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Fig. 1. Our light field capture rig and scene representations. (a) We record immersive light field video using 46 action sports cameras mounted to an acrylic
dome. (b) Using deep view synthesis we infer an RGBA multi-sphere image (MSI) from the light field views. Every 10th spherical shell is highlighted. (c) We
convert groups of MSI layers into Layered Meshes (each shown as a different color), which are texture atlased and compressed into light field video.

We present a system for capturing, reconstructing, compressing, and render-
ing high quality immersive light field video.We accomplish this by leveraging
the recently introduced DeepView view interpolation algorithm, replacing
its underlying multi-plane image (MPI) scene representation with a collec-
tion of spherical shells that are better suited for representing panoramic light
field content. We further process this data to reduce the large number of shell
layers to a small, fixed number of RGBA+depth layers without significant
loss in visual quality. The resulting RGB, alpha, and depth channels in these
layers are then compressed using conventional texture atlasing and video
compression techniques. The final compressed representation is lightweight
and can be rendered on mobile VR/AR platforms or in a web browser. We
demonstrate light field video results using data from the 16-camera rig of
[Pozo et al. 2019] as well as a new low-cost hemispherical array made from
46 synchronized action sports cameras. From this data we produce 6 degree
of freedom volumetric videos with a wide 70 cm viewing baseline, 10 pixels
per degree angular resolution, and a wide field of view, at 30 frames per
second video frame rates. Advancing over previous work, we show that our
system is able to reproduce challenging content such as view-dependent
reflections, semi-transparent surfaces, and near-field objects as close as 34
cm to the surface of the camera rig.
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1 INTRODUCTION
Our visual system is remarkable at perceiving the world around us
from a single pair of eyes a few centimeters apart. Part of whatmakes
it so effective is that moving our heads changes our perspective,
allowing us to feel a greater sense of depth through motion parallax
and a better sense of what the scene is made of by how light plays
off of its surfaces. A virtual environment that is able to excite these
same senses of motion parallax and view-dependent reflections can
be far more immersive and realistic.

Many of today’s augmented and virtual reality headsets provide
positional tracking, enabling the user’s view of the virtual scene
to shift perspective properly as they move their head. If the scene
is being rendered by a game engine, it is straightforward to feed
the positional tracking data into the engine to yield proper motion
parallax and view-dependent reflections. But if the scene is a real one
recorded by an immersive video camera, changing the perspective is
much more complicated. The majority of immersive video cameras
deliver panoramic video from a single fixed point of view (e.g. Ricoh
Theta Z1, GoPro Max, Insta360 One X) or omnidirectional stereo
video fixed to a particular location in space (e.g. Yi Halo, Insta360
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Titan, Facebook Surround 360). When these immersive videos are
played back, the user can look in any direction, but the position of
their view cannot be altered regardless of how the user moves their
head. The result is not only less immersive but less comfortable:
receiving such inconsistent cues from one’s visual and vestibular
systems is a cause of motion sickness, which can affect many people
in VR headsets. And this problem is unavoidable: just turning one’s
head to look around produces noticeable shifts in perspective as the
eyes translate with the front of the head.

To address this problem, efforts have been made to record immer-
sive video with additional cameras and/or sensors so that the video
can be rendered from a range of new perspectives. One strategy is to
use multi-view stereo [Furukawa and Hernandez 2015] and/or depth
sensors to estimate the 3D depth of the scene in each direction, so
that the panoramic imagery can be reprojected with image-based
rendering to a novel viewpoint. A drawback of this approach is that
edges in the scene are typically not well preserved, and dis-occluded
areas around object edges are difficult to fill in accurately. While the
reconstructed 3D geometry can be displayed with textures [Hed-
man et al. 2017], this fails to reproduce view-dependent reflections,
assuming instead that everything in the scene has a dull Lambertian
reflectance. A different strategy [Milliron et al. 2017; Wilburn et al.
2005] is to record a sampling of the light field using an array of
cameras distributed across a surface. When used with modern view
interpolation techniques that include per-view depth estimation
and view-dependent texture mapping, view-dependent reflections
can be preserved [Debevec et al. 1998; Pozo et al. 2019]. However,
there is a hardware complexity cost associated with denser camera
arrays, and sparse samplings are prone to producing noticeable edge
artifacts. For light field video, neither of these strategies has yet been
paired with an especially efficient video compression scheme. As a
result, these systems typically require specially-designed worksta-
tions filled with solid-state memory to play back immersive content.

The recently introduced interpolation techniques of [Flynn et al.
2019; Mildenhall et al. 2019; Zhou et al. 2018] use machine learn-
ing to convert sparsely-sampled light fields to Multi-Plane Images
(MPIs), which are dense stacks of image planes with RGB color and
alpha transparency components (RGBA). These MPIs offer several
advantages, in that they are straightforward to render, yield good
view reconstruction around edges, and are surprisingly effective
at reproducing and smoothly interpolating specularities. (Specular
reflections can be rendered on planes behind the object surface, with
the surface itself made partially transparent to allow the specular
reflections to shine through.) Flynn et al. [2019] applied MPIs to
both light field stills and light field video with high-quality results.
However, they did not address an immersive field of view, which
would be difficult using planar perspective projections, and they
did not report a compression and streaming technique necessary
to store or deliver such content at scale. On the latter point, the
relatively dense 3D volume of RGBA data comprising an MPI can
be as large or larger than the original light field camera array data.
In this paper, we develop a practical immersive light field video

solution by replacing the MPI planes with spherical shells. We also
develop a compression and storage technique that packs them into
streamable video and geometry. Instead of MPIs, we modify the
training and inference scheme to solve for Multi-Sphere Images

(MSIs) (Figure 1 (b)) that wrap around the viewer with a set of
concentric spherical polygon meshes with inward facing RGBA
textures. We then use a new layer reduction technique to convert
the relatively dense MSIs to a sparse set of Layered Meshes (LMs)
(Figure 1 (c)) that consist of surface meshes largely corresponding
to the surfaces in the scene. This smaller set of meshes still use
RGBA textures and can therefore retain the versatility of MPI alpha
blending, but at greatly reduced storage cost since LMs can be
compressed using mesh compression and texture atlasing. In this
way, we can leverage 2D video codecs such as H.264 or VP9 to
compress and transmit a compact, faithful representation of the
original immersive light field video.

We show light field video results recorded using two 6 DOF cam-
era arrays: the 16-camera system of [Pozo et al. 2019] and a new
low-cost hemispherical light field video array comprised of 46 action
sports cameras (Figure 1 (a)). We analyze how camera rig geometry
affects the ability to represent near-field objects in the light field.
We then introduce multi-sphere images as a scene representation
for panoramic light field content and show how the MSI and camera
rig geometry jointly determine the size of the interpolation vol-
ume where valid viewpoints can be rendered. Then, we describe
a complete light field video encoding system that leverages deep
learning based view interpolation, layer reduction, texture atlasing,
and conventional video compression. The resulting video stream can
subsequently be decompressed and rendered on standard graphics
hardware. We thus show the first practical, high-quality, immersive
light field video solution that can be streamed and played back on
standard AR and VR systems.

2 BACKGROUND
We build on significant bodies of work in multi-view stereo [Fu-
rukawa and Hernandez 2015], image based rendering [Shum et al.
2007], light field capture [Gortler et al. 1996; Levoy and Hanra-
han 1996], and particularly recent advances in learning based view
synthesis [Flynn et al. 2016]. Many of these efforts have focused
on representing static scenes, but here we focus on approaches
that record and play back video content. Such systems face unique
challenges due in part to the large volume of data that must be
processed and displayed. In designing a system for light field video,
we identified the following necessary characteristics:

(1) The ability to record six degree-of-freedom (6 DOF) content
with a relatively sparse array of video cameras.

(2) View synthesis within a viewing volume diameter of around
70 cm for a wide 180◦ or greater field of view, appropriate for
comfortable viewing while seated.

(3) Plausible rendering of view-dependent scene content includ-
ing disocclusions around object edges and thin structures,
semi-transparent objects, specular reflections, and mirror sur-
faces.

(4) Visually stable results as the viewpoint moves in both space
and time.

(5) A compressible representation suitable for playback on con-
sumer VR and AR hardware.

Although the works we mention below succeed in addressing
some of these challenges, we believe that our system is the first to
address all of them.
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Early work on novel view-synthesis used explicit correspondence
between input images to warp them to novel viewpoints. This was
first demonstrated using synthetic input images with known depth
maps [Chen and Williams 1993] and later using photoconsistency-
based matching to establish correspondence between real pho-
tographs [McMillan and Bishop 1995]. To represent occlusions in
the scene, Shade et al. [1998] introduced a layered depth image repre-
sentation where each pixel represents multiple opaque surfaces with
both depth and texture. Zitnick et al. [2004] used correspondence-
based image matching to build a similar layered depth representa-
tion with alpha matting near object boundaries and successfully
applied it to generating free viewpoint video. Later efforts have
extended this to provide a much larger range of motion by fusing
multiple depth maps into one animated texture mesh [Collet et al.
2015; Dou et al. 2016]. These works were focused on performance
capture where the viewer is expected to look into the scene from
the outside. Pozo et. al. [2019] showed that such methods also work
for outward-facing view synthesis, e.g. when the viewer is wearing
a head mounted display.
However, most of these methods assume the scene being rep-

resented contains only opaque, Lambertian surfaces, and thus are
unable to represent view-dependent phenomena such as specular
highlights and semi-transparent objects. This has been addressed
via methods where not all visual motion in the scene needs to be
explained by a single depth value. Flow fields, for example, store the
raw pixel-wise correspondence across cameras and also across time
[Lipski et al. 2010], although their unconstrained nature introduces
warping artifacts near occlusion boundaries and during viewpoint
changes. Of course, this problem is greatly reduced if the viewpoint
is fixed in advance, as it was in [Anderson et al. 2016], which nev-
ertheless rendered immersive video using binocular disparity cues.
Alternatively, a trained neural network can be used to correct ar-
tifacts and enhance visual quality of a viewpoint produced with
depth-based rendering [Martin-Brualla et al. 2018]. Several other
approaches [Sitzmann et al. 2019; Thies et al. 2019] learn a deep rep-
resentation for visual information in the scene. These approaches,
while promising, have not been demonstrated to scale well to high
resolution video.

Image-based rendering approaches that employ view-dependent
texture projection [Debevec et al. 1998] and/or view-dependent
geometry [Davis et al. 2012; Heigl et al. 1999; Overbeck et al. 2018]
can reproduce a degree of view-dependent reflection effects. This
approach has recently been employed in video playback [Pozo et al.
2019], with earlier methods also showing video results [Buehler et al.
2001], albeit with a coarse proxy geometry shared by all images
in the scene. Coarser geometry requires more densely sampled
images. In the limit case this leads to capturing a dense 4D light
field [Gortler et al. 1996; Levoy and Hanrahan 1996], which can
faithfully represent scenes with arbitrarily complex materials and
geometry. While this representation has been used to capture video
[Wilburn et al. 2001], it’s only practical over very narrow viewing
baselines or coarse image resolution. This has been addressed by
conventional video compression methods [Avramelos et al. 2019] or
deep learning methods for super-resolution [Wang et al. 2017], but
neither of these approaches produces a viewing volume sufficient for
our needs. Perhaps the only example of a high quality, 1 m viewing

baseline light field video system is the Lytro Immerge prototype
[Milliron et al. 2017]. However, this system was expensive, not fully
documented, and required considerable storage and compute power
to play back the video.
Recently introduced layered representations including Soft3D

[Penner and Zhang 2017] and multi-plane images (MPIs) [Flynn
et al. 2019; Zhou et al. 2018] have yielded attractive light field re-
constructions as a volume of RGB plus alpha transparency data.
These can be a very good approximation of a 4D light field since
they naturally support transparency and approximate the motion
of a wide variety of reflections in the scene. Such representations
can support a much larger viewing baseline than the dense light
fields above [Srinivasan et al. 2019], and even larger viewing base-
lines have been achieved by blending between multiple multi-plane
images [Mildenhall et al. 2019].

We have found that multi-plane image representations are a good
fit for the goals above. In particular, both Soft3D [Penner and Zhang
2017] and DeepView [Flynn et al. 2019] have demonstrated the
temporal stability of a layered representation for video applications.
In this paper we build upon the DeepView algorithm, but have to
innovate in two areas to meet our goals. Firstly, we reparametrize
MPIs to multi-sphere images (MSIs), which enable immersive fields
of view. Secondly, we exploit the sparsity in the MSI volume and
compress it into a lightweight Layered Mesh representation that
can be decoded and rendered on standard hardware. These will be
the core topics of the following two sections.

3 CAPTURE & RECONSTRUCTION OF SPHERICAL
LIGHT FIELDS

We aim to design a light field capture system that supports a suffi-
ciently large viewing volume and accurately reproduces objects that
are relatively close to the surface of the camera rig. This supports
our overall goal of heightening the 3D motion parallax effect and
providing the viewer with a large volume to look around and move
freely in without uncomfortable limits on their head motion. In this
section we begin by analyzing the geometry of panoramic light field
video capture.

3.1 Camera Rig Geometry
First we consider how the the rig radius, camera spacing, and camera
field of view (FOV) affect the size of the viewing volume and the
closest object that can be reconstructed using view interpolation.
For simplicity, we conduct our analysis using the circular 2D rig
shown in Figure 2. Extending this analysis to a 3D spherical rig is
straightforward.

The figure shows overlapping camera viewing frusta (bluewedges)
for evenly spaced cameras on an idealized rig (black semicircle).
View interpolation requires that objects be observed by at least two
different cameras. We define the distance 𝑟𝑐 (outer dotted circle)
to be the closest possible distance where this is true. Notice that
this closest object distance 𝑟𝑐 depends on both the spacing between
cameras on the rig surface and the cameras’ FOV. Adding more
cameras to the rig reduces the closest object distance and gener-
ally increases camera overlap at all distances greater than 𝑟𝑐 , but
at the cost of system expense and complexity. It may therefore be
necessary to choose a camera spacing (and consequently, a closest
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Fig. 2. The view frustra of cameras in a semicircular array, and how they
determine the interpolation volume and closest object distance.

object distance) based on practical considerations such as camera
cost, complexity of camera synchronization, or the total number of
video files that can be easily downloaded and stored for each shot.

Figure 2 also shows the region we call the interpolation volume
(dotted inner circle), whose radius 𝑟i = 𝑟rig sin(𝛼/2) depends only
on the FOVs of the cameras. This volume contains the intersection
of rays projected backward from the cameras. At any position inside
the interpolation volume, ray samples are available in all outward-
facing directions, and the view synthesis task is one of interpolation
between viewpoints rather than one of extrapolation.
We can use this 2D geometry construction to quickly estimate

6-DOF capture performance for our 3D camera rig and the rig of
Pozo et al. [2019]. Our rig has a diameter of 0.92mwith cameras that
have a 120◦ FOV and average inter-camera spacing of 18 cm. This
results in an approximate interpolation volume size of 𝑟𝑖 = 0.4 m
and a closest object distance of 𝑟𝑐 = 0.66 m1. This places the closest
scene objects roughly at “arms length” when the viewer stands at
the center of the viewing volume. The 16 camera rig of Pozo et al. is
0.48 m in diameter, with cameras that have a 180◦ FOV and average
spacing of 21 cm. For this rig, 𝑟𝑖 = 0.24 m and 𝑟𝑐 = 0.48 m. Keep in
mind, however, the closest object distance can also be limited by
the depth of field of the rig cameras. We’ve found that the cameras
we use produce sharp imagery for objects beyond 30 cm from the
cameras, so while we can theoretically reconstruct objects 0.1 m
closer than this, they may appear slightly blurred.

3.2 Multi-Sphere Images
Capturing the scene is only the first step towards a full 6-DOF light
field video reconstruction. In this section we introduce our multi-
sphere image representation and show how to construct it to be
compatible with our capture geometry.

1We used these numbers from the 2D rig construction as design guidelines for our 3D
rig. We have found that the 3D rig has a slightly smaller 0.7-m interpolation volume
due to the smaller 90 degree vertical field of view of our cameras.

Multi-sphere images (MSI’s) are inspired by previous deep learning-
based view interpolation algorithms that use multi-plane images
(MPI’s) [Flynn et al. 2019; Mildenhall et al. 2019; Zhou et al. 2018].
These approaches train a neural network to produce an MPI from a
set of sparse input viewpoints. Once trained, network inference is
a relatively inexpensive operation. And unlike earlier deep learn-
ing methods such as [Flynn et al. 2016; Kalantari et al. 2016] that
require running a network to generate each new view, an MPI is self-
contained and can be used without a network to render novel views.
Furthermore, MPI’s can be rendered on low-cost graphics hardware:
only perspective projection and alpha compositing operations are
required. However, MPI’s are fundamentally built upon a rectilinear
projection and are therefore best optimized for forward-looking
views from a position near their center of projection. To date, no
work has demonstrated the use of MPI’s to render panoramic con-
tent. Here we describe how MSI’s can replace MPI’s for immersive,
wide FOV applications.

An MSI consists of a series of concentric spherical shells, each
with an associated RGBA texture map. Like the MPI, the multi-
sphere image is a volumetric scene representation. MSI shells exist in
three dimensional space, so their content appears at the appropriate
positions relative to the viewer, and motion parallax when rendering
novel viewpoints works as expected. As with and MPI, the MSI
layers should be more closely spaced near the viewer to avoid depth-
related aliasing. The familiar inverse depth spacing used for MPI’s
yields almost the correct depth sampling for MSI’s, assuming depth
is measured radially from the rig center. The spacing we use is
determined by the desired size of the interpolation volume and
angular sampling density as described in Appendix A.

3.2.1 MSI Rendering. For efficient rendering, we represent each
sphere in the MSI as a texture-mapped triangle mesh and we form
the output image by projecting these meshes to the novel viewpoint,
and then compositing them in back-to-front order. Specifically, given
a ray r corresponding to a pixel in the output view, we first find all
ray-mesh intersections along the ray. We denote Cr = {c1, . . . , c𝑛}
andAr = {𝛼1, . . . , 𝛼𝑛} as the color and alpha components at each in-
tersection, sorted by decreasing depth. We then compute the output
color cr by repeatedly over-compositing these colors. That is,

cr =
𝑛∑
𝑖=1

𝛼𝑖 c𝑖
𝑛∏

𝑗=𝑖+1
(1 − 𝛼 𝑗 ). (1)

We parameterize the MSI texture maps using equi-angular sam-
pling, although other parameterizations could be used if it were
necessary to dedicate more samples to important parts of the scene.

4 LIGHT FIELD VIDEO SYSTEM IMPLEMENTATION
A practical light field video system relies on tight integration be-
tween image capture, view interpolation, compression, and render-
ing. This section contains a detailed description of each of these
sub-components in our system, beginning with the construction of
our principal light field video rig. We then describe how we adapt
the DeepView network to generate Multi-Sphere Images from the
light field array data. Next, we convert the per-frame MSIs to Lay-
ered Meshes, whose RGBA textures we re-pack into a video texture
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atlas. Rendering is done in a straightforward manner through de-
compression and scan-converting the textured layers back-to-front.

4.1 Capture Rig
Our principal camera array consists of 46 low-cost Yi 4K action
cameras. We placed cameras at the vertices of a v3 icosohedral tiling
of a 92-cm diameter hemisphere (see Figure 3). Each camera has a
120◦ × 90◦ field of view, yielding a wide-FOV light field that wraps
more than 180◦ around the viewer. We matched the orientation
of each camera with the horizon, as this has multiple benefits: It
maximizes the horizontal FOV of the rig, ensures consistent rolling
shutter distortions across all cameras and simplifies fabrication.
While overlap in both space and time can be increased by explicitly
optimizing for per-camera orientations [Pozo et al. 2019], we found
that our simple strategy results in ample coverage for reconstruction
as we use many wide-FOV cameras in our rig. The hemisphere itself
is fabricated from a 6-mm thick sheet of acrylic shaped using a
draped plastic thermo-forming process. We drilled out 25mm lens
openings and mounted the cameras using 3D printed brackets.
A single master camera controls the others via a 2-wire trig-

ger/synchronization cable. Each camera uses its own built-in bat-
tery that offers roughly one hour of recording time. A 7-pin USB
connection on each camera charges the array and transfers USB
2.0 data. This eliminates the need to physically remove batteries or
micro-SD cards, and allows us to copy data from the array in parallel
using a collection of high-bandwidth USB3 hubs. The Yi 4K software
supports an “array mode” that enables time synchronization across
each camera. Once a camera receives the “start recording” signal, it
relies on internal timing for image capture. Synchronization tests
performed by running the array in a room periodically lit by a cam-
era flash indicate that the cameras begin recording within 4 ms of
each other and the intra-array temporal drift stays within 1/2 of a
30 Hz video frame for up to 15 minutes.

We calibrate the camera extrinsics and intrinsics using standard
structure frommotion techniques [Hartley and Zisserman 2003]. We
independently recalibrate every shot to account for jostled cameras
between shots and the impact of temperature on camera intrinsics.
The rig calibration is assumed constant through the shot, and we
calibrate on four well-distributed frames from the captured sequence.

Fig. 3. Our camera array is built using a low-cost, semi-transparent acrylic
dome. (a) Cameras are placed at vertices of an icosahedral tiling of a 0.92 m
diameter hemisphere. This yields an average inter-camera spacing of 18 cm.
(b) The plastic dome acts as a natural viewfinder, making it easy to compose
a shot by looking through the surface of the camera rig.

We also exploit the nominal rig pose and calibration as a strong
prior to both increase features matches and initialize the calibration
solution. Finally, we align image exposures across cameras within
the rig using a method similar to [Anderson et al. 2016].

4.2 Learned View Interpolation
The central view synthesis problem we face is how to generate
an MSI from a sparse set of input views. This is challenging be-
cause resolving depth and reasoning about occlusion often requires
jointly considering points in the scene that are far apart from each
other but nevertheless appear adjacent in the input views. While
no method has investigated MSIs, the recent methods for produc-
ing MPIs [Mildenhall et al. 2019; Srinivasan et al. 2019; Zhou et al.
2018] rely on 3D convolution with large receptive fields to provide
sufficient context to reason about depth and visibility. In contrast,
DeepView [Flynn et al. 2019] iteratively refines the MPI by succes-
sively incorporating and reasoning about the visibility between the
input views and the MPI.
Passing information in this manner allows the network to be

agnostic to the specific layer spacing and number of layers. This
provides flexibility for training: we found that training at even one
quarter of the final output resolution and one quarter the number of
final image layers still produced good quality results. Additionally,
using 46 input images during training would be prohibitively expen-
sive, even at low resolution. However, DeepView uses repeated max-
pooling layers [Qi et al. 2017a,b] to aggregate the features across
the input images. This make the trained network independent to
the number of inputs, allowing us to train with a small number of
views but evaluate using all of the camera array’s images.

Several changes to DeepView were required for our application.
The most significant change was to adapt DeepView to work with
multi-sphere images. The original algorithm warped images be-
tween the input views and MPI planes using homographies. For
MSIs we instead need to warp between the input views and spherical
shells. To this end, we implemented a custom Tensorflow operation
that uses a commercial ray tracer [Wald et al. 2014] to compute warp
fields between the MSI textures and input views. This operation
also computes a validity mask to model visibility events, e.g. rays
that miss the MSI shells. Note that since the MSI geometry is fixed,
the model does not need to back propagate gradients through the
ray tracer. We also added a simple sparsity loss when training to
discourage the solver from producing dense volumetric data. It in-
stead zeros out unseen parts of the MSI space. This produces fewer
regions with positive alpha transparency to better aid layer reduc-
tion and image compression later in our pipeline. Specifically, for
each position 𝑝 in the MSI we collect all depth-wise alpha values in
a vector M𝑝 . We then introduce an additional loss term,

L𝑠𝑝𝑎𝑟𝑠𝑒 =
∑
𝑝

���� M𝑝

|M𝑝 |2

����
1
.

This loss prefers sparsity along depth layers but does not encourage
the network to reduce the overall magnitude of the alpha values
along a z column.
Finally, we adapted the training procedure for our rig geometry.

We collected 130 training scenes, each consisting of captures from
five shifted rig positions (∼5 per scene each translated ∼10-50cm
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Fig. 4. Our Light Field Video System. Images captured by our camera rig are calibrated, color corrected, and then fed into a trained DeepView network to
produce multi-sphere images (MSIs). Surfaces in the scene to the right are spread piecewise across many MSI layers (in gray), shown here in a top-down XZ
slice. The alpha value for each MSI texel is shown in blue. Then, layer reduction consolidates this sparse content to a fixed number of Layered Meshes. The
alpha channel for the LM texture maps is shown in red, and can be seen to closely “fit” to regions of the MSI with high alpha density. Subsequent texture
atlasing and video compression results in a compact representation that can be readily played back on consumer graphics hardware.

relative to the initial position). We then calibrated and posed all
rig positions within a scene together, again exploiting the nominal
rig layout so that camera poses were consistent between positions.
During training, one of the rig positions was used as input images
while the rest provide nearby target views inside the interpolation
volume for the network to learn to synthesize. For all the results
shown, we trained with hexagonally-shaped clusters of seven ad-
jacent cameras as inputs, which we found generalized well when
running inference with all 46 cameras.

4.3 Converting MSIs to Layered Meshes
The MSIs we generate generally yield high quality view reconstruc-
tions throughout the interpolation volume (see Figure 8). However,
the amount of data produced – over 100 high-resolution RGBA im-
ages per frame of video – would be challenging to stream as well as
challenging to render on mobile graphics hardware with a limited
amount of polygon fill per frame. Fortunately, our MSI volumes are
relatively sparse, with positive alpha values falling mostly near the
actual scene surfaces, and on virtual surfaces representing specular
reflections. As a result, we can fit a set of polygonal Layered Meshes
(LMs) with RGBA textures to the MSI that largely reproduce its ap-
pearance with considerably less data. This is a critical step, because
the LM data is much more readily compressible using the methods
we describe in Section 4.4. The process of converting an MSI to an
LM follows four basic steps:

4.3.1 Subdividing the MSI. We subdivide the MSI layers into dis-
crete depth ranges which we call Layer Groups, each with an equal
number of consecutive layers. Figure 5(a) shows these subdivisions

for the inset data in the Figure 4. This approach is by construc-
tion temporally coherent because the split positions remain static
throughout the video2. Using regular subdivisions also limits the
depth complexity of any given LM layer and provides a clear upper
bound on the worst case rubber sheet artifacts that can be intro-
duced by each LM layer (see Figure 6). Furthermore, segmenting
non-overlapping depth layers in this manner makes it easy to guar-
antee depth ordering during rendering. We chose to segment MSIs
into 16 LM layers, as this was the highest attainable quality within
our performance budget — more layers increased rendering over-
head and decreased atlasing efficiency.

4.3.2 Computing Layer Depth maps. In many cases, the MSI en-
codes continuous surfaces by alpha cross fading in depth. At the
same time, it also uses saturated alpha values to represent strong
discontinuities, and soft alpha values to encode subtle lighting ef-
fects and translucent surfaces. We found that the accumulation of
alpha in over blending naturally handles all of these cases while
remaining temporally coherent. Concretely, as shown in Figure 5(b),
we collapse the MSI layers within each Layer Group into a single
depth map using standard alpha compositing (Equation 1). How-
ever, instead of compositing RGB values we instead use the index of
the layer, i.e. the layer disparity. We perform this over blend from
the central viewpoint of the interpolation volume. This effectively
computes the expected disparity within each Layer Group along
rays that originate from the central viewpoint.
2In early experiments we found that adaptively changing the layer groups per frame
based on scene content resulted in temporally unstable results. Keeping the same split
boundaries throughout the entire video alleviates this problem. While this worked
well in our system, an adaptive and temporally coherent layer splitting strategy is an
interesting area for future research.
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Fig. 5. Conversion from an MSI to an LM. (a) We first subdivide MSI layers (gray lines, alpha channel shown in blue) into Layer Groups (bounded by green
lines). (b) Then, within each layer group we over blend MSI disparity and alpha to compute LM depth, and then convert each depth map to a triangle mesh.
This is done along rays originating at central viewpoint. (c) Finally, within each Layer Group we project the RGBA values from the MSI layers onto the texture
of the LM layer. Since no single viewpoint contains all the needed texture content for the LMs, we compute the Monte Carlo integral across rays originating at
randomly sampled points on the surface of the interpolation volume. The alpha channel of the LM textures is shown in red in (b) and (c).

Fundamentally, representing the scene with depth maps intro-
duces the possibility of rubber sheeting and stretched triangle ar-
tifacts whenever there is discontinuity between foreground and
background layers. The benefit of MSIs is that they use alpha values
instead of depth geometry to represent foreground edges, and we
wish to preserve this as much as possible. The best we can do with a
single layer of depth is to expand our depth maps around the edges

Fig. 6. Rubber sheet artifacts appear when using too few Layer Groups.
Using just 4 LM layers (right top), the fence gets stretched to connect to the
background and the chain links get warped. Using 16 layers (right bottom),
the subdivisions are small enough to sufficiently separate foreground and
background, and the rubber sheet artifacts are no longer visible.

of foreground objects and rely instead on alpha values, inherited
from the MSI, to cleanly represent discontinuities. In practice, we
perform two alpha compositing passes to generate the Layer Group
depth maps. The first pass initializes the depth estimate by com-
positing on top of a constant depth layer, which is the furthest depth
in the layer group. The second pass extends the size of foreground
objects by compositing the same depth map on top of a heavily
dilated version of the first pass. This second pass helps to ensure
that when a foreground edge and background are in the same mesh
layer, we fall back to using the depth to represent the edge instead
of alpha. This also has the benefit of reducing any depth aliasing
that may be present in the MSI since the depth map construction
averages together depth values from multiple MSI layers.

4.3.3 Computing Mesh Layers. In order to efficiently render the
LMs, we convert them from depth maps to low polygon meshes.
For video playback, the mesh for each layer needs to be compact
and also maintain a reasonable degree of temporal coherence across
frames. To meet the first requirement, we need to simplify the
mesh relative to the original depth map, but the second requirement
discourages the use of complex mesh simplification algorithms that
don’t guarantee temporal coherence. Since most of the geometric
detail and depth complexity in the scene is represented by the alpha
channel, we can use the simple approach of generating a quad for
each 𝑁 × 𝑁 block of pixels in the depth map. We assign the depth
of each quad vertex to the value of its depth map at its location.
Naturally, there is a breaking point where, when 𝑁 is too large, the
mesh layers may separate in places where they should be connected.
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This is especially noticeable along straight edges in the scene. We
found 𝑁 = 8 to give the best trade-off between quality and the final
triangle count for our data. This approach is temporally coherent
because mesh connectivity remains consistent in every frame and
each vertex only moves along the sphere’s radial direction.

4.3.4 Projecting RGBA values onto Mesh Layers. The final step in
the layer reduction process is to project the MSI textures in each
Layer Group onto the corresponding mesh layer. It is trivial to
reproduce the appearance of a single viewpoint by over compositing
the MSI textures into that viewpoint, and then projecting that result
onto the corresponding LM mesh. However, we would prefer to
generate the LM texture from multiple viewpoints, as more than
one viewpoint is needed to capture the rich data in theMSI layers. Of
course, for objects with high depth complexity a single LM texture
cannot reproduce every possible ray encoded in the MSI layer group,
so we are forced to compromise. We chose to average the rays across
many randomly selected viewpoints to come upwith the single color
and alpha value at each point on the LM layer surface.
The approach we use is inspired by the prefiltering introduced

in [Overbeck et al. 2018]. At each texel in every LM layer we perform
a 2D integral along all potential lines of sight originating in the
interpolation volume. As Figure 5(c) shows, we approximate the
integral usingMonte Carlo ray tracing, where each ray computes the
alpha over-blend along the ray through the MSI Layer Group. Since
our alpha values represent a density, we compute the alpha integral
in log space and weight each RGB + log(𝛼) sample by log(𝛼). This
causes solid surfaces to heavily outweigh transparent surfaces in
the integral. This approach guarantees that all view directions in the
Layered Mesh receive a contribution from the MSI and that holes
are filled.

To compute the RGB color 𝑐𝑡 and the log-space alpha component
log(𝛼𝑡 ) for each texel 𝑡 on a layered mesh, we compute Monte Carlo
estimates for the integrals

log(𝛼𝑡 ) = 𝜆−1
∫
𝑉 (𝑡 )

𝑤 (r) log(𝛼r)2 dr, (2)

and

𝑐𝑡 = 𝜆−1
∫
𝑉 (𝑡 )

𝑤 (r) log(𝛼r)cr dr. (3)

Here, 𝑉 (𝑡) is the set of all rays that originate in the interpolation
volume and pass through the texel 𝑡 ,

𝜆 =

∫
𝑉 (𝑡 )

𝑤 (r) log(𝛼r) dr (4)

is a normalizing constant, and we obtain the final alpha value as

𝛼𝑡 = 𝑒 log(𝛼𝑡 ) . (5)

The functions 𝛼r and cr are evaluated only through the MSI
layers in the current Layer Group using Equation 1. In some cases,
prefiltering can add noticeable blur seen in disoccluded areas from
novel viewpoints. To counteract this, we use a function𝑤 (r) that
more heavily weights viewing rays closer to the center view. This
helps maintain the sharpness of the original MSI. We use a Gaussian
with its peak at the center of the interpolation volume.

Fig. 7. An example texture atlas from the Dog scene in Figure 8.

Discussion. As shown in Section 5, there is some loss of view
interpolation quality in the conversion from MSI’s to LM’s. For light
field still images, MSI’s may be the best representation. However, for
generating a compact light field video that can stream and render
in real-time, the conversion to the Layered Mesh representation is
crucial. To bring the quality of LM’s fully up to the level of MSI’s,
we would ideally use an end-to-end machine learning method that
minimizes a perceptual error of the final view synthesis. However,
the semantic non-overlapping structure of the layeredmeshesmakes
this a considerably more difficult inference process to parameterize.
We leave end-to-end optimization of Layered Meshes as future work.

4.4 Video Compression and Rendering
4.4.1 Texture Atlasing. We use a texture atlasing approach to con-
solidate the RGBA texture data from the Layered Mesh sequences.
This allows us to better leverage standard 2D video codecs. We
create the atlas over a group of video frames (i.e. a GOP, or Group
of Pictures) to allow for efficient video and mesh compression. We
first sparsify the meshes by computing the set of texels that are
close to transparent over all frames in each GOP, removing any
triangle that don’t intersect with at least one opaque texel. This
reduces the size of the mesh and the total texels as can be seen in
Table 1. We then divide the resulting meshes into near-rectangular
sections and pack them into a flat texture space using the Skyline
Bottom-Left algorithm described in [Jylänki 2010]. The atlas texture
is then copied piece by piece from the relevant layered mesh images.
The occupancy of the resulting texture area is given in Table 1.

Table 1. The number of mesh triangles and vertices before and after the
removal of transparent triangles, and percentage of pixels covered by mesh
triangles for the scenes in Figure 8.

Scene before removal after removal Occupancy
# tris # verts # tris # verts

Dog 605k 1.20M 151k 223k 84.7%
Flames 605k 1.20M 166k 231k 81.8%
Car 605k 1.20M 92k 139k 82.0%
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Table 2. The RGB+A side-by-side atlas texture size in pixels and bit rates
for compressed image and geometry video data for the scenes in Figure 8.
The images are compressed using H.265 with a CRF value of 14, and meshes
are compressed using the Draco geometry compression library.

Scene Atlas Size Bitrates
Texture Mesh Total

Dog 3240x5760 184Mb/s 81.2Mb/s 266Mb/s
Flames 3240x5760 249Mb/s 72.3Mb/s 322Mb/s
Car 3240x5760 72.7Mb/s 51.1Mb/s 124Mb/s

4.4.2 Compression. To compress the mesh geometry, we note that
the vertex positions that remain after atlasing only vary along their
radial direction across frames within a GOP. We leverage this re-
dundancy by storing the mesh connectivity, normalized vertex posi-
tions, and atlas texture coordinates only once per GOP. Separately,
we store the per-frame scalar inverse radial displacements of each
vertex. This remaining mesh data is further compressed using the
open-source Draco library [Draco 2019].

We compress the stream of texture-atlased images using the stan-
dard H.265 video encoding algorithm with a CRF value of 14. Main-
taining the same atlas layout per GOP generates amore compressible
atlas stream. Alpha channels aren’t widely supported by the most
common video codecs, so we concatenate the color and alpha chan-
nels side-by-side before compressing, as shown in Fig. 7. While this
doubles the width of the atlas, the lack of chroma variance in the
alpha channel makes it more efficient to compress. We found that
encoding at a high quality with a CRF of 14 is important because
compression artifacts in the alpha channel show up as shimmering
around moving objects. The sizes of the final compressed data for
the scenes in Figure 8 are shown in Table 2. To summarize, across a
range of scenes, we achieve data rates of 124 Mb/s – 322 Mb/s.

4.4.3 Rendering. Our data representation is extremely simple and
light-weight to decode and render. We decode both the mesh and
image data and stream it to the GPU. The GOP meshes are reassem-
bled by dividing the per-frame inverse radial displacements from
the normalized vertex positions, and the texture atlas video stream
is decoded using standard video decoder hardware. Rendering re-
quires two texture taps: one for RGB and one for alpha. The LM’s
are rendered in back-to-front order, and we use GPU hardware
blending operations to composite the resulting pixel values using a
pre-multiplied over blend.

5 RESULTS
In this section we present evaluations and comparisons to show the
visual quality of our light field video pipeline.

Figure 8 shows three light field video frames processed into MSI’s,
each of which is shown as a cross-fusable stereogram with a wide
baseline to demonstrate the substantial viewing volume. The depth
map visualizations seen at the right are made from the MSI’s ren-
dered from the center perspective. Note that these are composite
images of the depths of all the individual spherical layers; we are
not simply projecting textures onto a single depth map. The “Dog”
scene rendered with a 30 cm baseline demonstrates the system’s

ability to resolve thin structures in the wire fence mesh and near-
field objects such as the dog’s nose just 1 m from the center of
the camera array. The “Flames” example rendered with a 60 cm
baseline shows a successful result for a high dynamic range scene
with a partially-translucent flame volume, represented successfully
using the layer transparency channels. The person’s shape is nicely
separated from the background with crisp anti-aliased edges. The
further reaches of the dark, textureless sky are reconstructed as
having opacity on layers which are much closer than they should
be; fortunately this error is difficult to notice within the viewing
volume of the re-rendered imagery. The “Car” example rendered
with a 60 cm baseline demonstrates challenging thin structures in
the bare tree branches as well as nicely reproduced specular reflec-
tions on the car’s hood and windshield. The network reproduces the
specular behavior by making the car’s surface partially translucent
and placing the specular reflections on layers deeper behind the
surface. The composite depth map visualization shows evidence
of this in the form of apparent concavities in the car’s hood and
windows. These depth colors result from averaging together the
depths of several layers with partial opacity.
Our accompanying papers video shows animated viewpoints

through these (and other) scenes as the light field video is played
back and occasionally paused. Our supplemental material includes
an interactive viewer that runs in a web browser to inspect several
other light field video frames. The local web viewer application
allows each frame to be viewed from different viewpoints and layer-
by-layer as a Multi-Sphere Image, a Layered Mesh, and a texture-
atlased Layered Mesh.

Processing Time. We rely on cloud processing infrastructure to
process videos in a reasonable amount of time. Thanks to heavy
parallelization over hundreds to thousands of worker machines,
we are able to fully process all videos, regardless of length, in less
than a day. One sample run of our pipeline on 150 video frames
took a total 4,271 CPU hours, or about 28.5 CPU hours per frame.
This time is overwhelmingly dominated by the inference process to
generate the MSI (see Subsection 4.2), which took about 25.4 CPU
hours per frame. In actual wall-clock time, the full pipeline took
about 17 hours. This run, and all of the results in the paper, generate
high resolution MSIs at 1800×1350 resolution with 160 layers. Note
that our system, including MSI inference, runs entirely on CPUs
because we have easier access to CPUs than GPUs. However, there
are optimization opportunities available if MSI inference were to be
run on a modern GPU.

5.1 Comparing MSIs, Layered Meshes, and
Texture-Atlased Layered Meshes

To evaluate our system we use held-out scenes from our train-
ing data shot from one rig position, and measure how well our
system reproduces an unseen view from another nearby rig posi-
tion. We quantify the difference between the synthesized and novel
views across various stages using the LPIPS [Zhang et al. 2018] and
SSIM [Wang et al. 2004] metrics. As shown in Table 3, there is a
progressive (though acceptable) loss in quality as we progress from
the MSI to the atlased Layered Mesh representation. Note that the
SSIM scores in Table 3 are not comparable across datasets, due to
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Fig. 8. Cross-fusable stereograms of three light field video frames processed by our complete pipeline, accompanied by colorized depth visualizations produced
from the MSI as in Section 4.3. The scenes are re-rendered with ±15 cm, ±30 cm, and ±30 cm stereo baselines.

effects such as input image resolution, sharpness, visible parallax,
scene materials, and the geometry of the scene. Bear in mind the
difficult nature of our evaluation dataset when assessing these SSIM
scores. Our rig has a large 18 cm camera spacing and our evaluation
scenes contain difficult-to-reconstruct view-dependent materials
and objects close to the camera rig.

5.2 Comparison to [Overbeck et al. 2018]
Figure 9 compares our approach to that of [Overbeck et al. 2018]
on several light field stills from the SteamVR applicationWelcome
to Light Fields (WLF). WLF captured high quality panoramic light
field stills using a rotating camera gantry, with a relatively dense
1,000 images over the full sphere per scene. Overbeck et al. [2018]
follow a more traditional light field rendering approach, projecting
each of the images onto depth geometry and blending between
them in real time. Their results are high-quality and immersive, but

since our system needs to record all views simultaneously, we are
restricted to using fewer images from a much sparser camera array.
To compare the pipelines more directly, we extracted the 46 image
positions from the WLF light fields that most closely match the
viewing positions in our hemispherical camera rig (Sec. 4.1).

In Figure 9, we compare our atlased LM and MSI representations
with [Overbeck et al. 2018] with the 46 camera positions from our
rig (WLF 46) and against their results with all of the images. We use
two scenes from their paper: Gamble House on top and the Living
Room on the bottom. When using only 46 images, [Overbeck et al.
2018] struggles to accurately model and render thin structures, such
as the lamp’s arm in the Gamble House (the blue highlighted region)
and on the tripod legs in the Living Room (the green highlighted
region). Both our atlased LM and MSI representations faithfully
capture these fine details. WLF with 46 images also struggles with
some reflections. In these cases, their single-layer depth maps have
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Fig. 9. Our MSIs and Atlased LMs compared to Welcome to Light Fields (WLF) [Overbeck et al. 2018] using a sparse 46-image subset of their views to match
our rig (WLF 46), and also against their full-quality renderings using the full front hemisphere of their images (WLF 328 and WLF 595). With only 46 cameras,
WLF 46 struggles to capture thin structures and some reflections. Both our atlased LMs and MSIs capture these effects, despite atlased LMs requiring 26× less
storage than WLF 328 and 47× less than WLF 595.

to choose whether to follow the surface in the reflection or the
reflective surface itself. For the glossy reflection under the vase in
the Gamble House (the yellow highlighted region), the depth maps
for WLF 46 alternate from representing the cabinet’s surface and
the reflections within it, causing a distortion in the glossy reflection.
Similarly, in the left of the mirror in the Living Room, the doorway
appears ghosted in the reflection. In all our examples, our Atlased
LM result is very close to the MSI result but appears slightly softer
in some areas. This is where the LM geometry differs from the
underlying MSI and the filter described in Section 4.3 smooths over
the differences.
When [Overbeck et al. 2018] uses all 595 images in the Living

Room and all 328 images from the Gamble house, its rendered quality
is close to ours, however our data is compacted into a 16 layer LM
packed into a single 3840×4320 pixel atlas for Gamble House and
2880×3240 pixel atlas for Living Room, whereas their system uses
328 images for Gamble House and 595 images for Living Room,
all at 1280×1024 pixel resolution. That’s 47 times and 26 times the
number of pixels to encode, respectively, making it far less feasible
for video.

5.3 Comparison with [Pozo et al. 2019]
We also apply our method to an alternative camera rig geometry
with a sparser sampling of cameras. We downloaded the publicly

available dataset from the Facebook Manifold camera [Pozo et al.
2019] and processed it with our pipeline. This data was captured
with 16 cameras distributed over a 48 cm diameter sphere, which is
significantly fewer than the 46 cameras over a 90 cm hemisphere
we use for training and acquisition. In exchange for camera density,
each camera in the Manifold rig captures more pixels per degree, a
greater field of view, higher dynamic range, and provides a better
signal-to-noise ratio.

As Figure 10 and the supplemental video both show, our system
extends well to this data. In the crops, we show output views placed
at different distances from the rig center, comparing our approach
with the publicly available implementation of the Manifold camera
renderer3. Our approach gives better view interpolation results
in regions that are difficult to recover with traditional multi-view
stereo and image-based rendering approaches. Our method achieves
smooth anti-aliased occlusion boundaries and well-reproduced thin
structures. This difference is particularly pronounced 20 cm away
from the rig center, near the edge of the interpolation volume derived
in Section 3.1. This available Manifold scene features relatively
distant and diffuse geometry, and we believe that our performance
gains could be more pronounced for a scene with near-field objects
and specular reflections.

3https://github.com/facebook/facebook360_dep
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MSI LM Atlased LM
Scene LPIPS SSIM LPIPS SSIM LPIPS SSIM

0.0552 0.9649 0.0788 0.9473 0.0818 0.9428

0.0631 0.9638 0.0911 0.9403 0.0915 0.9406

0.0804 0.9550 0.1140 0.9293 0.1145 0.9295

0.0974 0.9532 0.1265 0.9389 0.1327 0.9390

0.0687 0.9607 0.1192 0.9251 0.1199 0.9252

Table 3. Comparison of rendered vs actual images on different evaluation
scenes at various stages of our process from MSI to Layered Mesh (LM)
to Atlased Layered Mesh (Atlased LM). The input views, shown in green,
are processed by our system and used to synthesize the held out views
shown in red. We show the LPIPS [Zhang et al. 2018] (lower is better) and
SSIM [Wang et al. 2004] (higher is better) scores.

Fig. 10. Comparing atlased LMs with [Pozo et al. 2019] on data captured
with their camera rig. Each image is annotated with the distance from the
rig center. The crops emphasize details that are challenging for traditional
image based rendering methods, such as thin structures and occlusion
boundaries.

In terms of storage representation, the Manifold scene stores
high resolution geometry and texture for each frame and camera
in the rig, requiring more than 9 GB of storage for this 50-frame
clip; this would likely require a powerful desktop PC with multiple
high-bandwidth solid state disks for smooth playback. In contrast,
our compressed representation is much smaller (124 MB) and can
be rendered in real-time on a consumer gaming laptop.

6 LIMITATIONS
Our system faithfully renders high quality views with dynamic and
complex visual effects, such as fire (Figs. 1 and 8), sparks (Fig. 4 right),
and reflections and fine geometry (see Figs. 9 and 8). However, we
inherit the limitations of the underlying MPI representation upon
which we build our work. There are some visual phenomenon which
are not accurately represented by MPIs or MSIs, such as curved
reflectors. Nonetheless, even in these difficult cases our optimization
framework tends to subtly blur, or average over, problematic areas.
See, for example the glossy reflection in the yellow highlighted
insets in Figure 9 where our results tend to be smoother towards the
edge of the counter top than the high-resolution WLF 328 results.

Motion-related blur is noticeable in low-light scenes such as the
cave (see supplemental video). In low light conditions our cameras
choose a 360 degree shutter to maximize the exposure time, which
appears blurrier than expected even in the source videos. We believe
that some temporal blurring also results from our inexpensive rig’s
not-quite-perfect sync (within 4 ms) and when the auto-exposing
cameras choose different exposure times. MSIs reconstructed from
such input images contain multi-camera motion blur that is the
average of the individual motion blurs. While MSIs and LMs can
represent consistent motion blur well, our network seems to trans-
late heterogeneous motion blur into additional blurring.
Additionally, difficult dis-occluded regions sometimes appear

blurry, for example around the person standing in the horse stall
(see supplemental material). This results from the following approxi-
mations: First, due to GPU memory constraints we train with a local
cluster of only 7 cameras, although we still perform inference with
all 46 cameras. Thus, during training the network has a more limited
ability to peek around objects and learn to distinguish foreground
and background content. Second, as shown in the supplemental
video and Table 3, there is a loss of quality when converting to LMs.
Using the pre-filtering approach in Section 4.3.4, we make the loss
in quality less noticeable by preferring blur in these regions.
Yet, in many difficult cases, e.g. in the Car scene (Fig. 8), we

produce plausible results free of retinal rivalry. Also, sometimes in
constant color regions, especially black, our network doesn’t see
enough detail to identify a smooth surface, and instead spreads the
constant color across multiple layers of the MSI. Although these
generally don’t detract from the overall visual quality from inside of
the viewing volume, they do reduce the compressibility of the MSI.
A drawback of our training and processing pipelines are they require
substantial cloud computing resources. It would not be practical to
process a several-minute-long video on a single workstation using
our current framework.

7 CONCLUSIONS AND FUTURE WORK
In this paper, we have presented the first end-to-end system for
recording, processing, compressing, and rendering view-dependent
immersive light field video at sufficiently low bandwidth for internet
streaming. While our results are relatively free of visual artifacts,
there are several avenues for future work to improve and augment
the system. First, we could extend our rig to a full 360 degree field
of view, which could be accomplished by building a copy of the
rig and placing the two rigs back-to-back; our MSI inference al-
ready can accommodate fully panoramic spherical shells. Second,
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we could improve the MSI-to-LM conversion to better adapt the
mesh placement to where surfaces are in the scene, instead of al-
lowing a single mesh surface per depth Layer Group. This would
improve the appearance of object edges where the surface they are
in front of might otherwise fall into the same depth Layer Group.
Ideally, we would design and train a new version of the network
to directly output Layered Meshes in an end-to-end system. Better
mesh placement might allow the scene to be represented well with
fewer meshes, which could facilitate streaming to mobile headsets
such as the Oculus Quest and Magic Leap. Finally, it is interesting
to consider how the inference network could be optimized to sup-
port streaming a live event, such as concert or sports match, to a
distributed remote audience, with each person able to comfortably
watch the scene from their individual point of view.
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A COMPUTING INTER-LAYER SPACING FOR
MULTI-SPHERE IMAGES

Fig. 11. Derived layer spacing bounds for MSIs.

In order to render views that do not alias or “tear apart” as the
viewer moves from side to side in the interpolation volume, the

Fig. 12. Comparison of layer spacing bounds for MSIs.

maximum disparity seen by the viewer between any two adjacent
layers must be ≤ 1 pixel. Here our goal is to determine the correct
MSI layer spacing that achieves this inter-layer disparity (ILD) con-
dition. Our analysis is similar to conditions for the spacing of MPI
planes proposed in [Flynn et al. 2019; Zhou et al. 2018] and further
refined using Fourier analysis in [Mildenhall et al. 2019].
Consider the geometric construction in Figure 11. Two adjacent

spherical MSI layers are shown with radii 𝑟𝑛 and 𝑟𝑛+1. In order to
render views without aliasing, the ILD condition must hold for any
ray that passes through the interpolation volume whose radius is 𝑟𝑖 .
It suffices to concern ourselves with the rays that pass through two
adjacent layers at the steepest possible angle, as these are most likely
to violate the condition stated above. Two such rays are shown,
although due to the radial symmetry of the rig any pair of rays
tangent to and on opposite sides of the interpolation volume could
be chosen for this analysis. We see that the steepest ray angles
at layer 𝑛 that intersects with the interpolation volume has 𝜙𝑛 =

± sin−1 (𝑟𝑖/𝑟𝑛). If each spherical layer has a texture with uniform
angular sampling 𝜌 pixels per radian with respect to the center
of the rig, each layer texture will have 2𝜋𝜌 pixels around its full
circumference. The ILD condition therefore requires that the arc
length 𝑑 should be less than or equal to the spacing between texture
pixels at layer 𝑛 +1; i.e., 𝑑 = 𝑟𝑛+1/𝜌 . For any reasonable high texture
resolution, 𝑑 ≪ 𝑟𝑛+1, so by the small angle approximation we can
treat the arc length 𝑑 as being equal to the chord length (dotted line),
and the distance 𝑙 ≈ 𝑟𝑛+1 − 𝑟𝑛 . After some algebraic manipulation,
we arrive at the follow expression for the incremental layer spacing
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for a multi-sphere image:

𝑟𝑛+1 = 𝑟𝑛

(
tan(𝜙𝑛)

tan(𝜙𝑛) − 1/(2𝜌)

)
(6)

From Equation 6 we see that MSI layer spacing depends on only two
variables: (1) the radius 𝑟𝑖 of the interpolation volume, and (2) the
angular sampling rate 𝜌 of the MSI layer textures. Starting at “near”
shell radius 𝑟0 and iterate using Equation 6 until a “far” shell radius
of 𝑟max = ∞ is reached, we can compute the total number of shells
required to satisfy the ILD condition. Figure 11 shows how many
planes are required as a function of 𝑟0, for different choice of 𝑟𝑖 and
𝜌 . We see that doubling angular sampling rate or doubling the size
of the interpolation volume leads to a doubling of the number of
depth planes required. This generally follows the scaling properties
of MPIs that are described in [Mildenhall et al. 2019]. However, one
advantage of using MSIs is that they have no such field of view
dependence since they naturally provide equi-angular sampling in
all viewing directions.

B SPHERICAL LIGHT FIELD GEOMETRY OF THE MSI
Here we show how spherical light field geometry [Insung Ihm et al.
1997; Shum and He 1999] can be used to understand how to properly
construct multi-spherical images that match the near object distance
and interpolation volume size of our capture geometry. Figure 13(a)
shows a spherical light field parameterization where each ray is
indexed via a pair of coordinates (𝜃, 𝜙). The azimuth angle 𝜃 is
measured relative to the center of the interpolation volume, and
it defines the position where a ray intersects a sphere at radius 𝑟𝑟𝑠 .
Here, we also measure the the angle 𝜙 of an incoming ray relative to
the normal vector. The inset in Figure 13(a) shows a (𝜃, 𝜙) ray space
diagram illustrating the ray “bundles” sampled by nine different
cameras. The shape of the curves changes depending on the radius
𝑟𝑟𝑠 of the sphere we are projecting rays onto. When 𝑟𝑟𝑠 = 𝑟𝑟𝑖𝑔 the
diagram contains vertical lines (black) corresponding to the fan of
rays collected at each discrete camera position on the rig. However,
if we plot those same ray bundles for 𝑟𝑟𝑠 = 𝑟𝑖 , the lines elongate into
s-curves (teal) that cover a full 180 degrees in 𝜙 . This agrees with
our earlier definition of the interpolation volume as the region with
rays sampling all outward-facing viewing directions. Finally, if we
choose the closest object distance 𝑟𝑟𝑠 = 𝑟𝑐 (orange), we see camera
rays curve in the other direction and flatten in the 𝜙 dimension.
We can see at this distance there is overlap of two cameras across
the full range of azimuth positions since each coordinate on the
azimuth axis (𝜃 ) contains two curved lines.

Figure 13(b) shows the ray space coverage of the MSI with a trun-
cated 225 degree FOV similar what we use in our real system. Several
color coded viewpoints are shown, each representing a potential
novel view. The inset in this drawing is a ray space diagram parame-
terized at the typical distance where we place the first MSI sphere in
our real system; i.e., 𝑟𝑟𝑠 = 0.8m. The red parallelogram contains the
valid rays for the MSI that both (1) satisfy the inter-layer disparity
condition from Appendix A, and (2) pass through all the MSI layers.
TheMSI in this example was constructed to have a sufficient number
of layers, following the analysis in Appendix A, thereby perfectly
matching its interpolation volume to that of our rig cameras (dark
blue curves). Rays needed to render the novel viewpoints are shown

Fig. 13. Geometry of a spherical light field. (a) A ray space diagram parame-
terized by two angles (𝜃,𝜙) shows rays collected by each camera. Changing
the radius 𝑟𝑟𝑠 where the ray space is parameterized reveals rig capabilities
at the edge of the interpolation volume (teal), on the surface of the rig
(black), and at the closest object distance (orange). (b) The ray space for a
multi-sphere image, depicted as a parallelogram, shows the set of valid rays
that can be used to synthesize novel viewpoints. Several novel viewpoints
are shown, including some that require rays outside of the MSI ray space.

with bold, colored curves in the diagram. We see that not all views
can be rendered successfully. The green view sees "off the edge" of
the MSI where there is simply no data available. The purple view
is outside of the interpolation volume and some portion of its FOV
will be filled with extrapolated data likely containing artifacts. In
either case, this shows the limit of the LMI head volume both in
terms of position and viewing direction. This is useful, for example,
for knowing when to gracefully “fade out” invalid viewpoints in
an interactive 6 DOF viewer, or for choosing valid example images
while training a deep image synthesis network.
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