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A Kakeya set in R
n is a compact set E ⊂ R

n containing a unit line segment in every
direction, i.e.

∀e ∈ Sn−1∃x ∈ Rn : x+ te ∈ E ∀t ∈ [−1

2
,
1

2
] (1)

where Sn−1 is the unit sphere in Rn. This paper will be mainly concerned with the
following issue, which is still poorly understood: what metric restrictions does the property
(1) put on the set E?

The original Kakeya problem was essentially whether a Kakeya set as defined above
must have positive measure, and as is well-known, a counterexample was given by Besi-
covitch in 1920. A current form of the problem is as follows:

Open question 1: Must a Kakeya set in R
n have Hausdorff dimension n?

When n = 2, the answer is yes; this was proved by Davies [19] in 1971. Recent work on
the higher dimensional question began with [7]. If dimE denotes the Hausdorff dimension
then the bound dimE ≥ n+1

2
can be proved in several ways and may have been known

prior to [7], although the author has not been able to find a reference. The recent work
[7], [60] has led to the small improvement dimE ≥ n+2

2
. We will discuss this in section 2

below.
Question 1 appears quite elementary, but is known to be connected to a number of

basic open questions in harmonic analysis regarding estimation of oscillatory integrals.
This is a consequence of C. Fefferman’s solution of the disc multiplier problem [23] and
work of Cordoba (e.g. [18]) and Bourgain (e.g. [7], [9], [10]). We will say something about
these interrelationships in section 4. There is also a long history of applications of Kakeya
sets to construct counterexamples in pointwise convergence questions; we will not discuss
this here, but see e.g. [25] and [54].

For various reasons it is better to look also at a more quantitative formulation in terms
of a maximal operator. If δ > 0, e ∈ Sn−1, a ∈ Rn then we define

Tδe (a) = {x ∈ R
n : |(x− a) · e| ≤ 1

2
, |(x− a)⊥| ≤ δ}
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where x⊥ = x − (x · e)e. Thus Tδe (a) is essentially the δ-neighborhood of the unit line
segment in the e direction centered at a. If f : R

n → R then we define its Kakeya maximal
function f ∗

δ : Sn−1 → R via

f ∗
δ(e) = sup

a∈R
n

1

|Tδe (a)|

∫

Tδe (a)

|f |

This definition is due to Bourgain [7]. It is one of several similar maximal functions that
have been considered, going back at least to [18].

Open question 2: Is there an estimate

∀ǫ > 0∃Cǫ : ‖f ∗
δ‖Ln(Sn−1) ≤ Cǫδ

−ǫ‖f‖n∀f (2)

Roughly speaking, this question is related to question 1 in the same way as the Hardy-
Littlewood maximal theorem is related to Lebesgue’s theorem on points of density. As
was observed by Bourgain [7], an affirmative answer to question 2 implies an affirmative
answer to question 1; see Lemma 1.6 below. Once again, when n = 2 it is well known
that the answer to question 2 is affirmative, [18] and [7]. In higher dimensions, partial
results are known parallelling the results on question 1.

Questions 1 and 2 clearly have a combinatorial side to them, and the point of view we
will adopt here is to try to approach the combinatorial issues directly using ideas from
the combinatorics literature. In this connection let us mention a basic principle in graph
theory (the “Zarankiewicz problem”; see [5], [24], [40] for this and generalizations): fix s
and suppose that {aij}n m

i=1 j=1 is an n × m (0, 1) matrix with no s × s submatrix of 1’s.
Then there is a bound

|{(i, j) : aij = 1}| ≤ Cs min(mn1− 1
s + n, nm1− 1

s +m) (3)

To see the relationship between this sort of bound and Kakeya, just note that if {ℓj}mj=1

are lines and {pi}ni=1 are points, then the “incidence matrix”

aij =

{
1 if pi ∈ ℓj
0 if pi /∈ ℓj

will contain no 2×2 submatrix of 1’s, since two lines intersect in at most one point. Much
of what we will say below will have to do with attempts to modify this argument, and also
more sophisticated arguments in incidence geometry (e.g. [17]) to make them applicable
to “continuum” problems such as Kakeya.

There are several difficulties with such an approach. It is sometimes unclear whether
applying the combinatorial techniques in the continuum should be simply a matter of extra
technicalities or whether new phenomena should be expected to occur, and furthermore
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many of the related discrete problems are regarded as being very difficult. A classical
example is the Erdos unit distance problem (see [17] and [40]) and other examples will be
mentioned in section 3.

Of course, much work has been done in the opposite direction, applying harmonic
analysis techniques to questions of a purely geometrical appearance. A basic example is
the spherical maximal theorem of Stein [51], and various Strichartz type inequalities as
well as the results on the distance set problem in [22], [11] are also fairly close to the
subject matter of this paper. However, we will not present any work of this nature here.

The paper is organized as follows. In section 1 we discuss the two dimensional Kakeya
problem, in section 2 we discuss the higher dimensional Kakeya problem and in section
3 we discuss analogous problems for circles in the plane. Finally in section 4 we discuss
the Fefferman construction and a related construction of Bourgain [9] which connects the
Kakeya problem also to estimates of Dirichlet series. Section 4 contains several references
to the recent literature on open problems regarding oscillatory integrals, but it is not a
survey. Further references are in [10], [58], and especially [52].

We have attempted to make the presentation self-contained insofar as is possible. In
particular we will present some results and arguments which are known or almost known
but for which there is no easy reference.

The author is grateful for the opportunity to speak at the conference and to publish
this article.

List of notation

[α]: greatest integer less than or equal to α.
p′: conjugate exponent to p, i.e. p′ = p

p−1
.

D(x, r): the disc with center x and radius r.
|E|: Lebesgue measure or cardinality of the set E, depending on the context.
Ec: complement of E.
dimE: Hausdorff dimension of E.
Hs(E): s-dimensional Hausdorff content of E, i.e. Hs(E) = inf(

∑
j r

s
j : E ⊂ ∪jD(xj, rj))

Tδe (a): δ-tube in the e direction centered at a, as defined in the introduction. Sometimes

we will also use the notation Tδe ; this means any tube of the form Tδe (a) for some a ∈ Rn.
C(x, r): circle in R2 (or sphere in Rn) with center x and radius r.
Cδ(x, r): annular region {y ∈ Rn : r − δ < |y − x| < r + δ}.
x . y: x ≤ Cy for a suitable constant C.

1. The two dimensional case

We will start by proving the existence of measure zero Kakeya sets using a variant on
the original construction which is quick and is easy to write out in closed form; to the
author’s knowledge the earliest reference for this approach is Sawyer [42]. A discussion of
various other possible approaches to the construction may be found in [21].
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For expository reasons, we make the following definitions.

A G-set is a compact set E ⊂ R2 which is contained in the strip {(x, y) : 0 ≤ x ≤ 1},
such that for any m ∈ [0, 1] there is a line segment contained in E connecting x = 0 to
x = 1 with slope m, i.e.

∀m ∈ [0, 1]∃b ∈ R : mx+ b ∈ E ∀x ∈ [0, 1]

If ℓ = {(x, y) : y = mx+ b} is a nonvertical line, δ > 0, then Sδℓ
def
= {(x, y) : 0 ≤ x ≤ 1

and |y − (mx+ b)| ≤ δ}.

Remark 1.1 It is clear that existence of G-sets with measure zero will imply existence

of Kakeya sets with measure zero. Note also that if ℓ is a line with slope m then Sδℓ will
contain segments connecting x = 0 to x = 1 with any given slope between m − 2δ and
m+ 2δ.

We now describe the basic construction, which leads to the slightly weaker conclusion
(Lemma 1.2) that there are G-sets with measure < ǫ for any ǫ > 0. It can be understood
in terms of the usual sliding triangle picture: start from a right triangle with vertices
(0, 0), (0,−1) and (1, 0); this is clearly a G-set. Subdivide it in N “1st stage” triangles
by subdividing the vertical side in N equal intervals. Leave the top triangle alone and
slide the others upward so that their intersections with the line x = 0 all coincide. Next,
for each of the 1st stage triangles, subdivide it in N 2nd stage triangles, leave the top
triangle in each group alone and slide the N − 1 others upward until the intersections of
the N triangles in the group with the line x = 1

N
all coincide. Now repeat at abscissas

2
N

, 3
N

, . . ., N−1
N

.
Now we make this precise. Fix a large integer N and let AN be all numbers in [0, 1)

whose base N expansion terminates after N digits, i.e.

a ∈ AN ⇔ a =

N∑

j=1

aj

N j
with aj ∈ {0, 1, . . .N − 1}

To each a ∈ AN we associate the line segment ℓa connecting the y axis to the line x = 1
with slope a and y intercept −∑N

j=1
(j−1)aj

Nj+1 . Thus

ℓa = {(t, φa(t)) : 0 ≤ t ≤ 1}, where φa(t) =

N∑

j=1

(Nt− j + 1)aj

N j+1

Lemma 1.1 For each t ∈ [0, 1] there are an integer k ∈ {1, . . . , N} and a set of Nk−1

intervals each of length 2N−k, whose union contains the set {φa(t) : a ∈ AN}.
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Proof Choose k so that k−1
N
≤ t ≤ k

N
. Define a, b ∈ AN to be equivalent if aj = bj

when j ≤ k − 1. There are Nk−1 equivalence classes, and if a and b are equivalent then

|φa(t)− φb(t)| = |
∑

j≥k

(Nt− j + 1)(aj − bj)
N j+1

|

≤
∑

j≥k

max(j − k, 1)|aj − bj |
N j+1

≤ N − 1

Nk+1

∑

j≥k

max(j − k, 1)

N j−k

≤ 2
N − 1

Nk+1
<

2

Nk

when N is large. �

Lemma 1.2 Let N be sufficiently large. Then there is a G-set E ⊂ [0, 1]× [−1, 1] which
intersects every vertical line in measure ≤ 4

N
, in particular |E| ≤ 4

N
.

Proof We let
EN = ∪a∈AN

SN−N

ℓa

Then EN contains segments with all slopes between 0 and 1, by Remark 1.1. If t ∈ [0, 1],
then by Lemma 1.1 there is k ∈ {1, . . . , N} such that the intersection of E with the line
x = t is contained in the union of Nk−1 intervals of length 2N−k + 2N−N ≤ 4N−k. The
lemma follows. �

Existence of measure zero Kakeya sets now follows by a standard limiting argument,
most easily carried out via the following lemma.

Lemma 1.3: For every G-set E and every ǫ > 0, η > 0, there is another G-set F , which
is contained in the ǫ-neighborhood of E and has measure < η.

Proof Let δ be small, let {mj} = {jδ}
[ 1

δ
]

j=0 and for each j, fix a line segment ℓj =
{(x, y) : 0 ≤ x ≤ 1, y = mjx+ bj} ⊂ E with slope mj connecting x = 0 to x = 1 and form

the parallelogram Sδℓj
. Let Aj be the affine map from [0, 1] × [−1, 1] on Sδℓj

, Aj(x, y) =

(x,mjx + bj + δy) and consider F = ∪mAm(EN ) for a large enough N ; here EN is as
in Lemma 1.2. Aj maps segments with slope µ to segments with slope m + δµ so F is
a G-set. Clearly it is contained in the δ-neighborhood of E. Furthermore Aj contracts

areas by a factor δ so |Aj(EN )| ≤ 4 δ
N

for each j, hence |F | . 1
N

. �
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Corollary 1.4 There are Kakeya sets with measure zero.

Proof We construct a sequence {Fn}∞n=0 of G-sets, and a sequence of numbers {ǫn}∞n=0

converging to zero such that the following properties hold when n ≥ 1; here F (ǫ)
def
= {x :

dist(x, F ) < ǫ} is the ǫ-neighborhood of F and E is the closure of E.

(i) Fn(ǫn) ⊂ Fn−1(ǫn−1)
(ii) |Fn(ǫn)| < 2−n.

Namely, we take F0 to be any G-set, and we set ǫ0 = 1. If n ≥ 1 and if Fn−1 and
ǫn−1 have been constructed then we obtain Fn by applying Lemma 1.3 with ǫ = ǫn−1 and
η = 2−n. Since Fn is compact, (i) and (ii) will then hold provided ǫn is sufficiently small.

The set ∩nFn(ǫn) is then a G-set with measure zero. �

Remarks 1.2. The construction above easily gives the following variant (used e.g. in

[23]): with δ = 1
10
N−N , there is a family of disjoint δ-tubes {Tδej

(xj)}Mj=1 ⊂ R2 where

M ≈ δ−1 with the property that the union of the translated tubes Tδej
(xj + 2ej) has

measure . 1
N

.
Namely, a calculation shows that if a, b ∈ A and a < b then φa(1) < φb(1), i.e. the

ordering of the intersection points between the ℓa and the line x = 1 is the same as the
ordering of slopes. Hence if we regard ℓa as extended to a complete line, then no two ℓa’s
intersect in the region x > 1, and in fact in the region x > 2 any two of them are at least
N−N apart. Now for each a ∈ AN we form the rectangle Ra with length 1, width 1

5
N−N ,

axis along the line ℓa and bottom right corner on the line x = 1. Clearly Ra ⊂ Sa, so
∪aRa is small by Lemma 1.2. On the other hand, if Ra is translated to the right along
its axis by distance 2 then the resulting rectangles are disjoint. We may therefore take

{Tδej
(xj)} to be the set of translated rectangles.
1.3. Analogous statements in higher dimensions may be obtained using dummy vari-

ables.
Measure zero Kakeya sets in R

n may be constructed by taking the product of a Kakeya
set in R2 with a closed disc of radius 1

2
in Rn−2 (or for that matter with any Kakeya set in

Rn−2), and a family of roughly δ−(n−1) disjoint Tδe (a)’s such that the union of the tubes

Tδe (a + 2e) has small measure may be obtained by taking the products of the tubes in
Remark 1.2 with a family of δ−(n−2) disjoint δ-discs in R

n−2.

We now discuss the positive results on questions 1 and 2 in dimension two. Proposition
1.5 was first stated and proved in [7] although a similar result for a related maximal
function was proved earlier in [18].

We will work with restricted weak type estimates instead of with Lp estimates; this is
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known to be equivalent except for the form of the δ−ǫ terms.1 We will say (see e.g. [53])
that an operator T has restricted weak type norm ≤ A, written

‖Tf‖q,∞ ≤ A‖f‖p,1

if |{x : |TχE(x)| ≥ λ}| ≤ (A|E|
1
p

λ
)q for all sets E with finite measure and all λ ∈ (0, 1];

here χE is the characteristic function of E.

Proposition 1.5 The restricted weak type (2, 2) norm of the Kakeya maximal operator

f → f ∗
δ in R2 is . (log 1

δ
)

1
2 .

More explicitly, suppose that E ⊂ R2 and λ ∈ (0, 1]. Let f = χE , and let Ω = {e ∈
S1 : f ∗

δ(e) ≥ λ}. Then

|Ω| . log 1
δ

|E|
λ2

Proof Let θ(e, f) be the unoriented angle subtended by the directions e and f , i.e.
θ(e, f) = arccos(e · f). We start by mentioning two trivial but important facts. First, in

Rn, the intersection of the tubes Tδe (a) and Tδf (b) satisfies

diam(Tδe (a) ∩ Tδf (b)) .
δ

θ(e, f) + δ
(4)

for any a and b and therefore also

|Tδe (a) ∩ Tδf (b)| . δn

θ(e, f) + δ
(5)

Next, if Ω is a set on the unit sphere Sn−1 ⊂ R
n and if δ > 0 then the δ-entropy Nδ(Ω)

(maximum possible cardinality M for a δ-separated subset {ej}Mj=1 ⊂ Ω) satisfies

Nδ(Ω) &
|Ω|
δn−1 (6)

Now we assume n = 2 and give the proof of the proposition. Fix a δ-separated {ej}Mj=1 ⊂
Ω, where M & |Ω|

δ
. For each j, there is a tube Tj = Tδej

(aj) with |Tj ∩ E| ≥ λ|Tj| ≈ λδ.
Thus

Mλδ .
∑

j

|Tj ∩ E|

1We work with restricted weak type estimates for expository reasons only. We believe this makes the
results more transparent; however, it is well known that actually ‖f∗

δ
‖L2(S1) . (log 1

δ
)

1

2 ‖f‖2. The latter

estimate is proved in [7] and also follows from the proof below, plus duality, as in [18].
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=

∫

E

∑

j

χTj

≤ |E| 12‖
∑

j

χTj
‖2

= |E| 12 (
∑

j,k

|Tj ∩ Tk|)
1
2

. |E| 12 (
∑

j,k

δ2

θ(ej , ek) + δ
)

1
2

For fixed k the sum over j is .
∑

j:|j−k|≤C

δ

δ2

|j−k|δ+δ
. δlog 1

δ
. We conclude that Mλδ .

|E| 12 (Mδlog 1
δ
)

1
2 which gives the result since M & |Ω|

δ
. �

Now we show how to pass to the Hausdorff dimension statement. The next result is
Lemma 2.15 in [7].

Lemma 1.6 Assume an estimate in Rn

‖f ∗
δ‖q,∞ ≤ Cδ−α‖f‖p,1 (7)

Then Kakeya sets have dimension at least n− pα.

Proof Fix s < n − pα. Let E be a Kakeya set and for each e ∈ Sn−1, fix a point xe

such that xe + te ∈ E when t ∈ [−1
2
, 1

2
]. We have to bound Hs(E) from below, so fix a

covering of E by discs Dj = D(xj , rj). We can evidently suppose all rj’s are ≤ 1.
Let Σk = {j : 2−k ≤ rj ≤ 2−(k−1)}, νk = |Σk| and Ek = E ∩ (∪{Dj : j ∈ Σk}). Also

let D̃j = D(xj, 2rj), and Ẽk = ∪{D̃j : j ∈ Σk}.
Then ∪kEk = E, so for each e the pigeonhole principle implies |{t ∈ [−1

2
, 1

2
] : xe + te ∈

Ek}| ≥ c
k2 for some k = ke, where c = 6

π2 . By the pigeonhole principle again, we can find
a fixed k so that k = ke when e ∈ Ω, where Ω ⊂ Sn−1 has measure ≥ c

k2 . With this k, we

note that Ẽk contains a disc of radius 2−k centered at each point of Ek; it follows easily
that if e ∈ Ω then |T 2−k

e (xe) ∩ Ẽk| & k−2|T 2−k

e (xe)|. With f = χẼk
we therefore have

|{e : f ∗
2−k(e) ≥ C−1k−2}| & k−2

On the other hand, by the assumption (7)

|{e : f ∗
2−k(e) ≥ C−1k−2}| . (k22kα|Ẽk|

1
p )q

and |Ẽk| . νk2
−kn. So (k22kα(νk2

−kn)
1
p )q & k−2, or equivalently νk & k−

2
p
(1+ 1

q
)2k(n−pα).

Letting ǫ = n− pα− s > 0, we have
∑

j r
s
j & νk2

−ks & k−2p(1+ 1
q
)2kǫ ≥constant. �.

8



Applying this with p = n = 2 we see that Proposition 1.5 implies Davies’ theorem
that Kakeya sets in R2 have dimension 2. Likewise it follows that yes on question 2 for a
given n will imply yes on question 1 for the same n.

Remark 1.4 It is clear that the logarithmic factor in Proposition 1.5 cannot be dropped
entirely, since then the above argument would show that measure zero Kakeya sets could
not exist. In fact it has been known for a long time that the exponent 1

2
cannot be

improved, and U. Keich [29] recently showed that even a higher order improvement is
not possible in Proposition 1.5 or in its corollary on Lp for p > 2. On the other hand, a
number of related questions concerning logarithmic factors have been solved only recently
or are still open. In particular we should mention the results of Barrionuevo [2] and Katz
[26],[27] on the question of maximal functions defined using families of directions in the
plane.

Remark 1.5 An interesting open question in R2 is the following one, which arose from
work of Furstenburg.

For a given α ∈ (0, 1], suppose that E is a compact set in the plane, and for each
e ∈ S1 there is a line ℓe with direction e such that dim(ℓe ∩ E) ≥ α. Then what is the
smallest possible value for dimE?

Easy results here are that dimE ≥ max(2α, 1
2

+ α) and that there is an example with
dimE = 1

2
+ 3

2
α. We give proofs below. Several people have unpublished results on this

question and it is unlikely that the author was the first to observe these bounds; in all
probability they are due to Furstenburg and Katznelson.

The analogous discrete question is solved by the following result due to Szemeredi and
Trotter [56] (see also [17], [40]).

Suppose we are given n points {pi} and k lines {ℓj} in the plane. Define a line and point

to be incident, p ∼ ℓ, if p lies on ℓ. Let I = {(i, j) : pi ∼ ℓj}. Then |I| . (kn)
2
3 + k + n,

and this bound is sharp.

We note that the weaker bound |I| . (kn)
3
4 +k+n follows from (3) and was known long

before [56]. To see the analogy with the Hausdorff dimension question, reformulate the
Szemeredi-Trotter bound as follows: if each line is incident to at least µ points (µ >> 1),
then (since |I| ≥ kµ)

n & min(µ
3
2k

1
2 , µk) (8)

Now assume say2 that E has a covering by n discs Di of radius δ. Consider a set of k ≈ δ−1

2In this heuristic argument we ignore the distinction between Hausdorff and Minkowski dimension.
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δ-separated directions {ej}. For each j the line ℓej
will intersect Di for at least δ−α values

of i. We now pretend that we can replace points by the discs Di in Szemeredi-Trotter and

apply (8) with µ = δ−α, k = δ−1. Since k ≥ µ we would obtain n & δ−
1
2
− 3

2
α, i.e. that the

bound dimE ≥ 1
2

+ 3
2
α should hold.

In one situation to be discussed in section 3, it turns out that this kind of heuristic
argument can be justified leading to a theorem in the continuum. In other situations such
as the present one, it seems entirely unclear whether this should be the case or not, but
still the discrete results suggest plausible conjectures.

If correct the bound dimE ≥ 1
2

+ 3
2
α would be best possible by essentially the same

example (due to Erdos, see [40]) that shows the Szemeredi-Trotter bound is sharp.
We start by recalling that if {nj} is a sequence of integers which increases sufficiently

rapidly, and if α ∈ (0, 1) then the set

T
def
= {x ∈ (

1

4
,
3

4
) : ∀j∃p, q ∈ Z : q ≤ nα

j and |x− p

q
| ≤ n−2

j }

has Hausdorff dimension α. This is a version of Jarnik’s theorem - see [21], p. 134,
Theorem 8.16(b).

It follows that the set

T ′ = {t :
1− t
t
√

2
∈ T}

also has dimension α.
For fixed n, consider the set of all line segments ℓjk connecting a point (0, j

n
) to a point

(1, k
n

√
2), where j and k are any integers between 0 and n− 1. Thus ℓjk = {(x, φjk(x)) :

0 ≤ x ≤ 1} where φjk(x) = (1− x) j
n

+ x k
n

√
2. It follows using e.g. [32], p. 124, example

3.2 that every number in [0, 1] differs by . n−2(log n)2 from the slope of one of the ℓjk’s,

so the set Gn
def
= ∪jkS

n−2(log n)3

ℓjk
is a G-set.

Define

Qn = {t :
1− t
t
√

2
is a rational number

p

q
∈ (

1

4
,
3

4
) with denominator q ≤ nα}

If t ∈ Qn, then let S(t)
def
= {φjk(t)}n−1

j,k=0. For any j and k we have (t
√

2)−1φjk(t) = pj+qk
qn

,

a rational with denominator qn. We conclude that |S(t)| . qn ≤ n1+α, hence | ∪ (S(t) :
t ∈ Qn)| . n1+3α and

(∗) The set {(x, y) ∈ Gn : |x − t| ≤ 1
n2 for some t ∈ Qn} is contained in the union of

. n1+3α discs of radius n−2(logn)3.

Now we let {nj} increase rapidly and will recursively construct compact sets Fj such
that Fj+1 ⊂ Fj , each Fj is a G-set and the set {(x, y) ∈ Fj : x ∈ T ′} is contained in the
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union of n1+3α
j log nj discs of radius n−2

j (log nj)
3. Namely, let F0 be any G-set. If Fj has

been constructed it will be of the form

∪M
i=1S

δ
ℓi

for a certain δ, where ℓi = {(x,mix + bi) : 0 ≤ x ≤ 1} for suitable mi and bi, and
every number in [0, 1] is within δ of one of the mi. As in the proof of Lemma 1.3 we let
Ai(x, y) = (x,mix+ δy + bi). We make nj+1 sufficiently large and define

Fj+1 = ∪M
i=1Ai(Gnj+1

)

Clearly Fj+1 ⊂ Fj , and it follows as in Lemma 1.3 that the resulting set is a G-set. The
covering property is also essentially obvious from (∗) provided nj+1 is large enough, say
log(nj+1) >> M .

Let F = ∩jFj , and let E = {(x, y) ∈ F : x ∈ T ′}. Then the covering property in the
construction of Fj implies that dimE ≤ 1

2
(1 + 3α). On the other hand F is a G-set, and

if ℓ is a line segment contained in F , then dim(ℓ ∩ E) =dimT ′ ≥ α. This completes the
construction.

We now discuss the bound dimE ≥ max(2α, 1
2

+ α). The bound dimE ≥ 2α can be
derived from Proposition 1.5 by an argument like the proof of Lemma 1.6; we will omit this.
To prove the bound dimE ≥ 1

2
+ α (which corresponds to the easy |I| . (kn)

3
4 + k + n

under the above heuristic argument) fix a compact set E and for each e ∈ S1 a line
ℓe which intersects E in dimension ≥ α. Let {Dj} = {D(xj, rj)} be a covering. Fix

β1 < β < α; we have to bound
∑

j r
1
2
+β1

j from below. As in the proof of Lemma 1.6

we let Σk = {j : 2−k ≤ rj ≤ 2−(k−1)}, νk = |Σk| and Ek = E ∩ (∪{Dj : j ∈ Σk}).
We start by choosing a number k and a subset Ω ⊂ S1 with measure & 1

k2 such that
if e ∈ Ω then Hβ(ℓe ∩ Ek) ≥ C−1k−2, using the pigeonhole principle as in the proof of
Lemma 1.6. Let γ = 2

β
. Since Hβ(I) ≤ |I|β for any interval I, it follows that for a

suitable numerical constant C, and for any e ∈ Ω there are two intervals I±e on ℓe which
are C−1k−γ- separated and such that Hβ(Ek ∩ I±e ) & k−2. Let {ei}Mi=1 be a 2−k-separated

subset of Ω with M & 2k

k2 (see (6)) and define

T = {(j+, j−, i) ∈ Σk × Σk × {1, . . . ,M} : I+
ei
∩ Ek ∩Dj+ 6= ∅, I−ei

∩Ek ∩Dj− 6= ∅} (9)

We will count T in two different ways.
First fix j+ and j− and consider how many values of i there can be with (j+, j−, i) ∈ T .

We will call such a value of i allowable. If the distance between Dj+ and Dj− is small
compared with k−γ then there is no allowable i, since the distance between I+

ei
and I−ei

is always ≥ C−1k−γ . On the other hand if the distance between Dj+ and Dj− is & k−γ ,
then because the {ei} are 2−k-separated, it follows that there are . kγ i’s such that ℓei
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intersects both Dj+ and Dj−. Hence in either case there are . kγ allowable i’s. Summing
over j+ and j− we conclude that

|T | . kγν2
k (10)

On the other hand, for any fixed i, the lower bound Hβ(Ek ∩ I+
ei

) & k−2 implies there
are & k−γ2kβ values of j+ such that I+

ei
∩Ek ∩Dj+ 6= ∅ and similarly with + replaced by

−. So |T | & M(k−γ2kβ)2. Comparing this bound with (10) we conclude that

νk & k−
3
2
γ2kβ
√
M

& k−(1+ 3
2
γ)2( 1

2
+β)k

& 2( 1
2
+β1)k

and therefore
∑

j∈Σk
r

1
2
+β1

j ≥ constant. �

2.The higher dimensional case

We will first make a few remarks about the corresponding problem over finite fields,
which is the following:

Let Fq be the field with q elements and let V be an n-dimensional vector space over
Fq. Let E be a subset of V which contains a line in every direction, i.e.

∀e ∈ V \{0}∃a ∈ V : a+ te ∈ E ∀t ∈ Fq

Does it follow that |E| ≥ C−1
n qn?

Of course Cn should be independent of q. One could ask instead for a bound like
∀ǫ > 0∃Cnǫ : |E| ≥ C−1

nǫ q
n−ǫ or could restrict to the case of prime fields Fp or fields with

bounded degree over the prime field.
So far as I have been able to find out this question has not been considered, and the

simple result below corresponds to what is known in the Euclidean case.

Proposition 2.1 In the above situation |E| ≥ C−1
n q

n+2
2

We give the proof since it is based on the same idea as the Rn proof but involves no
technicalities.

First consider the case n = 2, which is analogous to Proposition 1.5. We will actually
prove the following more general statement, which we need below: suppose (with dimV =
2) that E contains at least q

2
points on a line in each of m different directions. Then

|E| & mq (11)

To prove (11), let {ℓj}mj=1 be the lines. Any two distinct ℓj’s intersect in a point. Accord-
ingly
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1

2
qm ≤

∑

j

|E ∩ ℓj|

≤ |E| 12 (
∑

jk

|ℓj ∩ ℓk|)
1
2

= |E| 12 (m(m− 1 + q))
1
2

≤ |E| 12 (mq) 1
2

where we used that m ≤ q + 1. It follows that |E| & mq. Taking m = q + 1 we obtain
the two dimensional case of Proposition 2.1.

Now assume n ≥ 3. Then E contains qn−1
q−1
≈ qn−1 lines {ℓj}. Fix a number µ and

define a high multiplicity line to be a line ℓk with the following property: for at least q
2

of the q points x ∈ ℓk, the set {j : x ∈ ℓj} has cardinality at least µ + 1. Consider two
cases: (i) no high multiplicity line exists (ii) a high multiplicity line exists.

In case (i) we define Ẽ = {x ∈ E : x belongs to ≤ µ ℓj’s}. Then Ẽ intersects each ℓj
in at least q

2
points, by definition of case (i). Each point of Ẽ belongs to at most µ ℓj ’s so

we may conclude that

|E| ≥ |Ẽ|
≥ µ−1

∑

j

|Ẽ ∩ ℓj |

& µ−1q · qn−1

In case (ii), let {Πi} be an enumeration of the 2- planes containing ℓk. By definition
of high multiplicity line there are at least µq

2
lines ℓj , j 6= k, which intersect ℓk. Each one

of them is contained in a unique Πi, and contains q − 1 points of Πi which do not lie on
ℓk. Let Li be the set of lines ℓj which are contained in a given Πi. Then by (11) we have
|E ∩Πi ∩ (V \ℓk)| & q|Li|. The sets Πi ∩ (V \ℓk) are pairwise disjoint so we can sum over

i to get |E| & q
∑

i |Li| ≥ q2µ
2

.

If we take µ to be roughly q
n−2

2 we obtain |E| & q
n+2

2 in either case (i) or (ii), hence
the result. �

Remark 2.1 General finite fields do not always resemble the Euclidean case in this sort
of problem. For example, the Szemeredi-Trotter theorem is easily seen to be false (e.g.
[5] p. 75). A counterexample involving one line in each direction as in remark 1.5 may
be obtained in the following way: let q = p2 with p prime, let α be a generator of Fq over
Fp and in the two dimensional vector space V over Fq, let ℓjk be the line connecting (0, j)
to (1, kα). Here j and k are in Fp. This is a set of p2 lines containing one line in each
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direction other than the vertical. For given t ∈ Fq, let St = {y ∈ Fq : (t, y) ∈ ∪jkℓjk}.
If t is such that α t

1−t
∈ Fp then it is easily seen that St coincides with (1 − t)Fp, and if

t = 1 then St = αFp. This gives p “bad” values of t such that St has cardinality p. Let
E = ∪t{(t, y) : y ∈ St}, where the union is taken over the bad values of t. Then {ℓjk} and
E give a configuration of p2 lines and p2 points with p3 incidences, matching the trivial
upper bound from (3).

In the Rn context, arguments like the proof of Proposition 2.1 can still be used, except
that one has to work with tubes instead of lines and measure instead of cardinality, and
take into account such issues as that the size of the intersection of two tubes will depend
on the angle of intersection via (4). This was perhaps first done by Cordoba (e.g. [18] -
see the proof of Proposition 1.5 above). We will present here the “bush” argument from
[7], p. 153-4 which shows the following:

Proposition 2.2 ‖f ∗
δ‖n+1,∞ ≤ Cnδ

−n−1
n+1‖f‖n+1

2
,1

Proof Using (6), we see that what must be shown is the following: if {Tδej
}Mj=1 are

tubes with δ-separated directions, E is a set and |E ∩ Tej
| ≥ λ|Tδej

|, then

|E| & δ
n−1

2 λ
n+1

2

√
M (12)

To this end we fix a number µ (“multiplicity”) and consider the following two possi-
bilities

(i) (low multiplicity) No point of E belongs to more than µ tubes Tδej
.

(ii) (high multiplicity) Some point a ∈ E belongs to more than µ tubes Tδej
.

In case (i) it is clear that |E| & µ−1
∑

j |E ∩ Tδej
|, hence

|E| & µ−1Mλδn−1 (13)

In case (ii) we fix a point a as indicated and may assume that a belongs to Tδej
when

j ≤ µ + 1. If C0 is a suitably large fixed constant, then |Tδej
∩ D(a, C−1

0 λ)| ≤ λ
2
|Tδej
|.

Accordingly, for j ≤ µ+ 1, we have

|E ∩ Tδej
∩D(a, C−1

0 λ)c| ≥ λ

2
|Tδej
| & λδn−1

If j, k ≤ µ then Tδej
∩ Tδek

contains a and has diameter . δ
θ(ej ,ek)

by (4). It follows

that if θ(ej , ek) ≥ C1
δ
λ

for a suitably large C1, then the sets E ∩ Tδej
∩ D(a, C−1

0 λ)c and

14



E ∩ Tδek
∩D(a, C−1

0 λ)c are disjoint. We conclude that

|E| & N · λδn−1

where N is the maximum possible cardinality for a C1
δ
λ

-separated subset of {ej}µ+1
j=1 .

Since the {ej} are δ- separated, we have N & λn−1µ and therefore

|E| & λnδn−1µ (14)

We conclude that for any given µ either (13) or (14) must hold. Taking µ ≈ λ−(n−1
2

)
√
M

we get (12). �

Further remarks: 2.2. Bourgain [7] also gave an additional argument leading to an
improved result which implies dim(Kakeya)≥ n+1

2
+ ǫn, where ǫn is given by a certain

inductive formula (in particular ǫ3 = 1
3
). A more efficient argument was then given by

the author [60], based on considering families of tubes which intersect a line instead of a
point as in the bush argument; this is the continuum analogue of the proof of Proposition
2.1. It gives the following bound:

∀ǫ∃Cǫ : ‖f ∗
δ‖q ≤ Cǫδ

−(n
p
−1)−ǫ‖f‖p (15)

where p = n+2
2

and q = (n − 1)p′. This is the estimate on Lp which would follow by

interpolation with the trivial ‖f ∗
δ‖∞ . δ−(n−1)‖f‖1 if the bound (2) could be proved.

In particular, it implies the dimension of Kakeya sets is ≥ n+2
2

. Other proofs of esti-
mates like (15) have also recently been given by Katz [28] and Schlag [45]. However in
every dimension n ≥ 3 it is unknown whether (15) holds for any p > n+2

2
and whether

dim(Kakeya)> n+2
2

.

2.3. Proposition 2.2 is also a corollary of the L
n+1

2 → Ln+1 estimate for the x-ray
transform due to Drury and Christ [20],[18] (see also [39], [16] for related results). Con-
versely, a refinement of the argument which proves (15) can be used to prove the estimate

on L
n+2

2 which would follow from (2) and the result of [20] by interpolation, at least in
the three dimensional case. See [62].

2.4. We briefly discuss some other related problems. The classical problem of Nikodym
sets has been shown to be formally equivalent to the Kakeya problem by Tao [58]; we
refer to his paper for further discussion. Another classical problem is the problem of (n, 2)
sets: suppose that E is a set in Rn which contains a translate of every 2-plane. Does it
follow that E has positive measure? At present this is known only when n = 3 [33] or
n = 4 [7]. The argument in [7], section 4 shows the following: suppose that (2) can be
proved in dimension n− 1, or more precisely that a slightly weaker result can be proved,
namely that for some p and q there is an estimate

‖f ∗
δ‖Lq(Sn−2) . δ−α‖f‖

Lp(R
n−1

)
with α < 1

p
(16)
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Then (n, 2)-sets have positive measure.
However, note that (16) would imply by Lemma 1.6 that Kakeya sets in Rn−1 have

dimension ≥ n− 2. In fact if an estimate (16) is true for every n then one could answer
question 1 affirmatively by an argument based on the fact that the direct product of
Kakeya sets is Kakeya. It may therefore be unlikely that the (n, 2)-sets problem can be
solved without a full understanding of the Kakeya problem. However, the most recent
results on it are those of [1].

2.5. If one considers curves instead of lines, then it is known that much less can be
expected to be true. This first results in this direction are in [8]; see also [10], [35] and
[49].

Added in proof Bourgain recently improved on the results discussed here in sufficiently
high dimensions, by showing that the dimension of a Kakeya set in Rn is greater than αn
for suitable explicit α > 1

2
. We refer to his forthcoming paper for the details.

3. Circles

In this section we will discuss some analogous problems about circles in the plane, or
(essentially equivalent) fine estimates for the wave equation in 2 + 1 dimensions. These
problems are much better understood than the Kakeya problem and yet they present
some of the same difficulties.

A prototype result due to Bourgain [6] and Marstrand [34] independently is that

(∗): A set in R2 which contains circles with arbitrary centers must have positive
measure.

Bourgain proved a stronger result which has the same relation to (∗) as question 2
does to question 1. Namely, define a maximal function

Mf(x) = sup
r

∫
|f(x+ reiθ)|dθ

2π

Then ‖Mf‖
Lp(R

2
)

. ‖f‖
Lp(R

2
)
, p > 2. As is well-known, this maximal function

was introduced by Stein [51] and he proved the analogous inequality in dimensions n ≥
3; the range of p is then p > n

n−1
. Stein’s proof was based partly on the Plancherel

theorem and Bourgain’s argument in the two dimensional case also used the Plancherel
theorem, whereas Marstrand’s argument was purely geometric. We will discuss some
further developments of the latter approach.

A variant on the Kakeya construction due to Besicovitch-Rado [4] and Kinney [30]
shows the following:

(∗∗) There are compact sets in the plane with measure zero containing circles of every
radius between 1 and 2.
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We will call such sets BRK sets. The distinction between (∗) and (∗∗) can be under-
stood in terms of parameter counting: a set as in (∗∗) is a subset of a 2-dimensional space
containing a 1-parameter family of 1-dimensional objects, so whether it has positive mea-
sure or not can be expected to be a borderline question. This is analogous to the question
of Kakeya sets which also contain n− 1-parameter families of 1-dimensional objects. On
the other hand a set as in (∗) contains a 2- parameter family of 1-dimensional objects in
a 2-dimensional space.

A further related remark is that analogous constructions with other 1-parameter fam-
ilies of circles have been done by Talagrand [57]. For example, he shows that for any
smooth curve γ there are sets of measure zero containing circles centered at all points of
γ.

It is natural to ask whether the dimension of a BRK set must be 2 or not. This question
also has a maximal function version; the relevant maximal function is the following Mδ :
if f : R2 → R then Mδf : [1

2
, 2]→ R,

Mδf(r) = sup
x

1

|Cδ(x, r)|

∫

Cδ (x,r)

|f | (17)

One shows analogously to Lemma 1.6 that a bound (for some p <∞)

∀ǫ∃Cǫ : ‖Mδf‖Lp([ 1
2
,2]) ≤ Cǫδ

−ǫ‖f‖p (18)

will imply that BRK sets have dimension 2. Note that existence of measure zero BRK sets
implies the δ−ǫ factor is needed. This is similar to the situation with the two dimensional
Kakeya problem. However in contrast to the latter problem it is not possible to take p = 2
in (18). In fact p must be at least 3; this is seen by considering the standard example f =
indicator function of a rectangle with dimensions δ ×

√
δ.

Remark 3.1 Sets in Rn with measure zero containing spheres of all radii may be shown
to exist for n ≥ 3 also, and the maximal function (17) may be defined in Rn. However, in
that case the questions mentioned above are essentially trivial, since the correct estimate
for the maximal function is an L2 → L2 estimate, is easy and implies that sets containing
spheres with all radii have dimension n. Namely, the estimate

‖Mδf‖2 . (log1
δ
)

1
2‖f‖2 (19)

can be proved analogously to Proposition 1.5 and is also closely related to some of the
Strichartz inequalities for the wave equation (cf. [41]), due to the fact that spherical
means correspond roughly to solutions of the initial value problem �u = 0, u(·, 0) =
f, ∂u

∂t
(·, 0) = 0 after taking n−1

2
derivatives. These remarks are from [31]. From a certain
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point of view, the “reason” why the higher dimensional case is easier is the following: if
|r − s| ≈ 1 then

|Cδ(x, r) ∩ Cδ(y, s)| ≈
{
δ

n+1
2 if C(x, r) and C(y, s) are tangent

δ2 if C(x, r) and C(y, s) are sufficiently transverse
(20)

making the first possibility “worse” than the second in R2 but not in higher dimensions.

We now consider only the two dimensional case and will formulate a discrete analogy
like the analogy between the Szemeredi-Trotter theorem and the question mentioned in
Remark 1.5. The relevant problem in discrete geometry is

Given N circles {Ci} in the plane, no three tangent at a point, how many pairs (i, j)
can there be such that Ci is tangent to Cj?

For technical reasons we always interpret “tangent” as meaning “internally tangent”,
i.e. a circle C(x, r) is “tangent” to C(y, s), written C(x, r)||C(y, s), iff |x− y| = |r − s|.

We will call this the tangency counting problem. We’re not aware of any literature
specifically about this problem, but known techniques in incidence geometry (related to
the Szemeredi-Trotter theorem) can be adapted to it without difficulty. One obtains the

following bounds for I def
= {(i, j) : Ci||Cj}.

(i) (easy) |I| . N
5
3 . This follows from the fact that the incidence matrix

aij =

{
1 if Ci||Cj

0 otherwise

contains no 3 × 3 submatrix of 1’s (essentially a theorem of Appolonius: there are at
most two circles which are internally tangent to three given circles at distinct points) and

therefore contains at most O(N
5
3 ) 1’s by (3).

(ii) (more sophisticated) ∀ǫ > 0 ∃Cǫ <∞ : |I| . N
3
2
+ǫ. This follows readily from the

techniques of Clarkson, Edelsbrunner, Guibas, Sharir and Welzl [17]. We will not discuss

their work here; we just note that they prove the analogous N
3
2
+ǫ bound in the three

dimensional unit distance problem: in our notation, given {(xi, ri)}Ni=1 ⊂ R
2 × R, there

are . N
3
2
+ǫ pairs (i, j) with |xi − xj |2 + (ri − rj)

2 = 1.

There is no reason to think that the bound (ii) should be sharp.3 However, (ii) leads
3It may be more natural to consider a slightly different formulation of the problem: drop the as-

sumption that no three circles are tangent at a point, and consider the number of points where two are
tangent instead of the number of tangencies. With this reformulation, a standard example involving
circles with integer center and radius shows that the exponent 4

3 would be best possible as in the unit
distance problem.
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to a sharp result on the BRK sets problem and a proof of the maximal inequality (18)
with p = 3. The heuristic argument is the following: assume we know a bound . Nα

in the tangency counting problem, where α ≥ 3
2
. Let E be a BRK set and consider its

δ-neighborhood Eδ . Let {rj}Mj=1 be a maximal δ-separated subset of [1
2
, 2]; then M ≈ 1

δ
and Eδ contains an annulus Cδ(xj , rj) for each j. By (20), we should have to a first

approximation |Cδ(xj, rj)∩Cδ(xk, rk)| ≈ δ
3
2 if C(xj , rj) and C(xi, ri) intersect tangentially

and |Cδ(xj , rj)∩Cδ(xk, rk)| ≈ δ2 if they intersect transversally. Accordingly we would get∑
jk |Cδ(xj , rj) ∩ Cδ(xk, rk)| . δ−α · δ 3

2 + δ−2 · δ2 . δ
3
2
−α, and then the argument in the

proof of Proposition 1.5 shows that |Eδ| & δ
1
2
(α− 3

2
), so one expects dimE ≥ 2− 1

2
(α− 3

2
).

It turns out that it is possible to make this argument rigorous and to obtain a corre-
sponding result ((18) with p = 3) for the maximal operator. The first lemma below keeps
track of the intersection of two annuli in terms of their degree of tangency; it is of course
quite standard and is used in one form or another in most papers in the area, e.g. [6] and
[34]. The second lemma is due to Marstrand ([34], Lemma 5.2), although he formulated
it slightly differently. It gives a quantitative meaning to the theorem of Appolonius used
in the proof of the N

5
3 tangency bound.

We introduce the following notation: if C(x, r) and C(y, s) are circles then

d((x, r), (y, s)) = |x− y|+ |r − s|

∆((x, r), (y, s)) = ||x− y| − |r − s||
Note that ∆ vanishes precisely when the circles are “tangent.” In Lemmas 3.1 and 3.2

below, we assume that all circles C(x, r) etc. have centers in D(0, 1
4
) and radii between 1

2

and 2.

Lemma 3.1 Assume that x 6= y. Let d = d((x, r), (y, s)), ∆ = ∆((x, r), (y, s)), and
e = sgn(r − s) y−x

|y−x| , ζ = y + re. Then

(a)Cδ(x, r) ∩ Cδ(y, s) is of measure . δ · δ√
(δ+∆)(δ+d)

.

(b) Cδ(x, r) ∩ Cδ(y, s) is contained in a disc centered at ζ with radius .
√

∆+δ
d+δ

.

Proof We use the following fact: if µ > 0, ǫ > 0 then the set {x ∈ [−π, π] : | cosx−µ| ≤
ǫ} is (i) contained in the union of two intervals of length . ǫ√

|1−µ|
and (ii) contained in

an interval of length .
√
|1− µ|+ ǫ centered at 0.

To prove the lemma, we use complex notation and may assume that x = 0, r = 1, y
is on the positive real axis and s < 1. Note that then e = 1. If d ≤ 4δ then the lemma is
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trivial, and if y < d
2
− δ then y + s < 1− 2δ so that Cδ(0, 1) ∩ Cδ(y, s) = ∅. So we can

assume that d ≥ 4δ and y ≥ d
2
− δ ≥ d

4
.

If z ∈ Cδ(0, 1) ∩ Cδ(y, s) then clearly |z − eiθ| ≤ δ for some θ ∈ [−π, π]. It suffices
to show that the set of θ which can occur here is contained in two intervals of length

. δ√
(δ+∆)(δ+d)

and in an interval of length .
√

∆+δ
d+δ

centered at 0.

The point eiθ must belong to C
2δ(y, s), i.e. ||eiθ − y| − s| < 2δ and therefore, since

||eiθ − y|+ s| ≈ 1,
||eiθ − y|2 − s2| . δ

We can express this as

| cos θ − 1 + y2 − s2

2y
| . δ

y
.
δ

d

Let µ = 1+y2−s2

2y
, ǫ = C δ

d
. Then µ is positive, and |1 − µ| = |s2−(1−y)2|

2y
≈ |1−s−y|

2y
≈ ∆

d
.

Apply fact (ii) in the first paragraph. The set of possible θ is therefore contained in an

interval of length .

√
∆+δ

d
centered at 0. This proves (b), since we are assuming d ≥ δ.

Estimate (a) follows from (b) if ∆ ≤ δ. If ∆ ≥ δ, then fact (i) in the first paragraph gives
the additional property that θ must be contained in the union of two intervals of length

.
δ/d√
∆/d
≈ δ√

(δ+∆)(δ+d)
. �

Lemma 3.2 (Marstrand’s 3-circle lemma) For a suitable numerical constant C0, assume
that ǫ, t, λ ∈ (0, 1) satisfy C0

ǫ
t
≤ λ2. Fix three circles C(xi, ri), 1 ≤ i ≤ 3. Then for δ ≤ ǫ

the set

Ωǫtλ
def
= {(x, r) ∈ R2 × R : ∆((x, r), (xi, ri)) < ǫ ∀i,

d((x, r), (xi, ri)) > t ∀i, Cδ(x, r) ∩ Cδ(xi, ri) 6= ∅ ∀i,
dist(Cδ(x, r) ∩ Cδ(xi, ri), Cδ(x, r) ∩ Cδ(xj, rj)) ≥ λ ∀i, j : i 6= j}

is contained in the union of two ellipsoids in R3 each of diameter . ǫ
λ2 and volume . ǫ3

λ3 .

Proof This will be based on the inverse function theorem. We remark that the sketch
of proof given in [61] is inaccurate.

We will actually work with a slightly different set, namely, with

Ωǫtλ = {(x, r) ∈ R2 × R : ∆((x, r), (xi, ri)) < ǫ ∀i, d((x, r), (xi, ri)) > t ∀i,
|ei(x, r)− ej(x, r)| ≥ λ ∀i, j : i 6= j}

where ei(x, r) = sgn(r − ri)
xi−x
|xi−x| . This is sufficient since by Lemma 3.1 (b), Ω

ǫtλ
2

will

contain Ωǫtλ provided C0 is sufficiently large.
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If e1, . . . , e4 are unit vectors in R
2 which are contained in an arc of length µ, then the

reader will convince herself or himself that

|(e1 − e2) ∧ (e3 − e4)| . µ|e1 − e2| |e3 − e4| (21)

and furthermore if e1, e2, e3 are unit vectors in R
2 then

|(e1 − e2) ∧ (e1 − e3)| ≈ |e1 − e2| |e2 − e3| |e3 − e1| (22)

Here ∧ is wedge product, (a, b) ∧ (c, d) = ad− bc.
Consider the map G : R2 × R→ R3 defined by

G(x, ρ) =




|x− x1| − |r − r1|

|x− x2| − |r − r2|

|x− x3| − |r − r3|




Fix (ξ, ρ) ∈ Ωǫtλ. Observe that

DG(ξ, ρ) ≃




e1(ξ, ρ) −1
e2(ξ, ρ) −1
e3(ξ, ρ) −1


 (23)

where “≃” means that the two matrices are equal after each row of the matrix on the
right hand side is multiplied by an appropriate choice of ±1.

We can assume that |e1(ξ, ρ) − e3(ξ, ρ)| ≥ |e1(ξ, ρ) − e2(ξ, ρ)| ≥ |e2(ξ, ρ) − e3(ξ, ρ)|.
Let µ = |e1(ξ, ρ) − e3(ξ, ρ)|, ν = |e2(ξ, ρ) − e3(ξ, ρ)|; then we have µ ≥ ν & λ and also
|e1(ξ, ρ) − e2(ξ, ρ)| ≈ µ. It follows by (22) that | detDG(ξ, ρ)| ≈ µ2ν. Furthermore,
all entries in the cofactor matrix of DG(ξ, ρ) are easily seen to be . µ. Let E(ξ, ρ) =
{(x, r) ∈ R2 × R : |DG(ξ, ρ)(x − ξ, r − ρ)| < Aǫ} for an appropriate large constant A
which should be chosen before C0. Then the preceding considerations imply E(ξ, ρ) is an
ellipsoid with

diam(E(ξ, ρ)) .
ǫ

µν
(24)

|E(ξ, ρ)| . ǫ3

µ2ν
(25)

We claim that if (x, r) ∈ E then DG(x, r)DG(ξ, ρ)−1 = I+E, where I is the 3×3 identity
matrix and E is a matrix with norm ≤ 1

100
, say.

A matrix calculation shows that each entry of (DG(x, r) − DG(ξ, ρ))DG(ξ, ρ)−1 has
the form (detDG(ξ, ρ))−1(ei(x, r) − ei(ξ, ρ)) ∧ (ej(ξ, ρ) − ek(ξ, ρ)) for appropriate i, j, k.
We will show below that

|ei(x, r)− ei(ξ, ρ)| .
ǫ

tν
(26)
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If we assume this then the claim may be proved as follows. (26) implies in particular that
all the vectors ei(x, r) and ej(ξ, ρ) belong to an arc of length . µ. Accordingly, using
(21),

| detDG(ξ, ρ)−1(ei(x, r)− ei(ξ, ρ)) ∧ (ej(ξ, ρ)− ek(ξ, ρ))|
. µ| detDG(ξ, ρ)−1| |ei(x, r)− ei(ξ, ρ)| |ej(ξ, ρ)− ek(ξ, ρ)|
. µ · (µ2ν)−1 · ǫ

tν
· µ

≤ ǫ

tν2

which is small.
To prove (26) we abbreviate ei = ei(ξ, ρ). Fix i and let e∗i ∈ R2 be a unit vector

perpendicular to ei. If we define j and k via {i, j, k} = {1, 2, 3}, then a little linear
algebra shows that e∗i = α(ei−ej)+β(ei−ek) with |α|+ |β| . ν−1. Furthermore, if we let
(v1, v2, v3) = DG(ξ, ρ)(x−ξ, r−ρ), then by (23) we have |(ei−ej) ·(x−ξ)| = |vi±vj | ≤ 2ǫ
and similarly |(ei − ek) · (x − ξ)| ≤ 2ǫ. We conclude that |e∗i · (x − ξ)| . ǫ

ν
, hence

|e∗i · (x− xi)| . ǫ
ν

since xi − ξ is parallel to ei. Also |x− xi| ≥ t
2

by (24), so

|e∗i ·
x− xi

|x− xi|
| . ǫ

tν

This implies that for an appropriate choice of ±

|ei(x, r)± ei| .
ǫ

tν
(27)

Note though that r− ri and |x−xi| are nonzero on E(ξ, ρ): this follows from (24), since ǫ
is small compared with t so that |ξ−xi| ≈ t ≈ |ρ−ri|. So (x, r)→ ei(x, r) is a continuous
function on E(ξ, ρ) and therefore the sign in (27) is independent of (x, r). So (26) holds
and the claim is proved.

If A is large enough then the claim implies via the usual proof of the inverse function
theorem that G is a diffeomorphism from a subset of E(ξ, ρ) onto a disc of radius 2ǫ,
say. In particular, E(ξ, ρ) must contain a point (x, r) with G(x, r) = 0. Then C(x, r) is
internally tangent to each C(xi, ri); note that by (26) and the bound on the diameter of E,
we have (x, r) ∈ Ω

ǫ t
2
λ
2

and furthermore, by the claim E(x, r) and E(ξ, ρ) are comparable

ellipsoids (each is contained in a fixed dilate of the other). Appolonius’ theorem implies
there are only two possibilities for the circle C(x, r), and we have just seen that (ξ, ρ)
must be contained in one of the two E(x, r)’s and that they have the proper dimensions.
�

Proposition 3.3 For any p < 8
3

there is an estimate

‖Mδf‖q ≤ Cδ−
1
2
( 3

p
−1)‖f‖p, q = 2p′
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This implies by the proof of Lemma 1.6 that BRK sets have dimension ≥ 2− 1
2
(3

p
− 1)

for any p < 8
3
, i.e. dimension ≥ 11

6
. Proposition 3.3 was proved (in generalized form) in

[31]; it is the partial result which corresponds to the bound (i) in the tangency counting
problem. The sharp result ((18) with p = 3) incorporating the technique from [17] is
proved in [61].

Proof This will be similar to the proof of the 1
2
+α bound in remark 1.5. The p = 1 case

is trivial4 so it suffices to prove the following restricted weak type bound at the endpoint:

|{r ∈ [
1

2
, 2] : MδχE(r) > λ}| ≤ C(

|E|
δ

1
6λ

8
3

)
6
5 (28)

We may assume in proving (28) that the diameter of the set E is less than one. Conse-
quently in defining Mδf we may restrict the point x to the disc D(0, 1

4
). Thus it suffices

to prove the following.

Assume that λ ∈ (0, 1] and there are M 3δ-separated values rj ∈ [1
2
, 2] and points

xj ∈ D(0, 1
4
) such that |E ∩ Cδ(xj , rj)| ≥ λ|Cδ(xj , rj)|. Then

Mδ ≤ C(
|E|
δ

1
6λ

8
3

)
6
5 (29)

We can assume that M is large; for M smaller than any fixed constant (29) holds
because M 6= 0 implies |E| & λδ.

To prove (29) we let µ (“multiplicity”) be the smallest number with the following
property: there are at least M

2
values of j such that

|E ∩ Cδ(xj , rj) ∩ {x : |{i : x ∈ Cδ(xi, ri)}| ≤ µ}| ≥ λ

2
|Cδ(xj, rj)| (30)

The main estimate is
µ . M

1
6λ−

5
3 (31)

Before proving (31) we introduce some more notation, as follows. For any t ∈ [δ, 1]
and ǫ ∈ [δ, 1], let

a(t, ǫ) = C−1
1 (

δ

ǫ
)α(

Mδ

t
+

t

Mδ
)−α

Here α is a sufficiently small positive constant, and C1 is a positive constant (easily shown
to exist) which is large enough that

∑

k≥0

l≥0

a(2kδ, 2lδ) < 1 (32)

4The p = 2 case was also known prior to [31]; it follows from results of Pecher [41].
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for all M and δ. Let λ(t, ǫ) = a(t, ǫ)λ
2
, µ(t, ǫ) = a(t, ǫ)µ, M(t, ǫ) = a(t, ǫ)M

2
. Also, for

each i, j ∈ {1, . . . ,M} let

∆ij = max(δ, | |xi − xj | − |ri − rj | |) (33)

and for each j ∈ {1, . . . ,M}, t ∈ [δ, 1], ǫ ∈ [δ, 1], let

St,ǫ(xj , rj)
def
= {i : Cδ(xj , rj) ∩ Cδ(xi, ri) 6= ∅, t ≤ |ri − rj| ≤ 2t

and ǫ ≤ ∆ij ≤ 2ǫ}

At,ǫ(xj , rj)
def
= {x ∈ Cδ(xj , rj) : |{i ∈ St,ǫ(xj , rj) : x ∈ Cδ(xi, ri)}| ≥ µ(t, ǫ)}

Lemma 3.4 There are numbers t ∈ [δ, 1] and ǫ ∈ [δ, 1] with the following property

There are ≥M(t, ǫ) values of j such that |Atǫ(xj , rj)| ≥ λ(t, ǫ)|Cδ(xj , rj)|

Proof This is a routine pigeonhole argument. By the minimality of µ there are at least
M
2

values of j such that |Ẽj| ≥ λ
2
|Cδ(xj , rj)| where

Ẽj = E ∩ Cδ(xj , rj) ∩ {x : |{i : x ∈ Cδ(xi, ri)}| ≥ µ}

For any such j and any x ∈ Ẽj, (32) implies there are t = 2kδ and ǫ = 2lδ such that
x ∈ Atǫ(xj , rj). Consequently, using (32) again, for any such j there are t = 2kδ and
ǫ = 2lδ such that

|Atǫ(xj , rj)| ≥ λ(t, ǫ)|Cδ(xj , rj)| (34)

By (32) once more, there must be a choice of t and ǫ such that (34) holds for at least
M(t, ǫ) values of j. This finishes the proof.

We fix once and for all a pair (t, ǫ) for which the conclusion of Lemma 3.4 is valid, and
will drop the t, ǫ subscripts when convenient, i.e. will denote λ(t, ǫ) by λ, etc. We split
the proof of (31) into two cases:

(i) λ ≥ C2

√
ǫ
t

(ii) λ ≤ C2

√
ǫ
t

where C2 is a sufficiently large constant.
In case (i), which is the main case, we let S be the set of M circles in (29), and let S be

the set of at least M circles in Lemma 3.4. Let Q be the set of all quadruples (j, j1, j2, j3)
with C(xj , rj) ∈ S, C(xji

, rji
) ∈ S for i = 1, 2, 3 and such that ji ∈ St,ǫ(xj , rj) for each

i ∈ {1, 2, 3} and furthermore dist(Cδ(xj , rj)∩Cδ(xji
, rji

), Cδ(xj , rj)∩Cδ(xjk
, rjk

)) ≥ C−1
3 λ
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for all i, k ∈ {1, 2, 3} with i 6= k. Here C3 is a suitable constant which should be chosen
before C2.

We will make two different estimates on the cardinality of Q. On the one hand, the

diameter bound in Lemma 3.2 implies that for fixed j1, j2, j3 there are . ǫ
δ
λ
−2

values

of j such that (j, j1, j2, j3) ∈ Q. Also it follows from the definition of Q that there
are . Mmin(M, t

δ
)2 possible choices for (j1, j2, j3) : there are at most M choices for

j1, and once j1 is fixed there are . min(M, t

δ
) possibilities for each of j2 and j3, since

|rj1 − rji
| ≤ |rj1 − rj|+ |rj − rji

| ≤ 4t for i = 2 or 3. We conclude that

|Q| . ǫ

δ
λ
−2
Mmin(M,

t

δ
)2 (35)

On the other hand, if we fix j with C(xj , rj) ∈ S then (provided C3 has been chosen
large enough) we can find three subsets F1, F2, F3 of At,ǫ(xj , rj) such that dist(Fl, Fm) ≥
2C−1

3 λ, l 6= m, and |Fl| & δλ for each l. For fixed l, we let Sl be those indices i ∈ St,ǫ(xj , rj)
such that Fl ∩ Cδ(xi, ri) 6= ∅. The sets Cδ(xi, ri), i ∈ Sl must cover Fl at least µ times.
So ∑

i∈Sl

|Fl ∩ Cδ(xi, ri)| & µλδ

For each fixed i we have |Fl ∩ Cδ(xi, ri)| . δ2

√
tǫ by Lemma 3.1(a). Consequently

|Sl| & δ−1µλ
√
tǫ (36)

It is easy to see using Lemma 3.1(b) that if il ∈ Sl for l = 1, 2, 3 then (j, i1, i2, i3) ∈ Q.
So

|Q| & M(δ−1µλ
√
tǫ)3

If we compare this with (35) we obtain

µ3 .
δ2

t
3
2 ǫ

1
2

λ
−5

min(M,
t

δ
)2M

M

or equivalently

µ3 . M
1
2λ−5 ·

{
a(t, ǫ)−9(δǫ )

1
2 ( t

δM
)

1
2 if M ≥ t

δ
a(t, ǫ)−9(δǫ )

1
2 (Mδ

t
)

3
2 if M ≤ t

δ

The expression in the brace is bounded by a constant by the definition of a(t, ǫ), provided
α < 1

18
. So we have proved (31) in case (i).
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In case (ii), we fix j with C(xj , rj) ∈ S and make the trivial estimate |Stǫ(xj , rj)| .
min(M, t

δ
). It follows that

µλδ .
∑

i∈Stǫ(xj ,rj)

|Cδ(xj , rj) ∩ Cδ(xi, ri)|

. min(M,
t

δ
)
δ2

√
tǫ

where we used Lemma 3.1(a). Thus µ . λ
−1

√
t
ǫ min(Mδ

t
, 1). Using the hypothesis (ii)

we therefore have

µ . λ
− 5

3 (
t

ǫ
)

1
6 min(

Mδ

t
, 1)

i.e.

µ . λ−
5
3M

1
6 ·

{
a(t, ǫ)−

8
3 (δǫ )

1
6 ( t

δM
)

1
6 if M ≥ t

δ
a(t, ǫ)−

8
3 (δǫ )

1
6 (Mδ

t
)

5
6 if M ≤ t

δ

The expression in the brace is bounded by a constant provided α < 1
16

, so we have proved
(31).

Completion of proof of Proposition 3.3 Let Ẽ = {i : x ∈ Cδ(xi, ri)| ≤ µ} With nota-
tion as above we have

|E| ≥ |Ẽ| ≥ µ−1
∑

j

|Ẽ ∩ Cδ(xj , rj)|

& µ−1Mλδ

& λ
8
3M

5
6 δ

by (31). Consequently (Mδ)
5
6 . |E|

δ
1
6λ

8
3

and the proposition is proved. �

Further remarks 3.2. We mention some other recent related work. Schlag [43] found
an essentially optimal Lp → Lq estimate in the context of Bourgain’s theorem. If we
define

Mδf(x) = sup
1≤r≤2

1

|Cδ(x, r)|

∫

Cδ(x,r)

|f |

then there is an estimate
∀ǫ∃Cǫ‖Mδf‖5 . Cǫδ

−ǫ‖f‖ 5
2

and modulo δ−ǫ factors all possible Lp → Lq bounds forMδ follow by interpolation from
this one. Alternate proofs and further related results are in [46], [61] and [44]. On the
other hand a number of endpoint questions remain open. The best known is the restricted
weak type (2, 2) version of Bourgain’s theorem.
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3.3. A more central open question is the so-called local smoothing conjecture [48],
[36] in 2 + 1 dimensions. See section 4 below. This is a problem “with cancellation” and
likely not susceptible to purely combinatorial methods without additional input. On the
other hand, it would imply (18) with p = 4 via the Sobolev embedding theorem and is
therefore close to including some of the results of [17]. This means perhaps that a proof
not involving any combinatorics would have to contain a significant new idea.

3.4. One can give a discrete heuristic for the Kakeya problem analogous to the one
for the BRK sets problem. What follows is an observation of Schlag and the author.

There is a substantial literature on incidence problems for lines in R
3; these problems

appear to be quite difficult and are largely open. One relevant paper is Sharir [47], where
the following problem is considered:

Let {ℓj}Nj=1 be lines in R3 and define a joint to be a point where three noncoplanar
ℓj ’s intersect. Then how many joints can there be?

If J is the set of joints then as is discussed in [47] the natural conjecture is |J | . N
3
2 ,

which would be sharp by taking ≈
√
N planes parallel to each of three given planes and

considering the lines formed by intersecting two of the planes; any point where three
planes intersect will be a joint. The “easy” bound in this problem is |J | . N

7
4 which

is proved in [14] using a suitable version of (3). The bound ∀ǫ∃Cǫ : |J | ≤ CǫN
23
14

+ǫ is
proved in [47] using similar techniques to [17].

The heuristic is that a bound |J | . Nα should imply that (in R
3) dim(Kakeya)≥ α

α−1
.

Namely, define a µ-fold point in an arrangement of N lines to be a point where at least µ
lines intersect with (say) no more than half of these lines belonging to any given 2-plane.
Then any bound of the form |J | . Nα leads to a corresponding bound |Pµ| . (N log µ

µ
)α

where Pµ is the set of µ-fold points. This may be seen (rigorously) as follows: let Pµ be
the set of µ- fold points in the arrangement. Let A be a large constant and take a random
sample of the N lines according to the following rule: each line belongs to the sample
independently and with probability A log µ

µ
. Then with high probability the sample has

cardinality . N log µ
µ

. Furthermore, it is not hard to show that any point of Pµ will be a

joint for the lines in the sample with probability at least 1− µ−B, where B is large if A
is large. It follows that with high probability at least half the points of Pµ will be joints
for the sample, hence |Pµ| . (N log µ

µ
)α.

Now the heuristic part of the argument: suppose we have a Kakeya set E with (say,
Minkowski) dimension β. Fix δ and take a δ-separated set of directions and a line segment

in each direction contained in E; this gives an arrangement of ≈ δ−2 lines {ℓj}. Let Eδ

be the δ-neighborhood of E; thus |Eδ| ≈ δβ, so Eδ is made up of roughly δ−β δ-discs. A
typical point in the δ-neighborhood of E should belong to roughly δ−(3−β) δ-neighborhoods
of ℓj ’s, since otherwise the “low multiplicity” arguments discussed e.g. in section 2 would

show easily that |Eδ| >> δβ. Hence if we ignore the distinction between points and
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δ-discs then we are dealing with an arrangement of δ−2 lines with δ−β δ−(3−β)-fold points.
We conclude that up to logarithmic factors

δ−β . (
δ−2

δ−(3−β)
)α

i.e. β ≥ α
α−1

.

Under this heuristic the result of [47] would correspond to an improvement over 5
2

on Kakeya, and the fact that the joints problem is open would seem to indicate that
questions 1 and 2 are quite difficult even on a combinatorial level, if in fact the answers
are affirmative. In this connection, we note that Schlag [45] has proved an analogue of
the 3-circle lemma in this context and has used it to give an alternate proof of the result
dim(Kakeya)≥ 7

3
(originally due to Bourgain [7]) which corresponds to the result from

[14] via 7
3

= 7/4
7/4−1

. However, it is not easy to put the argument of [47] into the continuum

and the author believes that in contrast to the situation considered in [61] it may not be
possible to do this in a reasonably straightforward way.

A further remark is that special cases of the three dimensional Kakeya problem cor-
respond to results analogous to [61] with circles replaced by families of curves satisfying
the cinematic curvature condition from [48]. For example, the case of sets invariant by
rotations around an axis is a problem of this type as is discussed in [31].

4. Oscillatory integrals and Kakeya

It seemed appropriate to include a discussion of the basic open problems in harmonic
analysis connected with Kakeya, but we will not attempt a complete survey and will not
say anything about the proofs of the deeper results. We will just state some well-known
open problems and show how they lead to questions 1 and 2.

Let f̂ be the Fourier transform and if m is a given function, then let Tmf be the
corresponding multiplier operator,

T̂mf = mf̂

Two longstanding problems in Lp harmonic analysis are the following:

Restriction problem: is there an estimate

‖f̂dσ‖p . ‖f‖Lp(dσ) (37)

for all p > 2n
n−1

, where σ is surface measure on the unit sphere Sn−1 ⊂ R
n?

Bochner-Riesz problem: let mδ be a smooth cutoff to a δ-neighborhood of Sn−1, i.e.

mδ(ξ) = φ(δ−1(1− |ξ|))
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where φ ∈ C∞
0 (R) is supported in (−1

2
, 1

2
). Then is there an estimate

∀ǫ∃Cǫ : ‖Tmδ
f‖p ≤ δ−ǫ‖f‖p (38)

when p ∈ [ 2n
n+1

, 2n
n−1

]?

Both these problems can be formulated in a number of different ways; the formulations
we have given are not the original ones but are well-known to be equivalent to them. In
fact it would also be equivalent to prove (37) in the weaker form ‖f̂dσ‖p . ‖f‖∞, p > 2n

n−1
.

This is a consequence of the Stein-Nikisin theory as is pointed out in [7], section 6.
A third problem of more recent vintage [48] is

Local smoothing Let u be the solution of the initial value problem for the wave equa-
tion in n space dimensions,

�u = 0, u(·, 0) = f,
∂u

∂t
(·, 0) = 0

Then is there an estimate

∀ǫ > 0∃Cǫ : ‖u‖
Lp(R

n×[1,2])
≤ Cǫ‖f‖p,ǫ (39)

when p ∈ [2, 2n
n−1

]? Here ‖ · ‖p,ǫ is the inhomogeneous Lp Sobolev norm with ǫ derivatives.

In all these problems it is well-known that the exponent 2n
n−1

would be optimal. See [52].
For example, in the last problem this may be seen by considering focussing solutions where
f is spread over a δ-neighborhood of the unit sphere and u(·, t) is mostly concentrated on
a δ-disc when t ∈ (1, 1 + δ).

When n = 2, estimate (37) was proved by Fefferman and Stein and then (38) by
Carleson and Sjolin, in the early 1970’s (see [52]). Estimate (39) is open even when n = 2
however; the known partial results on L4(R2) correspond to loss of 1

8
derivatives ([36];

an improvement to loss of 1
8
− ǫ derivatives appears implicit in [12], p. 60). In general

dimensions, the following implications are known.

(39)⇒ (38)⇒ (37)⇒ (2)

The first implication is due to Sogge, the second which is deeper is due to Tao [58],
and Carbery [13] had shown earlier that the second implication can be reversed in a
slightly different context (replace spheres by paraboloids). We refer to [58] for further
discussion. Here though we will only be concerned with the last implication which makes
the connection with the Kakeya problem. Essentially this is due to Fefferman [23], another
relevant reference is [3] and the result as presented here is from [10]. A basic open problem
in the area is to what extent the last implication can be reversed. An alternate proof of
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the two dimensional Carleson-Sjolin result along these lines was given by Cordoba [18]. In
three or more dimensions, progress on this problem was initiated by Bourgain (see [10])
who obtained a numerology between partial results which however does not show that (2)
would imply (37). For a recent improvement in the numerology see [38] and [59].

A problem of a somewhat different nature is

Montgomery’s conjecture Assume T ≤ N2. Consider a Dirichlet series,

D(s) =

N∑

n=1

ann
is

where ‖{an}‖ℓ∞ ≤ 1. Let T be a 1-separated subset of [0, T ]. Then

∀ǫ∃Cǫ :
∑

t∈T
|D(t)|2 ≤ Nǫ(N + |T |)N

An easy consequence (or reformulation) would be that

∀ǫ∃Cǫ :

∫

E

|D(t)|2dt ≤ Nǫ(N + |E|)N (40)

if E ⊂ [0, T ] with the stated hypotheses on T and D(s). This is an estimate on the
measure of the set of large values of D(s) and would also imply estimates of Lp norms
with p > 2. See [9] and e.g. [37] for these remarks as well as some discussion of the
relationship between (40) and open problems in analytic number theory. Estimate (40)
can perhaps be thought of as an analogue of (37) where the oscillatory sum operator

{an} → D(s) replaces the extension operator f → f̂dσ. Bourgain [9] showed that (40) is
again related to the Kakeya problem.

In the rest of this article, we will discuss implications of this type, i.e.

oscillatory integral estimates⇒ Kakeya estimates

We first show that (37) implies (2), and will record the corresponding implications
between partial results. Let us recall the results that would follow from (37) using Holder’s

inequality and interpolation with the trivial bound ‖f̂dσ‖∞ ≤ ‖f‖L1(dσ), say

‖f̂dσ‖q . ‖f‖Lp(dσ), p <
2n

n− 1
, q >

n + 1

n− 1
p′ (41)

This bound for p ≤ 2 (plus its endpoint version where q = n+1
n−1

p′) is a well-known theorem

proved by Stein and Tomas in the 1970’s and the case p = q < 2n+1
n−1

+ ǫ for suitable ǫ > 0
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was proved more recently by Bourgain [7] using considerations related to question 2. See
[52] and [10].

Proposition 4.1 Assume (41) holds for a given p ≥ 2 and q ≥ 2. Then, with r = ( q
2
)′

and s = (p
2
)′, the restricted weak type (r, s) norm of the Kakeya maximal operator is

. δ−2(n
r
−1). Consequently the Hausdorff dimension of Kakeya sets is ≥ 2r− n = 2q

q−2
− n.

In particular (37) implies (2).

Proof First let {Tj}Nj=1, Tj = Tδej
(aj) be any collection of δ-tubes with δ-separated

directions ej . Let T̃j = {x ∈ R
n : δ2x ∈ Tj} be the dilation of Tj by a factor δ−2, and let

χj and χ̃j be the characteristic functions of Tj and T̃j respectively. Let Cj be a spherical
cap with radius ≈ δ centered at ej, e.g. Cj = {e ∈ Sn−1 : e · ej ≥ 1 − C−1δ2} where
C is a suitable constant. Take a bump function supported in Cj, say φj ∈ C∞

0 (Cj) with

‖φj‖∞ = 1, φj ≥ 0 and ‖φj‖1 ≈ δn−1, and let ψj(ξ) = e2πiξ·δ−2
ajφj(ξ). If x ∈ T̃j, then the

integral

ψ̂jdσ(x) =

∫

Sn−1

ψj(ξ)e
−2πiξ·xdξ = e−2πiej ·(x−δ

−2
aj)

∫

Cj

φj(ξ)e
−2πi(ξ−ej)·(x−δ

−2
aj)dξ

defining ψ̂jdσ(x) involves no cancellation, so

|ψ̂jdσ| & δn−1χ̃j (42)

Now consider the function f =
∑

j ǫjψj where the ǫj are random ±1’s. Since the supports
of the ψj are disjoint we have

‖f‖Lp(Sn−1) . (Nδn−1)
1
p

and therefore, by the assumption (41),

‖f̂dσ‖q . (Nδn−1)
1
p (43)

for any choice of ±. On the other hand, if we let E denote expectation with respect to
the choices of ±, then by Khinchin’s inequality and (42)

E(|f̂dσ|q) & δq(n−1)(
∑

j

χ̃j)
q
2

pointwise. If we integrate this inequality and compare with (43) we obtain

δq(n−1)‖
∑

j

χ̃j‖
q
2
q

2
. (Nδn−1)

q
p

31



Rescaling by δ2, then taking q
2
th roots,

δ2(n−1)− 4n
q ‖

∑

j

χj‖ q

2
. (Nδn−1)

2
p

Now let E be a set, f = χE and

Ω = {e : f ∗
δ(e) ≥ λ}

Let {ej}Nj=1 be a maximal δ-separated subset of Ω and for each j choose a δ-tube Tj as
above with |E ∩ Tj | ≥ λ|Tj |. Then

Nλδn−1 ≤
∑

j

|Tj ∩E|

. |E|1− 2
q ‖

∑

j

χj‖ q

2

. |E|1− 2
q (Nδn−1)

2
p δ−2(n−1)+ 4n

q

Using (6) this implies that

|Ω|1− 2
p . λ−1|E|1− 2

q δ−2(n−1)+ 4n
q

i.e. |Ω| 1s . λ−1|E| 1r δ−2(n
r
−1) which is the bound that was claimed. The dimension state-

ment in the proposition then follows from Lemma 1.6, and the last statement also follows
by letting p→ 2n

n−1
and using well-known formal arguments. �

Remarks 4.1. The original Fefferman construction was of course a counterexample;
essentially he showed

If the disc multiplier were bounded on Lp with p 6= 2, then families of tubes with the
property in Remark 1.2 could not exist.

The paper [3] applies the argument from [23] to the restriction problem in the above
way but the result is again formulated as a counterexample. The formulation as an
implication concerning the maximal function is from [10].

4.2. We present another application of the Fefferman construction which shows the
following.

Claim For any n ≥ 2, p > 2, K < ∞, there are solutions of �u = f in n space
dimensions, with ‖f‖∞ ≤ 1, suppf ⊂ D(0, 100)× [0, 1], and

∫ 3

2

‖∂u
∂t

(·, t)‖Lp(Rn)dt > K (44)
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The analogous statement with the x-gradient replacing the t-derivative can be proved
in a similar way. The statement can be understood as follows: the energy estimate for the
wave equation implies via Duhamel’s principle that ‖∇u(·, t)‖2 . ‖f‖2 if say t ∈ (2, 3)
and f is supported in Rn × [0, 1]. The claim says that there can be no such estimate
in Lp, p > 2, even if one is willing to average in t as in (39) and to restrict to bounded
f with compact support. The claim was proved by the author after discussions with S.
Klainerman but it is very close to the surface given [23]. The analogous statement for
the initial value problem is essentially that (39) fails if the W pǫ norm is replaced by the
Lp norm on the right hand side; this is a formal consequence of [23] as was probably first
observed by Sogge.

The construction below by no means rules out an estimate with loss of ǫ derivatives.
In fact the estimate

∫ 3

2
‖∂u

∂t
(·, t)‖pLp(Rn)dt . ‖f‖pp,ǫ with 2 < p ≤ 2n

n−1
and any ǫ > 0 would

follow from (39) via Duhamel.

Proof of the claim If x ∈ Rn then we will use the notation x = (x1, x), x ∈ Rn−1.
For an appropriate constant C and any small enough δ there is a solution of �u = f

with

‖f‖∞ ≤ 1, suppf ⊂ {(x, t) : 0 ≤ t ≤ 1, 0 ≤ x1 ≤ 1, |x| ≤ δ}

and
|∂u

∂t
| ≥ C−1 when 2 ≤ t ≤ 3, x ∈ Y t (45)

where Y t is a subset of {x ∈ R
n : 2 ≤ x1 ≤ 3, |x| ≤ δ} with measure ≥ C−1δn−1.

This is essentially just the fact that there are high frequency solutions of the wave
equation travelling in a single direction tangent to the light cone, which implies we can
find f with the indicated support and such that u restricted to 2 ≤ t ≤ 3 is also mostly
concentrated where |x| . δ. The conclusion then corresponds to conservation of energy.

A rigorous argument can be based on the explicit choice

f(x, t) = e2πiN(x1−t)φ(x1)ψ(δ−1x)χ(t)

where N is very large, φ, ψ, χ are fixed nonnegative C∞
0 functions, ψ(0) = 1, suppψ ⊂

D(0, 1), suppφ =suppχ = [0, 1] and φ and χ are strictly positive on (0, 1). Let u be the
corresponding solution of the wave equation. Then u is given by the formula

u(x, t) =

∫
e2πix·ξ sin(2π(t− s)|ξ|)

2π|ξ| e−2πiNsφ̂(ξ1 −N)δn−1ψ̂(δξ)χ(s)dξds

One can differentiate for t and then evaluate the resulting integral precisely enough to
obtain (45) in the region |x1 − t| ≤ 1

2
, |x| ≤ C−1δ. We omit the details.
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If E is a set in space-time then we will use the notation Et = {x ∈ Rn : (x, t) ∈ E}. By
Remarks 1.2 and 1.3 we can find disjoint δ-tubes {Tj}Mj=1 in Rn (M ≈ δ−(n−1)) such that

the tubes T̃j obtained by translating the Tj’s by 2 units along their axes are all contained
in a set with small measure a(δ). Let Πj = Tj × [0, 1] ⊂ Rn ×R, and let Π̃j = T̃j × [2, 3].
By the first step of the proof there are functions uj and fj, �uj = fj, with fj supported

on Πj, ‖fj‖∞ ≤ 1, and |∂uj

∂t
| ≥ const on a subset Yj ⊂ Π̃j which satisfies |Y t

j | ≈ δn−1 for
each t ∈ (2, 3). Let Z = ∪jYj; then |Zt| . a(δ) for any t ∈ (2, 3).

Let {ǫj} be random ±1’s. Consider the functions u =
∑

j ǫjuj, f =
∑

j ǫjfj , which
satisfy �u = f . The Πj ’s are disjoint, so ‖f‖∞ ≤ 1 for any choice of ǫj ’s. On the other
hand, by Holder’s and Khinchin’s inequalities, for any fixed t ∈ (2, 3) we have

E

(∫

Zt

|∂u
∂t

(x, t)|pdx) 2
p

)
& a(δ)−(1− 2

p
)
E

(∫

Zt

|∂u
∂t

(x, t)|2dx)
)

= a(δ)−(1− 2
p
)

∫

Zt

∑

j

|∂uj

∂t
(x, t)|2dx

& a(δ)−(1− 2
p
)
∑

j

|Y t
j | ≈ a(δ)−(1− 2

p
)

which shows there can be no estimate of the form

(∫ 3

2

‖∂u
∂t

(·, t)‖2Lp(Rn)dt

) 1
2

≤ C‖f‖∞

with p > 2 when f has support in D(0, 100)× [0, 1]. We then also obtain (44), since an
estimate to L1

t (L
p
x) would imply an estimate to L2

t (L
q
x) (1

q
= 1

2
(1

2
+ 1

p
)) by interpolation

with the energy estimate to L∞
t (L2

x). �

We now discuss the argument from [9] relating (40) to (2). Bourgain showed there
that Montgomery’s conjecture if true would imply Kakeya sets have full dimension and
a bound like (2) with a different Lp exponent. We reworked the argument a bit for
expository reasons and in order to obtain the precise result (40)⇒(2).

The logic is that (40) implies a Kakeya type statement for arithmetic progressions,
which in turn implies (2) for all n. Thus the implication (40)⇒ (2) follows by combining
Propositions 4.2 and 4.3 below.

If ν ∈ (0, 1), β ∈ R, then we denote

Pδν (β) = {x ∈ [0, 1] : |x− (jν + β)| < δ for some j ∈ Z}

i.e. Pδν (β) is the δ-neighborhood of the arithmetic progression with modulus ν which
contains β, intersected with [0, 1].
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Proposition 4.2 Assume the conjecture (40). Then for any ǫ there is Cǫ such that the
following holds.

(∗) Fix η ∈ (0, 1), δ ∈ (0, η). Let E ⊂ [0, 1] be such that

∀ν ∈ Y ∃β ∈ R : |Pδν (β) ∩ E| ≥ λ|Pδν (β)| (46)

where λ ∈ (0, 1] satisfies λ ≥ Cǫ(
δ2

η
)−ǫ ·η, and where Y is a subset of (η

2
, η) with |Y | ≥ η

100
.

Then

|E| ≥ C−1
ǫ (

δ2

η
)ǫλ

Proof This will be formally similar to the proof of Proposition 4.1 if one makes the
analogy

line segment ←→ arithmetic progression
spherical cap ←→ interval of integers

Claim 1: Let N and T be as in (40) and let ǫ0 be a suitable constant. Then, for
ν ∈ [N

2
, N ] and β ∈ R, the Dirichlet series

d(s) =
∑

n:|n−[ν]|≤ǫ0 N√
T

e−i β

[ν]
(n−[ν])nis (47)

satisfies

|d(s)| & N√
T

when s ≤ T and dist(s, 2πνZ + β) ≤
√
T .

Proof This is the “short sum” construction in [9]. Assume at first that ν ∈ Z. The

Taylor expansion of the logarithm function shows that nis = νiseis(n−ν
ν

+O(n−ν
ν

)2)), so that

e−i β

ν
(n−ν)nis = νisei(n−ν)) s−β

ν
+isO((n−ν

ν
)2). Thus the sum (47) involves no cancellation and

the bound follows immediately. The general case (i.e. ν /∈ Z) follows by replacing ν
by [ν] and noting that this does not significantly affect the hypothesis on s, since if
dist(s, 2πνZ + β) ≤

√
T then dist(s, 2π[ν]Z + β) ≤

√
T + C T

N
.
√
T .

We therefore define P̃ν(β) = {x ∈ [0, T ] : dist(s, 2πνZ + β) ≤
√
T}. We also fix a

number ǫ > 0 and let Cǫ be a suitable constant.
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Claim 2 Assume (40) and let E be a subset of [0, T ] with the following property: there
is a set Y ⊂ [N

2
, N ] with |Y | ≥ N

100
, such that for any ν ∈ Y there is β = β(ν) ∈ R such

that |E ∩ P̃ν(β)| ≥ λ|P̃ν(β)|. Then

|E| ≥ C−1
ǫ N−ǫTλ (48)

provided λ ≥ CǫN
ǫN

T
.

Proof Let ǫ0 be as in claim 1, choose a maximal 2ǫ0
N√
T

+1-separated subset {νj}Mj=1 ⊂
Y , denote P̃j = P̃νj

(βj) and let χj be the characteristic function of P̃j. Construct Dirichlet

series dj(s) =
∑

n:|n−[νj]|≤ǫ0 N√
T

ann
is via claim 1 so that |dj(s)|2 & N2

T
χj . Let D(s) =

∑
j ǫjdj(s) where the ǫj are random ±1’s. By Khinchin’s inequality

E(|D(s)|2) &
N2

T

M∑

j=1

χj (49)

pointwise. On the other hand the coefficient intervals for the dj are disjoint so for any
choice of ±1, D(s) will be a Dirichlet series with coefficients bounded by 1. Integrating
(49) over E and using (40), we obtain

N2

T

M∑

j=1

|E ∩ P̃j| . E(

∫

E

|D(s)|2)

. Nǫ(N + |E|)N

We haveM ≈
√
T , and for each j we have |E∩P̃j | ≥ λT

3
2

N
. So we obtain Tλ . Nǫ(N+|E|).

Under the stated hypothesis on λ this implies (48).
Proposition 4.2 follows from claim 2 by rescaling: set T = δ−2 and N = ηδ−2, and

make the change of variables x→ Tx, ν → Tν. �

Proposition 4.3 If (∗) holds then (2) holds in all dimensions n.

Proof We first observe that (∗) implies a generalization of itself via a well-known formal
argument (one of the arguments in the Stein-Nikisin theory, see [50], p. 146). Namely,
drop the hypothesis |Y | ≥ η

100
. Then, with the other hypotheses unchanged,

|E| & λ
|Y |
η

(
δ2

η
)ǫ (50)

To prove (50), let ρY be the dilation of Y by ρ. One can find numbers {ρj}Mj=1 ⊂ (1
2
, 2),

where M ≈ η
|Y | , so that Ỹ

def
= ∪jρjY satisfies |Ỹ | ≥ η

10
. Let Ẽ = ∪jρjE. Then Ẽ satisfies

(46) when ν ∈ Ỹ so |Ẽ| & λ(δ
2

η
)ǫ, hence |E| & λM−1(δ

2

η
)ǫ which is (50).
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Now we consider the Kakeya problem, and will give without detailed proof a few
reductions made in [7], p. 152.

A. In order to prove (2) it suffices to prove the following inequality: let E be a set in
Rn, let Ω be a subset of Sn−1 with |Ω| ≥ 1

2
, and assume that for any e ∈ Ω there is a tube

Tδe (a) such that |Tδe (a) ∩E| ≥ λ|Tδe (a)|. Then

∀ǫ > 0∃Cǫ : |E| ≥ C−1
ǫ δǫλn (51)

To make this reduction one first observes that (2) is equivalent to the corresponding
restricted weak type statement,

|{e ∈ Sn−1 : f ∗
δ(e) ≥ λ}| . δ−ǫ

|E|
λn (52)

where f = χE, and then uses the above argument from [50] to reduce (52) to the case

where the left hand side is ≥ 1
2
. Furthermore, if |E ∩ Tδe (a)| ≥ λ|Tδe (a)| even for one

choice of e and a then clearly |E| & λδn−1. It follows that in proving (51) we can assume
λ ≥ δ.

B. We define Q to be the unit cube [0, 1) × . . . × [0, 1). Let N be an integer to be
fixed below, such that 1

N
< δ. If ν ∈ Zn, then we define Qν to be the cube [ν1

N
, ν1+1

N
) ×

. . .× [νn

N
, νn+1

N
). When we refer below to a 1

N
-cube we always mean a cube which is of the

form Qν for some ν ∈ Zn. In proving (51) we can assume that E is contained in Q; this

follows easily since the tubes Tδe (a) have diameter . 1. Furthermore we can assume that
E is a union of 1

N
-cubes; see [7].

C. It is easy to see that f ∗
δ(e

′) ≤ Cf ∗
δ(e) if |e − e′| ≤ δ, since any tube Tδe′ (b) can be

covered by a bounded number of tubes of the form Tδe (a). Accordingly if Ω is as in A., C1

is a constant, and if dist(e,Ω) ≤ C1δ then there is a such that |Tδe (a)∩E| ≥ C−1λ|Tδe (a)|
where C depends on C1.

In proving (51) we may assume that

|Ω ∩ {e ∈ Sn−1 : e1 ≥
1

2
}|

is bounded below by a constant depending on n only, since we can always achieve this
by an appropriate choice of coordinates. In addition, as indicated above we may assume
λ ≥ δ, and we may certainly assume that ǫ is small. Fix integers N and B satisfying the
following relations:

B−1N2nǫ ≈ λ and
B

N
≈ δ (53)

Then N ≈ (δλ)
−1

1−2nǫ , so that

Nδ is large, N ≤ δ−3, B is large, and BN−n ≤ B−1 (54)

37



Define a map Φ : R
n → R via

Φ(x) =
[Nx1]

N
+

[Nx2]

N2
+ . . .+

[Nxn−1]

Nn−1
+
Nxn

Nn

Then Φ maps Q into [0, 1). We make a few additional remarks about the definition:

(i) Note the distinguished role played by the last coordinate.
(ii) Φ maps 1

N
-cubes on intervals of length N−n, hence if E is a union of 1

N
-cubes then

|Φ(E)| = |E|.
(iii) Suppose that x ∈ Rn. Then x belongs to a unique 1

N
-cube Qν . Define τ(x) (“tower

over x”) via
τ(x) = ∪(Qµ : µj = νj when j < n and |µn − νn| ≤ B)

Then, for any x, Φ maps τ(x) on an interval of length 2B+1
Nn .

(iv) Suppose that w = (k1

N
, . . . , kn

N
) where the {kj} are integers. Set ν(w) =

∑
j

kj

Nj .
Then Φ maps any arithmetic progression {x + jw}j∈Z to an arithmetic progression in R

with modulus ν(w).

A lattice vector will be by definition a vector in Rn of the form

w = (
k1

N
, . . . ,

kn

N
)

where the {kj} are integers with k1 ∈ ( N
2B
, N

B
) and

√∑
j k

2
j ≤ 2k1. Thus any lattice

vector w satisfies |w| ≈ 1
B

. We note that if e ∈ Sn−1 satisfies e1 ≥ 1
2

then |e− w
|w| | . δ for

approximately N
B

lattice vectors w, namely all the lattice vectors w = k
N

which correspond
to integer vectors k such that |k − te| . 1 for some t with t ≈ N

B
. Accordingly, for an

appropriate constant A there are & (N
B

)n lattice vectors w such that dist( w
|w| ,Ω) ≤ Aδ.

We denote this set of lattice vectors by Λ.

If w ∈ Λ, then we will abuse our notation slightly and denote the tube Tδw
|w|

(a) by Tδw (a).

By C. above, for each w ∈ Λ we can choose a ∈ R
n so that |Tδw (a) ∩ E| & λ|Tδw (a)|. It

then follows by an averaging argument5 that there is a′ ∈ Rn such that

|E ∩ (∪B
j=1τ(a

′ + jw))| & λ| ∪B
j=1 τ(a

′ + jw)| (55)

5Namely: let m be the measure of the set ∪B
j=1τ(a′ + jw); m is clearly independent of a′, and

furthermore if x ∈ R
n is given then the measure of the set σx = {a′ : x ∈ ∪B

j=1τ(a′ + jw)}| is also

comparable to m. If x ∈ Tδ
w(a) then, since B

N
. δ and |w| . 1

B
, the set σx will be contained in T̃ δ

w(a),

the dilation of Tδ
w(a) by a suitable fixed constant. It follows that

∫
T̃δ

w
(a)
|E ∩ (∪B

j=1τ(a′ + jw))|da′ ≥
∫

Tδ
w

(a)∩E
|σx|dx ≥ λm|Tδ

w(a)| ≈ λm|T̃ δ
w(a)|, so (55) holds for suitable a′ ∈ T̃ δ

w(a).
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Now set ρ = B
4Nn . By (iv) above, the image of the progression a′, a′ + w, · · ·a′ + Bw

under Φ is an arithmetic progression β, β+ν(w), · · · , β+Bν(w). By (iii), Φ(∪B
j=1τ(a

′+jw))
is a union of intervals containing the points of this progression, with the length of each
interval being less than ρ and comparable to ρ. Since E and ∪B

j=1τ(a
′ + jw) are unions of

1
N

-cubes, (55) and (ii) then imply that |Φ(E) ∩ P ρ
ν (β)| & λ|P ρ

ν (β)|. We conclude:

If ν = ν(w) for some w ∈ Λ, then there is β such that

|P ρ
ν (β) ∩ E| & λ|P ρ

ν (β)| (56)

Let Y = {ν ∈ R : |ν − ν(w)| ≤ N−n for some w ∈ Λ}. It follows easily that (56)
continues to hold (for suitable β) for any ν ∈ Y . Note that Y ⊂ ( 1

2B
, 2

B
) (because of

the requirement N
2B
≤ k1 ≤ N

B
) and also |Y | & B−n, since the set {ν(w) : w ∈ Λ} is

N−n-separated and has cardinality & (N
B

)n.
Now λ is large compared with B−1 · (B(BN−n)2)−ǫ by (53), (54), so we can apply

(50) with η = B−1, δ = BN−n, and with |Y |
η

& B−(n−1). We conclude that |Φ(E)| &

λB−(n−1)(B3N−2n)ǫ. Again using (53) and (54), we obtain |Φ(E)| & λnN−2n2ǫ ≥ λnδ6n2ǫ.
But E is a union of 1

N
-cubes so |E| = |Φ(E)|, and since ǫ is arbitrary this proves (51). �
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