer k have already reached the minimum SED. Now all the

object pixels located on layer k þ 1 can be categorized according to their locations into

four classes: 0�, 45�, 90�, and 135�. In both forward and backward raster scans, the
minimum SED of those pixels on layer k can be obtained by using Eqs. (4) and (5).

Therefore, the two-scan algorithm by using a 3� 3 neighborhood can achieve the

SEDT correctly.
5. Some examples of the two-scan algorithm by using a 3� 3 neighborhood

This Section shows some examples when achieving EDT by our technique. In or-
der to analyze any difficult case of EDT, the special object, as shown in Fig. 6, is cre-

ated for EDT.

Fig. 7 shows the examples of the two-scan algorithm by using a 3� 3 neighbor-

hood. Figs. 7A and B show the forward and backward raster-scans in the direction

of left-to-right top-to-bottom and right-to-left bottom-to-top, respectively.

Fig. 8 shows an example when achieving EDT on an image. Fig. 8A is a 400� 400

image in which white and black pixels are object and background pixels, respectively.

Fig. 8B is the result of EDT of Fig. 8A.
6. Conclusions

Although the method proposed by Cuisenaire and Macq [1] can achieve the EDT

in a short time, the propagation using multiple neighborhoods and bucket sorting

are the overheads of their algorithm. In this paper, a new, simple and efficient
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two-scan algorithm by using a 3� 3 neighborhood to compute the exact EDT is pre-

sented. We do not need to use multiple neighborhoods in order to achieve exact

EDT, but also do not need extra pre-processing. The exact EDT can be obtained

in two raster scans under a 3� 3 neighborhood by recording the relative coordinates.
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