Chapter 4

Fourth rung: the Planets

[Kepler] had to realize clearly that logical-mathematical theoriz-
ing, no matter how lucid, could not guarantee truth by itself; that the
most beautiful logical theory means nothing in natural science without
comparison with the exactest experience. Without this philosophical
attitude, his work would not have been possible. Albert Einstein,
foreword for “Johannes Kepler: Life and Letters”, Baumgard and
Callan, 1953.

If you have ever been told one piece of astronomy trivia, it is probably that
the word “planet” comes from the Greek mhdvntec dotépec (planétes asteres,
wandering star) or sometimes just nhavfitaw (planétai, wanderers). As the an-
cient Greeks studied the heavens, they observed that most of the stars seemed
fixed into constant patterns, or constellations, in a great celestial sphere gently
rotating around a single fixed axis (oriented along celestial north, which is very
nearly where the north star Polaris is currently located). A handful of stars,
however, seemed to follow their own unique path across the sky at their own
speed. These planetes asteres did not wander into every quadrant of the sky,
but traveled within a consistent band along with the Sun and Moon. This band
was called the ecliptic (because it was in this band that eclipses happened)
and in ancient Greece it happened to cross twelve constellations in the fixed
heavenly sphere. These twelve constellations came to be known as the Zodiac,
and to this day many people ascribe great meaning to which constellation the
Sun was nearest at an individual’s moment of birth. While the Sun steadily
makes its way all around the ecliptic and through each of the twelve Zodiac
constellations in a year, and the Moon wobbles through the same ecliptic in
neatly predictable phases, the five troublesome planétes asteres, known now as
the planets Mercury, Venus, Mars, Jupiter, and Saturn, move in a more com-
plex pattern. Mostly, the planets moved in an east to west direction along the
ecliptic, but occasionally they would slow and reverse direction, moving west to
east in retrograde motion for a while before resuming their east to west travel
again. More confusingly, each planet seemed to move at its own speed and have
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its own unique pattern of retrograde motion.

The planets’ movements fascinated the ancient Babylonian astrologers as far
back as the second millennium BCE. The motions of the heavenly bodies were
considered important and powerful omens and so they kept careful records on
cuneiform tablets, seeking patterns across generations that would allow them
to make predictions of ominous events to come. Because their concern was
primarily with their predictive power, Babylonian astronomy focused heavily on
refining their calculations, with no apparent interest in the underlying mechanics
of the cosmos. While they did not directly tackle the puzzles of the distance
ladder, the Babylonian records gave rise to calendar and timekeeping systems
so accurate that many elements continue to be used in our systems today.

In contrast to the Babylonians, early Greek astronomy was closely linked to
their study of geometry and one of their earliest cosmological models came from
a clever mathematician named Eudoxus. In answer to a question Plato posed on
how to account for the apparent motions of the planets with uniform and orderly
geometric motions, Eudoxus proposed a system of nested spheres which rotated
at different speeds about different axes of rotation. Eudoxus’ astronomical works
have not survived to the present day except for a handful of quotes in later
works, but he appears to have considered each planet independently with its
own number of spheres (Mars, for example, had four). As he considered this
a geometry problem, he was apparently satisfied by coming up with a solution
that was merely plausible rather than predictive. His system was virtually
impossible to make calculations with using the mathematics of the era, and
woefully inaccurate when compared to any observational data. A generation
later, his student Callippus attempted to improve the accuracy and ended up
with some 34 nested spheres to account for all five planets, the Sun, the Moon,
the distant fixed stars, and the central, rotating Earth. Aristotle went on to
make further modifications, primarily adding “unrolling” spheres to cancel out
the motion of an inner sphere from impacting the next one out.

It was at about this time that Greeks suddenly seemed to gain access to the
Babylonian astrological records. One account claims that Alexander the Great,
amid his conquests, ordered his historian to have the cuneiform records of the
Babylonians translated and that this historian sent copies of the translation work
to his great-uncle, who just happened to be Aristotle. While Aristotle did not
abandon the Eudoxan spheres, the infusion of centuries of Babylonian records
spurred the Greeks to seek more accurate geometric explanations. Aristarchus’
work on heliocentrism is one example of that; however the only piece of that
work that survives is concerned specifically with the relationship between the
Earth and the Sun, so we are left somewhat in the dark about Aristarchus’
thoughts on the movements of the other planets.

Apollonius of Perga, another brilliant Greek mathematician, provided the
next refinement. Known today primarily for some of the earliest work on conic
sections, Apollonius was able to simplify the Eudoxan model by introducing
the concept of the deferent and epicycle. Epicycles can be hard to explain, but
we can fortunately draw upon our modern heliocentric understanding of the
solar system. to more easily picture what had to be very difficult to describe
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in Hellenistic Greece. As we are taught in school, the Earth orbits around the
Sun, and the Moon in turn orbits around the Earth. The orbit of the Earth
corresponds to one of Apollonius’ deferents, and the smaller orbit of the Moon
around the earth is an epicycle. If one then removes the physical Earth from this
picture, so that the Moon now orbits an epicycle centered at some imaginary
point that in turn traverses the deferent, then you have a pretty good idea
of what an epicycle-based orbit would look like. The epicycle-based model of
planetary motion did a better job of approximating retrograde motion than the
Eudoxan spheres and was less computationally complex. The Greeks, in fact,
were able to build clock-like mechanical devices to show the motions of the
planets using epicycles. These devices were still incredibly complex, so much so
that the surviving remains of one, called the Antikythera Mechanism and found
in a shipwreck from 80 BCE over a century ago, is often accused of being a hoax
to this day.

While he did not invent them, the astronomer most closely associated with
epicycles is unquestionably Claudius Ptolemy. In his monumental work Modn-
pot Bovtadic (Mathématike Syntaxis, the Mathematical Arrangement), now
known as the Almagest, Ptolemy laid out his comprehensive geocentric astro-
nomical model, using extensive use of epicycles (and, in some cases, epicycles
of epicycles) to try to fit the observed motions of the planets into neat circular
orbits. It was far from perfect, but the Almagest was so comprehensive that it
dominated astronomical study for over a millennium, with generations of valiant
astronomers trying to patch the cracks, typically through the application of still
more epicycles. It was not until the fifteenth century, however, that a monk
named Bessarion from the remnants of the Byzantine empire began laying the
groundwork for a major shift in how we all see the universe.

There were several unlikely things that came together in the lifetime of
Basilius Bessarion, virtually none of which have much to do with astronomy.
He began his education in Constantinople which was not far from where he was
born, and then continued it in Greece, where he was introduced to the Plato’s
writings and Pythagoras’ numerical mysticism. He studied all the traditional
areas of Greek learning, including astronomy, and he began his own collection
of Greek writing which he brought back to Constantinople. He rose to power
within the Eastern Orthodox Church, and when the Byzantine Emperor decided
to try to reconcile the Orthodox Church in Constantinople with the Catholic
church in Rome, he was chosen as a member of the delegation which traveled
first to Ferrara in 1438 and then to Florence the following year. This reconcilia-
tion did not occur, but Bessarion was an ardent enough supporter of it that he
found life in Greece following the Council of Ferrara-Florence uncomfortable.
Fortunately, he had so impressed the Roman pope that he was subsequently
made a cardinal in the Roman Catholic Church. From that point, Bessarion
lived in Rome and Bologna for the remainder of his life. His court attracted
Greek refugees and others interested in Greek learning, as he brought what had
grown into the largest private library in Europe with him to Rome. Bessarion
continued to seek out scholars and after a rival produced a particularly bad
translation of Ptolemy’s Almagest into Latin, Bessarion asked a German math-
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ematician named Peuerbach and his student, Regiomontanus (he was born Jo-
hannes Miiller but a fancy Latinized professional name had become the fashion),
to write a critique and counter-translation. Peuerbach died partway through the
work, but on his deathbed made Regiomontanus promise to complete it. Re-
giomontanus did as he promised, publishing Epytoma in almagesti Ptolemei and
gaining Bessarion’s patronage (and access to his library) in return. Bessarion
had one more part to play in our story (and the larger story of the Renaissance):
shortly before his death, he donated his entire library to the Republic of Venice.
Consisting of nearly five hundred Greek and three hundred Latin manuscripts,
the collection went on to become the core of the famous Bilbioteca Marciana
(library of St. Mark) and established the region of northern Italy as a center of
Greek learning for the next century.

Four short months after Basilius Bessarion’s death, Nicolaus Copernicus (to
continue the fashion by Latinizing the Polish name Mikolaj Kopernik) was born.
While we tend to think of him as the great Polish astronomer, Copernicus was a
priest, diplomat, statesman, physician, and economist who managed to reshape
our cosmological view in the free time around his his professional duties. His un-
cle, Lucas Watzenrode, Prince-Bishop of the semi-autonomous Polish region of
Warmia, raised Copernicus and his siblings after the deaths of Copernicus’ par-
ents. Watzenrode set Copernicus onto a path of life as an important member
of his court and the church bureaucracy, possibly even hoping he would suc-
ceed him as Prince-Bishop of Warmia. He provided for Copernicus’ education,
sending him to university in Poland and then to Bologna to study church law.
Copernicus had already developed both an interest in astronomy and a lifelong
love of books from his studies in Poland. In Bologna, Copernicus quickly fell into
the circle of the Neoplatonist Greek scholars, so much so that he had to return
some years later to eventually complete his law degree. He became a student of
the Ferraran astronomer Domenico Novara who had himself been a student of
Regiomontanus. During his time in Bologna, Copernicus quickly learned to read
and write in Greek and delighted in adding Greek writings to his own rapidly
growing library. From study of Regiomontanus’ works, he not only became well
acquainted with Ptolemy’s Almagest (and the problems it presented), but also
was introduced to the works of Aristarchus. He had already begun making some
astronomical observations in Warmia and continued to make others in Bologna
to test Ptolemy’s theories. After three years of study, he returned to Warmia to
duties within his uncle’s court only to be shortly sent back, this time to Padua,
to study as a physician. It should not surprise you to learn that in addition to
his astronomical library, Copernicus also built a significant library of medical
texts.

Copernicus never ventured to Italy again. He spent years making astronom-
ical observations at night as he spent his days serving as secretary and physician
to his uncle (and subsequent Prince-Bishops of Warmia), traveling in diplomatic
delegations, assisting with the general political administration of Warmia, and
offering medical consultations when needed. He wrote policy on monetary re-
form and only published one other book within his lifetime, a translation into
Latin of 85 Byzantine poems.
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He did, of course, write out his heliocentric model, initially in a small pam-
phlet written shortly after his return from Italy which he only circulated among
close friends and never intended for publication. Following this, he made some
key astronomical observations and calculations to better refine his model before
writing his major work, De revolutionibus orbium coelestium (On the Revolu-
tions of the Heavenly Spheres). The calculations he made helped him confirm
the accuracy of the heliocentric model but also proved to be important to our
story within a few short decades.

Because they were looking for predictable patterns, the Babylonians had
worked out what is called the synodic or apparent period for each of the planets.
This is simply the amount of time it takes for a planet to return to the same
place in the sky. Copernicus used that knowledge to work out the sidereal
periods of each of the planets. The sidereal period is the amount of time it
takes for a planet to return to the same point in its orbit in space. Under
the geocentric model, the sidereal period is very nearly insignificant but when
the Earth is not in a fixed position, the sidereal periods of the other planets
become much more important. Copernicus began with the sidereal periods of
Mercury and Venus because confirming that their sidereal periods (88 days and
225 days respectively) were less than the 365 day period of the Earth’s orbit
would confirm their positions between the Earth and the Sun. The position of
the outer three planets was not questioned, but calculating their sidereal periods
was not difficult and so the sidereal periods of all five planets were included in
De revolutionibus.

In his earliest drafts of De revolutionibus, Copernicus credited Aristarchus
for the idea of heliocentrism; however this was removed from later drafts and
the work was published without reference to him. While Aristarchus clearly was
a source of inspiration for Copernicus, the Copernican model was developed to
a level of detail far beyond what Aristarchus has laid out seventeen centuries
before, and Copernicus had poured into it not only his own observations and
calculations but also the ideas of many others he had spent his lifetime collecting.
Despite his work being well-received by those close to him, he was reluctant to
bring it to print for fear of facing scorn. Near the end of his life he reluctantly
agreed to give the manuscript to a printer in Nuremberg for publication. Legend
states that the final printed pages were placed into his hands on his deathbed
and that he looked upon them peacefully before promptly departing the mortal
world.

Initially, De revolutionibus was not met with scorn so much as with indif-
ference. Due to its technical complexity and density, the first print run of 400
copies did not sell out. While a handful of mathematicians and astronomers
embraced it enthusiastically many continued to rely on the Almagest for key as-
trological computations. Heliocentrism carried a whiff of heresy throughout the
sixteenth century, but it was not until 1616, some seventy years after its pub-
lication, that De revolutionibus gained the dubious honor of being put on the
Catholic church’s heretical forbidden book list. Handily, those seventy years
were precisely enough time to influence another brilliant mathematician who
star was on the rise.
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If you have ever taken a basic physics class, you will have learned that the
German mathematician Johannes Kepler developed three fundamental laws of
planetary motion in the early 17" century. These laws are:

1. The orbit of a planet is an ellipse with the sun at one focus of the ellipse.

2. A line drawn between a planet and the sun sweeps an equal area within
the ellipse in an equal period of time.

3. The square of the time it takes a planet to complete one rotation is directly
proportional to the cube of the semi-major axis of the orbital ellipse.

Given what was already known from observation of the heavens, these princi-
ples probably seem far from obvious. What is also not obvious in the statement
of these laws is that their discovery was not simply a matter of dry mathematical
calculation but rather an astonishing tale of the fates of princes and kingdoms,
thefts, betrayals, riches nearly beyond imaging, and an unlikely and too brief
collaboration between two men who seemed to have virtually nothing in com-
mon. We have as central figures in our tale a wealthy and landed nobleman who
seemed destined for high political leadership; and a promising young scholar of
the newly burgeoning middle class. One considered a geocentric model the
only sensible possibility; and the other was hopelessly smitten with the ideas
of Copernicus and Aristarchus. One had a perfectly functional nose; and the
other famously had the dubious distinction of having lost his in a duel over his
mathematical prowess. Standing beside the humble Johannes Kepler we have
his challenging collaborator, the brilliant and extravagant Danish astronomer
Tycho Brahe; but we must begin somewhere and that is with Kepler himself.

Poor Johannes Kepler knew from an early age that what he wanted to do
more than anything else was to, by his works, glorify God. He was born in
1571 to an innkeeper’s daughter and a mercenary who had the misfortune of
dying while Kepler himself was still a small child. He had a modest education,
beginning with Latin grammar school, moving on to seminary and from there
to the renowned theological school at the University of Tiibingen in Germany
where he studied with the intent of becoming a Lutheran minister. Kepler had
an undeniable prowess for mathematics, apparent even in childhood, and at it
was at Tubingen that this aptitude helped shaped his future. He studied under
the instruction of the renowned mathematician and astronomer Michael Mastlin;
and while Mastlin dutifully instructed his students in the Ptolemaic model of the
heavens, he also introduced Kepler to Copernicus’ daring new heliocentric model
of planetary motion. During his time at university, Kepler embraced Copernicus’
model and argued that it was not only the most reasonable theoretically, but
also the one that best harmonized with theological constraints imposed by the
Bible.

Upon graduation from Tiibingen, Kepler sought a position within the Lutheran
church; but unfortunately for Kepler’s rather humble dream, his spectacular
mathematical skill and the faintest whiff of heresy in his unorthodox writings
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led his professors to instead recommend him for a position teaching mathemat-
ics and astronomy at a school in the far away city of Graz, now in modern-day
Austria.

Kepler was not particularly happy to leave the familiarity of Tiibingen, but
he dutifully taught mathematics, astronomy, rhetoric, and Virgil at Graz, and
despite having a generally low regard for astrology as the “foolish little daughter
of the respectable mother astronomy”, produced several Calendaria et prognos-
tica (horoscope calendars) during his years there. With an insight that likely
had more to do with his mathematical abilities than the course of the stars, Ke-
pler was able to make several predictions that came true within short order and
quickly brought him some level of professional prestige and unexpected income.

It was in Graz, however, that he had an epiphany which led him to create a
truly beautiful model of the solar system. Kepler already knew that the planets
moved in some regular fashion, and wanted to fit this movement into an orderly
progress about the Sun. He first tried to create a system in two dimensions,
with the circular orbit of each planet layered between regular polygons. When
he could not make this system align with observation, he expanded it into a
third dimension, with the orbit of each of the six (known) planets arranged on
the surface of a sphere that was itself nested inside one of the five Platonic
solids.

The Platonic solids are extremely symmetric polyhedra, where each face is
the same shape and size, and all the edges meet at the same angle. The first
of these is the tetrahedron, where each of the four faces is a triangle. The next
of these is the cube, which you probably already know has six square faces. In
fact, if you are of the geekier sort, you may find the three remaining solids, the
octahedron (eight faces), the dodecahedron (twelve faces), and the icosahedron
(twenty faces) to be very familiar, as they (along with one non-Platonic 10-sided
polyhedron) form the full set of dice for some popular table-top roleplaying
games.

You can likely imagine just how deeply satisfying it would be to place a crys-
talline sphere for Saturn’s orbit upon a delicate pedestal, gently set a perfect
cube inside only to then open the cube, place another crystalline sphere inside
for Jupiter’s orbit and so continue all the way down until in the center of it all
you place the golden orb of the Sun. Here was perfect symmetry, the wisdom
of the ancient Greeks, and the loving hand of God himself all made manifest in
stunning harmony. Kepler was understandably very excited about this. His first
action was to write this new hypothesis down in a treatise he called the Mys-
terium cosmographicum (Cosmic Mystery). He reached out to his old professor
Mastlin to help him publish the work and then, naturally, sent an unsolicited
copy to virtually every influential astronomer and notable prince (and potential
patron) in Europe. Fortunately for Kepler, printed works were still relatively
difficult to come by, and spam hadn’t been invented yet, so Mysterium cosmo-
graphicum was not only read but was in fact fairly well-received in most circles,
and led to some wonderful correspondence with various luminaries of the age.

While recognition and praise for a job well done is tremendously satisfying,
it rarely pushes science forward. So it should be unsurprising that it was not
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Mysterium cosmographicum that fundamentally changed our understanding of
the universe. Rather, it was the short and fairly congenial letter sent to Kepler
by Tycho Brahe that said (heavily summarized) “You're wrong.”.

Tycho Brahe, some twenty-five years Kepler’s elder, was already a titan in
the field of astronomy when he and Kepler began their correspondence. Born
into the highest and most politically connected of Denmark’s noble families, he
was expected to study law and follow in the footsteps of his many relatives who
had been Privy Councilors to the Danish king. He was sent to the University of
Copenhagen as a teen and found himself fascinated by the study of astronomy,
in no small part due to having the chance to observe a solar eclipse that occurred
a day later than predicted. At the age of sixteen, he observed what is called
a Great Conjunction - a conjunction of the planets Jupiter and Saturn - and
noticed that the planetary tables predicting the event were off by two days from
Copernicus’ model and by a whole month from the more accepted Ptolemaic
model. The young Brahe concluded that the problem with the models was a lack
of observational data, and he began recording his observations of the planets
and stars while still at university.

While his family encouraged him to travel and hoped he would be similarly
entranced by law and politics, Brahe only fell further into scientific studies,
adding alchemy and medicine to his areas of interest. Eventually resigning
themselves to his fate, Brahe’s family supported him in building his first obser-
vatory and laboratory on his uncle’s estates at the dissolute Herrevad Abbey.
It was here that Brahe observed a supernova and published his observations
in his first significant work, De stella nova (The New Star). His new discov-
ery brought him significant attention, and with it the freedom to lecture on
astronomy, visit other observatories in Europe, and generally live the kind of
flamboyant life that Brahe seemed to favor (his infamously missing nose was
long gone, having been cut off during his university days in a drunken duel with
a cousin at a holiday engagement party). Brahe made good use of his travels to
recruit tradesmen and artisans for King Frederick II of Denmark to help build a
new palace at Elsinore!. Upon his return to Denmark, the king, still wishing to
keep Brahe as a key courtier, was quite keen to give him one of Denmark’s more
influential estates to rule over. Brahe demurred, preferring not to be distracted
from his scientific studies by politics. When Frederick II realized that Brahe
was planning to leave Denmark entirely to continue his studies, he offered him
the island of Hven instead and sufficient funds to build whatever facilities he
felt he needed to pursue research there.

Sandwiched between Denmark and Sweden and within easy sailing distance
of Copenhagen, Hven had historically been a small freehold of farmers and
boasted a single fishing village and one prominent church. As Lord of Hven,
Tycho Brahe set about building not one, but two of what he called “observato-
ries” (and what we would call “palaces”), along with a robust infrastructure to
support them. After establishing a printing press to allow him to publish and

Yes, that Elsinore, and there is some strong evidence than the moody and entirely too
clever for his own good Danish student and princeling we call Hamlet was in part inspired by
Tycho Brahe.
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distribute his scientific works, Brahe even went so far as to build his own paper
mill, growing frustrated with seemingly endless paper shortages at his press and
having to send men out for months at a time to scour northern Europe for a
reliable source of paper. He threw lavish parties, hosted many dignitaries for the
Danish crown and spent astonishing sums of the king’s money on research. He
attracted a number of intellectuals and scientists to assist him in the develop-
ment and construction of complex astronomical instruments and in the rigorous
observation and recording of the movement of the planets, stars, and other sig-
nificant celestial bodies in his observatories Uraniborg and Stjerneborg, as well
as other alchemical and botanical experiments. Ever one to keep his royal patron
content, Brahe also carefully composed lavish nativity horoscopes for the birth
of each prince and princess of Denmark, as well as regular astrological calendars
filled with thoughtful insights into politics, economics, and military movements
for his king. As strange as it seems to us now, it was the value of Brahe’s
astrological work and prognostication that drove King Frederick II to invest so
consistently and heavily in Brahe’s scientific complex. At its height, Frederick
IT was spending approximately 2% of the GDP of Denmark - about the same
percentage that the United States spent on the Apollo Moon landing project!
- on the facilities at Uraniborg. Brahe used that wealth to not only invest in
infrastructure and instruments, but to cultivate experimentation and publica-
tion among the promising students of the University of Copenhagen and others
from Germany with contracts much like our modern post-doctoral research pro-
grams; he maintained close contact with his researchers as they dispersed across
Europe and advanced their own careers further. He sent stacks of books to the
great Frankfurt Book Fair for distribution across Europe and produced lavishly
bound copies both for Frederick and for other significant European princes.
And, most significantly to our story, every night he and his assistants painstak-
ingly recorded the position of various planets, stars, and comets as they moved
across the sky for fifteen solid years.

In short, for a long time it was really good to be Tycho Brahe and an ex-
traordinary opportunity to be able to visit and study at the bustling Uraniborg
and witness the gears of science moving forward. Brahe envisioned that Urani-
borg’s observatories and laboratories and tireless research would long outlast
him, carried forward under the purview of his young sons. Frederick II was
happy to oblige him in that, even despite the mildly-troubling fact that Brahe
had married a common woman, making his children not part of the nobility and
unable to inherit his vast estates automatically as his heirs. Even Frederick II’s
death a decade or so after Uraniborg was established was not seen as a terri-
ble setback, as Tycho Brahe had so many close relatives in the regency of the
young king Christian IV that the future of his island seemed well assured. Once
Christian IV took his throne, however, the young king showed that he was more
interested in consolidating his power and limiting that of the Danish nobility.
He also did not see the value in spending vast sums on scientific research that
could instead be put into military spending for a country on the brink of war.
While Tycho Brahe had charmed the nobility and many academics, he had not
fostered a great love in the hearts of the native Hven families who had been
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put to work building his elaborate research center, and he had inadvertently
run afoul of other researchers at the University of Copenhagen who resented
his unprecedented access to resources and money. A handful of scandals and a
conveniently timed riot of the common folk outside the door of Brahe’s Copen-
hagen mansion gave the king an opportunity to confiscate the island and send
Tycho Brahe frantically scrambling to pack as many of his instruments and as
much of his research as he could and depart Denmark hastily before he lost even
more.

Brahe was forced into exile with nothing of particular value beyond his family
and a large catalog of unpublished astronomical data. As one does as exiled
nobility, he spent the next couple years shuffling from castle to castle across
Europe, relying on the hospitality of any friend of sufficient rank and wealth
to support his entourage in suitable fashion. As hope of reconciliation with
Christian IV faded, Brahe called in every favor and reached out to every contact
trying to find a connection to a new patron who could support his continued
research and enable him to publish his precious astronomical data.

It was in the midst of this uncertainty that Johannes Kepler’s Mysterium
cosmographicum and accompanying letter reached Brahe. He read the book with
interest but it had the misfortune of arriving from the courier with another short
work by the German mathematician Nicolaus Reimus Ursus. Brahe was well-
acquainted with Ursus — they had a bitter rivalry that went back to Ursus’ brief
studies at Uraniborg. Ursus, also highly gifted mathematically, had little formal
education as he had been born into the peasantry and worked for many years
as a pig herder. He had fought to be taken seriously as a mathematics student
and his time at Hven was cut short when another of Brahe’s assistants caught
him frantically copying down astronomical data and smuggling his copies in his
pants. He’d taken Tycho Brahe’s novel geo-heliocentric model of the universe,
where the sun and moon revolved around the earth and the remaining planets
revolved around the sun revolving around the earth, and published it as his own
work. Now, in the introduction to the defense of geo-heliocentrism being Ursus’
idea, Ursus had republished Kepler’s accompanying Mysterium cover letter to
him in which Kepler had praised Ursus lavishly.

Ever the diplomat, Brahe’s letter back to Kepler was cordial and praised
Mysterium, noting that it was very clever even if data he possessed showed it to
be completely incorrect. He went so far as to invite Kepler to visit and discuss
the ideas within the book before launching into a condemnation of Ursus. Kepler
responded with a heartfelt apology for any insult that his praise of Ursus might
have given. The two continued in correspondence on astronomical matters while
Kepler taught at Graz and Brahe sought a patron, ultimately securing himself
the position of court astronomer and mathematician to Rudolph II, the Holy
Roman Emperor. Tycho Brahe was able to move his family to Prague where
they were kept in the aristocratic style they were accustomed to. Rudolph II
even granted him funds to construct a new observatory in Prague. It was from
a position of much greater strength that Brahe was able to again reach out to
Kepler and invite him to Prague to discuss the finer details of his Mysterium
model.
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For Kepler, the timing of this invitation could not be better. Religious unrest
and sweeping militant Roman Catholicism were making Graz a very dangerous
place for Protestants. Kepler had reached out again to his mentor Méstlin about
the possibility of securing a faculty position at Tiibingen, but there were simply
no opportunities for as radical a thinker as Kepler was seen as in his homeland of
Styria (in modern-day Austria) at that time. Faced with the strong possibility
that his properties and household goods would be lost if he stayed in Graz, an
extended visit in Prague offered him a reprieve from these earthly woes and a
chance to focus on the puzzle that the heavens presented him.

While he arrived in Prague with a great deal of enthusiasm at the prospect
of collaborating with Tycho Brahe, Kepler soon found the experience to be
frustrating. During his time in Hven, Brahe had studied and heavily annotated
Copernicus’ works, and rejected Copernicus’ heliocentric model in favor of his
own geo-heliocentric model on the basis that his much more complete observa-
tional data was in contradiction to Copernicus’ perfect circular orbits. Brahe
had shared this concern with Kepler in his correspondence, and Kepler was
eager to study Brahe’s data and to find the eccentricities that highlighted the
flaws Brahe saw in Kepler’s model. He was disappointed to discover while there
that Brahe, previously burned by Ursis and others, did not grant Kepler access
to his catalog but rather would bring up a random astronomical point - “today
something about the Apogee, tomorrow something about the knots of another
planet” - at communal mealtimes.

Eventually, Brahe relented somewhat and suggested that perhaps Kepler
would be content to study Mars, whose orbit with regular retrograde motions
had been a particularly troublesome puzzle. Brahe himself had worked on the
problem of Mars during his time in Hven and had not made satisfactory progress.
Now he thought it a suitable challenge for the bright and highly motivated
Kepler. Kepler was quick to agree, but because Brahe was so cautious with his
data, Kepler estimated that it would take at least two years to sift through the
great volume of material adequately to establish Mars’ path. At this point, two
very large egos got in the way of things and after heated disagreement, Kepler
left Prague angrily and returned to Graz. It was some months before the two
astronomers reconciled and a few months more found Kepler and his family
exiled from Graz permanently and seeking a home and long-term contract in
Brahe’s service in Prague.

Now we would love to be able to tell you that what followed was a long and
brilliant period of intense collaboration between these two astronomical giants
whose mutual respect and driving curiosity lead to each to many wonderful
discoveries, but life is inevitably messier than that. Kepler settled himself in to
working on the problem of Mars’ orbit, being cautiously fed one page of Brahe’s
observational data at a time. Kepler himself described Brahe as stingy with his
data, lamented his inability to copy faster, and even went so far as to ask his
mentor Mastlin to write to Brahe and ask for some data himself so that Mastlin
could then share the precious intelligence back with Kepler. Meanwhile, Brahe,
who preferred to always have several projects in the works at one time, proposed
to Emperor Rudolph that he could prove his worth producing a new and much
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more accurate set of astrological tables. These Rudolphine Tables would chart
the planetary motion through the constellations in great detail, allowing anyone
who used them to draw up much more accurate horoscopes than they were able
to using the current error-ridden charts that drew on Copernicus’ scant data.
With ongoing rumblings of war across Europe, Emperor Rudolph saw great
value in better astrological predictions just as Frederick II had before him and
was happy to fund compilation and publication of these tables by Brahe and his
staff.

After some months of this routine of Kepler picking the Mars observations
from the greater body of data page by page, Brahe became very suddenly and
dramatically ill with a bladder ailment following a long formal banquet. He
suffered great pain, fell into a feverish delirium, and spent his last days pleading
with Kepler to not let all his work have been in vain, and making him promise to
publish the Rudolphine Tables and promote Brahe’s geo-heliocentric model over
Copernicus’ heliocentrism. Within two days of Brahe’s sudden death in 1601,
Kepler found himself appointed his successor as Rudolph’s Imperial Astronomer
and Mathematician. Rudolph announced his intention to purchase all of Brahe’s
instruments and research data and at last gave Kepler unrestricted access to
Brahe’s research so that he might finish up the Rudolphine Tables as he had
promised Brahe on his deathbed.

Finally, Kepler felt he had everything he needed to sort out Mars’ orbit and
show that it agreed with the tidy circular orbits of the Copernican model. As he
really dug into the data this time, he quickly ran into two significant problems.
The first was that now that he had Brahe’s observations of Mars laid out neatly
before him, it was very apparent that the path that Mars took through the night
sky did not fit the circular orbits he expected. The second problem was that
while Rudolph was quite keen to keep Brahe’s research materials, they did still
technically belong to Brahe’s heirs and the family was very much aware that
their patriarch’s life’'s work was not in their hands.

The responsibility for dispersing Brahe’s estate ultimately fell to his son-
in-law, Frans Tengnagel van de Camp. Tengnagel was a diplomat and minor
noble who had come to Hven to research, and Brahe had used him as a presti-
gious agent and courier to deliver the most opulent copies of his publications to
various dignitaries. He had married Brahe’s daughter Elisabeth a few months
before and travelled with his new bride to his family estates where she had given
birth to Tycho Brahe’s first grandchild only a month before Brahe’s death. The
following year Tengnagel and Elisabeth returned to Prague to find the family
in desperate need of money and selling off what few copies of Brahe’s published
works they had to cover their living expenses. While Rudolph had promised
a large sum of money, and interest on that sum, for Brahe’s instruments and
research materials, he had not only not paid Brahe’s wife that money owed,
but had fallen behind on paying Brahe’s pension prior to his death. Tengnagel
immediately set about putting things to rights and this included confronting
Kepler and demanding Brahe’s observational data back. Kepler, annoyed that
he was in danger of again losing the precious data while the Mars problem re-
mained unsolved, and generally scornful of Tengnagel’s ability as an astronomer
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and his insistence on promoting Brahe’s geo-heliocentric model, very grudgingly
gave back almost all of Brahe’s data. He did not expect Tengnagel to notice that
all the information relating to Mars was conspicuously absent. Whatever Kepler
thought of Tengnagel’s astronomical abilities, Tengnagel was not stupid enough
to overlook an entire planet, and what resulted was a spectacular squabble over
Brahe’s intellectual property rights that any modern movie studio would find un-
cannily familiar. Both sides incessantly demanded more money from the other,
mostly due to the fact that Emperor Rudolph did a terrible job of paying either
what he promised them. Kepler had little interest in the Rudolphine Tables
while the Mars problem remained unresolved, Rudolph had no idea why Mars
was at all important, and Tengnagel knew he could not complete and publish
the Rudolphine Tables without the Mars data. He reluctantly came to realize
that he could not complete them without Kepler’s astronomical and mathemat-
ical knowledge as well. Kepler, meanwhile, was convinced that Tengnagel was
hoarding Brahe’s data in the hopes of making significant astronomical discov-
eries on his own and getting them to press himself before Kepler would be able
to do so, and believed Tengnagel was deliberately throwing up roadblocks to
Kepler’s own work to slow him down. Suffice it to say that nobody got much
of anything done for a couple years until finally Rudolph’s Imperial Confessor,
Johannes Pistorius, mediated a delicate agreement that gave Kepler access to
all of Brahe’s data in exchange for his assistance in completing the Rudolphine
Tables for publication.

Kepler had now endured years of religious persecution, monetary woes, a
complete inability to achieve recognition from the institution he loved most,
and fights over data access and publication rights; but nobody except Kepler
seemed to care very much that he still had not sorted out the problem of the
Mars orbit. He had gone from being a darling of astronomical thought across
Europe to somewhat minor court functionary of the Holy Roman Empire. At
last he had unfettered access to the data he needed, but he was constantly ham-
pered by a lack of time. The Emperor expected that Kepler would appear at
court routinely, for at least an hour a day. Rudolph valued these astrological
consultations despite Kepler’s low regard for and general lack of interest in as-
trology. Kepler complained bitterly to far flung mathematical colleagues about
his inability to get anything done and did not seem to suspect that he was in
the midst of the most signficant work of his entire career.

In the advancement of not only science, but pretty much any endeavor, there
seem to be two kinds of inspiration. The first strikes suddenly and unexpectedly,
flowing through you intensely, leaving you shaky and teary-eyed and bubbling
with energy and with a work that is astonishingly complete, beautiful, and un-
accountably easy to bring forth. It was this kind of inspiration that Kepler had
experienced in writing his Mysterium cosmographicum and it unquestionably
seemed to come to him directly from God to his own humble soul for reasons
he could not explain.

The other kind of inspiration is slow and gradual, such that you almost might
not realize it growing within you. It is as though the problem before you is a
chestnut, hard and unyielding and hammer as you might at it, it will not break
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open for you. However, if instead you take the chestnut and soak it, with time
and patience you will find it gradually softens and softens until at last you lift
it from the water and it falls open in your hand. Time grants you what force
could not attain and you can easily examine the elements of value that were
locked inside before. Mars was Kepler’s chestnut and as frustrating as his time
in Prague was, it was gradually softening the problem until he was able to tease
it apart with a method so simple it could only be seen as genius.

As we have seen, since the observations of the Babylonians and Greeks, it
was known that the planets lie (basically) in a single two-dimensional plane (the
ecliptic). The Earth lies in this plane as well, which means that when looking
at the planets in the night sky, every visible planet will appear to fall along a
straight line. While a formal system of polar coordinates had not been defined
yet, the ancient Greeks understood that to explain where in space something is,
in two dimensions? you need only an angle (ecliptic longitude in astronomical
terms) and a distance. The records on Mars’ position in the sky from Coper-
nicus and earlier astronomers gave ecliptic longitudes but were very sporadic,
sometimes here, sometimes there, with large gaps between the observations.
Brahe did what no one in the world had done before, recording the declinations
and right ascensions of all the planets every single night (weather permitting)
for fifteen consecutive years. This gave Kepler the ecliptic longitudes of Mars
whenever it was visible, which he needed, but gave no distances, which was
the other thing Kepler needed to define where Mars was in space. Kepler had
another problem with this data. While Brahe firmly believed that the Earth
was fixed as the center of the visible universe, Kepler’s heliocentric model meant
that all the observations of Mars from the earth were from a moving vantage
point. It didn’t really help that Kepler didn’t know what the orbit of the Earth
was either.

Kepler was stuck with two unknowns, the Earth’s orbit and Mars’ orbit and,
at best, half a piece of data, the ecliptic longitude information, which gave the
relative positions between the Earth and Mars for fifteen years. With too many
unknowns and not enough equations it seemed like an impossible problem to
solve. Kepler also realized that he would not be able to work out the orbit
of Mars until he had figured out the orbit of the Earth. The earth’s motion
kept changing our vantage point for observations of Mars so without knowing
where in space we were, we couldn’t figure out where another moving object
was relative to us.

In between trundling off to give Emperor Rudolph his daily horoscope, Ke-
pler came up with the ingenious idea that the way to get himself unstuck in this
problem was, ironically, to stick something else in place. The sun was already
a fixed point in his system and with a second fixed point, he would be able

2In three dimensions, you need two angles (traditionally given by astronomers in equatorial
coordinates, with the two angles known individually as declination and right ascension) and
a distance to completely specify a location, but knowing that all the planets lay in a single
plane allowed one to replace these two angles with a single angle, namely the ecliptic longitude
which was a certain combination of the declination and right ascension that took into account
the tilt of Earth’s axis of rotation.
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to figure out the position of the earth. In mathematics, the angle-angle-side
theorem states that if you know two angles of a triangle and the side next to
them, you know the entire triangle, and can therefore work out the location of
one vertex relative to the other two. This technique, known as triangulation,
was known since Phoenician times and is used today in our GPS systems. In
Kepler’s system, with the sun fixed and the earth moving, the only remaining
object in this system that he could easily fix in place was Mars itself.

To fix Mars in place, Kepler needed some information he knew had already
been worked out by Copernicus. The Babylonians had found the amount of
time that it took Mars to return to the same place in the sky, called the synodic
or apparent period (it appears in the same place relative to the earth but the
earth has also moved in that time). This is 780 days. Copernicus knew that the
earth went around the sun once every 365 days, which meant that the angular
velocity of the earth was 1/365 rotations/day and the difference in angular
velocity between the earth and Mars was 1/780 rotations/day. By subtracting
the difference in angle of velocity of the two planets from the earth’s angle of
velocity, Copernicus arrived at 687 days as the sidereal period of Mars, or the
actual time it took Mars to orbit the sun and return to the exact same point in
space. Kepler likely did not say “Bingo!” because that word hadn’t been coined
yet, but this was precisely what Kepler needed. Bingo!

Kepler now only needed to look at Mars’ position relative to the earth in
intervals of 687 days, something Copernicus was never able to do because of
the sporadic nature of the observations of Mars in his day. Kepler, however,
had Tycho Brahe’s fifteen years of consistent planetary observations. From his
other calculations related to what was to become his second law, Kepler already
suspected that the orbits of the planets were not circular and that the Sun was
not in the center of the orbit. He had put quite a lot of effort into both an
elliptical shape, which he then set aside as being too computationally complex,
and an egg shape, which just did not work at all. To define the shortest path
as an ellipse rather than a circle, Kepler would need a minimum of four defined
points. Brahe’s years of data would have ideally yielded approximately eight
data points, but between Mars not being visible at night some portion of the
year and the sky above the island of Hven not being perfectly cloudless at all
times, Kepler ended up with five fixed points to give a good approximation the
orbit of the Earth and produced an orbit that was just very barely elliptical. By
picking another fixed position for Mars, he could produce a new set of points
and further refine Earth’s orbit, confirming that these points fell upon the ellipse
he had found. He continued in this manner (complaining bitterly about having
to repeat his calculations some seventy times) until he had reasonably defined
the Earth’s orbit. Kepler could then use the same method, fixing the Earth at
one point along its orbit around the Sun, to define Mars’ orbit also. The orbit
of Mars, very helpfully, is the most eccentric (which is to say, the least circular)
elliptical shape which made Kepler’s computational results very clear.

Kepler didn’t have an army of assistants to do the mathematical calculations
for him and even he found the repeated calculations to be tedious, so he took
the elliptical orbits of the Earth and Mars and extrapolated out that all orbits
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are elliptical in shape and that the Sun is located at one of the two focii of the
ellipse. Kepler’s lifelong love of geometry meant that he intuitively understood
various properties of the ellipse, but in case you have forgotten or never knew,
the focii are two unique points in the center of the ellipse where the sum of
the distance from both points to any point on the edge is always the same. If
you think of a circle as a kind of ellipse where both focii are at the same point,
precisely in the circle’s center, then you can hopefully see how it made perfect
sense to Kepler that if the Sun would be in the center of a circular orbit, it must
be at one focus of an elliptical orbit.

This idea of all planets having an elliptical orbit with the sun at one focus
became Kepler’s first law of planetary motion and was published in his book
Astronomia nova (The New Astronomy) together with his second law, which
he had already worked out. The second law relates to the speed at which
planets seemed to move and to reach his conclusion, Kepler again had to go
to the observational data. If the position of the Sun was averaged out across
observations, it suggested that the Sun (really the Earth) moved at a constant
velocity, however if the actual position of the Sun in the sky at each observation
was considered independently, it opened up the possibility that the planetary
motion was not uniform. Again, Kepler made many calculations and, as he
himself noted, a considerable number of mistakes which seemed to miraculously
cancel each other out. He arrived at a conclusion that the velocity of the a
planet around the Sun changes, moving fastest when it is nearest the Sun and
slowest when it is farthest away. Since a planet is always the same distance from
the center of a circle (where Kepler believed the Sun to be), this was what gave
him the first thought that perhaps the orbits of the planets were not circular
at all. He realized that since this change in velocity was inversely proportional
to the distance from the Sun, that he should be able to measure the change in
planetary position over a set amount of time and add up all those pie-slice areas
into a whole orbit to figure out the orbital shape. If you are well-acquainted with
calculus, this will look very much like integrating around the ellipse, and that
is, in fact, how close Kepler came to developing calculus to solve this problem.
When the calculations became unwieldy enough that he felt it necessary to set
the problem aside (and ultimately had to rediscover the ellipse through the
triangulation method), he moved forward with the conclusion that at least you
could define the change in velocity by noting that an equal area of the orbit
shape was covered in an equal time. This second law of Kepler is a bit harder
to visualize than the first, but imagine you have baked an elliptical pie and you
cut it into twelve equal pieces (taking the same amount of time to cut each
slice, of course), with the tip of each slice ending at one focus (where the Sun
is). If you arrange the pie slices on another plate, some will be short and fat
and others will be long and skinny and when you offer them to twelve children,
a spectacular fight will undoubtedly break out over who got the biggest piece
no matter how many times you assure them that each piece is perfectly equal.

Interestingly enough, Kepler’s second law was not the only time he nearly
invented calculus to solve a problem and the other occasion he did so nicely
highlights what an incredibly useful tool calculus is and how inevitable its de-
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velopment was for humanity. Kepler was quite keen to marry again following
the death of his first wife and when he found a suitable young lady, elaborate
wedding festivities were enthusiastically planned. In the process of buying wine
for the wedding feast, Kepler was horrified by the typical winesellers’ method of
calculating how much wine was in a barrel to figure out its price. The winesellers
would insert a stick through a small hole in the side of the barrel all the way to
the opposite corner of the barrel lid and then based on how much of the length of
stick fit in the barrel, give a rough calculation of the volume of wine. Kepler was
convinced that the shape of the barrel affected the volume of wine it could hold
(which it does) and set out to calculate what barrel shape would hold the largest
volume of wine. To figure this out, Kepler sort of brute-forced an integration
of circular barrel slices across the length of the barrel to determine what barrel
dimensions would hold the least and most wine. To his embarrassment, Kepler
discovered that the barrel shape the wine merchants used was actually the one
that held the most possible wine, so after his lengthy calculations he went back
and purchased a sufficient amount of wine. By all contemporary accounts, the
wedding feast was lovely and Kepler and his new wife enjoyed a happy marriage
and loving family that he greatly treasured the remainder of his life.

Duties at the the Imperial Court and general lack of funds meant that it took
Kepler some years to publish Astronomia nova, but he continued his work of
trying to make sense of the universe along with shuffling from city to city looking
for a nobleman willing to make good on the salary the Holy Roman Emperor
owed him. In 1619, Kepler published a vast treatise called Harmonices mundi
(The Harmonies of the World). It is within these pages that we find buried
what we call his third law, that the squares of orbital periods of the planets are
proportional to the cube of their average distance from the Sun. If this seems
like a somewhat odd relation to have found, it is worth noting that this result
was not the central point of Harmonices mundi at all. While the “harmony”
part immediately brings to mind music and Harmonices mundi does have some
sections that jump through rather elaborate hoops to try to relate astronomical
proportions to musical intervals, the “harmony” Kepler wrote of referred more to
an order, pattern, and aesthetic sense of content that he very firmly believed the
universe must have, being the masterful work of a thoughtful God. The entire
book is really something of a love-letter to geometry. Kepler works very hard to
begin with first geometrical principles and slowly build to a mathematical model
for movements of the planets. Along the way, he not only considers what music
the planetary orbits should make, but the mathematical theory of how they
exert an astrological impact on the souls and even the weather of Earth. The
early chapters of Harmonices mundi are one of the first mathematical works ever
written on the subject of tessellations - ways to tile a plane with copies of one or
more shape in a repeating pattern. In addition, the book goes into considerable
depth regarding polygons (2-dimensional multi-sided shapes) and polyhedra (3-
dimensional multi-sided shapes) and his thoughtful and detailed consideration
on these subjects calls back to his excitement over the Platonic solids and their
importance in the arrangement of the solar system. It is unsurprising that
in the writing of this work, Kepler put a great deal of time looking at every
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proportional relation he could think of to see if there was some significance
there, and thus his third law emerged with dozens of other geometrical siblings
of rather less note.

In fact, none of what we consider Kepler’s most significant works today re-
ceived much acclaim in his lifetime. Most other astronomers, even his good
friend Galileo Galilei, regarded the three laws and the mathematical model
of our solar system they make possible them to be only interesting curiosities
about the heavens. Kepler continued to be plagued by a lack of funds and polit-
ical unrest, fleeing one town after another to avoid persecution for his staunch
Lutheranism and trying to collect the salary owed him from no less than three
Holy Roman Emperors. He became so desperate for support that he finally
threw all his efforts into getting Tycho Brahe’s Rudolphine Tables published,
some 15 years after Emperor Rudolph had died. It was this work that generated
considerable excitement as the stunning accuracy of the tables enabled other as-
tronomers to put it to immediate use. Now they could write what they felt were
much better horoscopes making sense of the chaos that was then sweeping across
Europe.

Kepler himself spent his last years again writing horoscopes for a steady
source of income. Though he had radically reshaped our model of the heavens,
he went to his grave believing that if his beloved nested Platonic solids and crys-
talline spheres did not literally hang in space, that their proportions were laid
across the skies, fundamentally shaping our solar system. Other astronomers
and mathematicians quietly mourned his death but it was not until an ambitious
Englishman named Isaac Newton set about proving Kepler’s principles that the
world began to realize that Kepler had given us something of far more gravity
than even Tycho Brahe’s observational masterpiece.

Mathematical notes

The modern mathematical description of the solar system models of Ptolemy,
Copernicus, Brahe, and Kepler is greatly assisted by the concept of Cartesian
coordinates, introduced by René Descartes in 1637, several decades after the
works of Brahe and Kepler. In this system, every location in a plane such as
the ecliptic is represented by a pair (x,y) of real numbers x,y, which measure
the displacements (in some fixed unit of length, such as kilometers, miles, or the
Astronomical Unit) from some arbitrarily fixed origin (0,0) in this plane with
respect an arbitrarily chosen pair of perpendicular axes. Such a pair of numbers
(z,y) is also known as a (two-dimensional) vector.

The heliocentric model of Copernicus is the easiest to describe, if one assumes
perfectly circular orbits centered at the Sun. In this model, the Sun is placed
at the origin (0,0) of the ecliptic plane. The Earth moves in a constant circular
motion in this plane around the Sun; mathematically, its location at any given
time ¢ can be described using modern trigonometry by the formula

(rgcos(wgt + 0g),rgsin(wpt + 0g)) (4.1)



41

at a given time ¢, where rg is the radius of the circular orbit (that is, the distance
from the Earth to the Sun, which is the Astronomical Unit), wg is the angular
velocity, and O is a phase offset that is of little physical significance (it depends
on the choice of axes in the Cartesian coordinates). For sake of discussion we
shall assume that the angular velocity wg is positive (corresponding to coun-
terclockwise circular motion) rather than negative (corresponding to clockwise
circular motion). Trigonometry tells us that the sine and cosine functions are
periodic with period 27:

cos(f + 2m) = cos(f); sin(f + 27) = sin(h). (4.2)

From this and a little algebra, we see that whenever the time ¢ is advanced by
an amount @ then the circular motion (4.1) will return to where it started,
and the Sun will appear to return to its original position (with respect to the
fixed stars) as seen from the Earth. This happens once a year (approximately

365 days); thus

2
T~ 365.25 days (4.3)
wE

and so the orbital velocity of the Earth can be computed as

2

—  ~0.017 days L. 4.4
365.25 days 0017 days (44)

WE ~
Similarly, the position of Mars in the Copernican model at a given time ¢ would
be given by the formula

(’I“]\/[ COS(W]\/[t—‘reM),TM sin(wMt+€]V1)) (45)

for some numbers ra;, war, Opr. The angular velocity wp, of Mars required more
effort to compute than wg, since all observations were from the perspective of
the Earth rather than of Mars. But observe from (4.2) that whenever the phases
wgt + 0 and wyst + 0 differ by a multiple of 27, thus

wgt +0g = wpt + O + 2km

or equivalently
(wg —wp)t+ (0 — O0p) = 2k7 (4.6)

for some integer k, then the position of Mars is a scalar multiple of the position
of Earth:

(ras cos(wart+0nr), mas sin(wpst+05r)) = :—M(TE cos(wpt+0g), rgsin(wgt+0g)).
E

Geometrically, this means that the Sun, Earth, and Mars become in opposition,

with Mars positioned on the exact opposite location to the Sun as seen from the

Earth. From (4.6) we see that Whenever one starts from an opposition, and then

advances the time ¢ by an amount — , then one returns to another opposi-

tion (with k replaced by k + 1, reﬂectlng the fact that the Earth has “lapped”
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Mars by one orbit). From ancient Babylonian observations these oppositions
were known to occur once every 780 days (this is known as the synodic period
of Mars), so

2
T~ 780 days.
WE — WM

Combining this with (4.4) one can soon compute the orbital velocity of Mars in
the Copernican model,

N 2 B 2
" 365.25 days 780 days

war ~ 0.0091 days™*

with the true period (also known as the sidereal period) of Mars is given by

2
“T ~ 687 days.
W

Approximately 106 days before or after an opposition of Mars, one can observe
that Mars is in quadrature, which means that it makes a right angle with the
Sun when viewed from the Earth. Since the angle between Mars and Earth
when viewed from the Sun is equal to zero at opposition, and completes a full
revolution of 27 radians once every 780 days, at quadrature this angle becomes
2

255 X 106 ~ 0.854 radians (or about 49 degrees). From trigonometry, we can

then compute the ratio ry;/rg of the distances between Mars and Earth as

L
TR cos 0.854

and so Mars is about 1.52 Astronomical Units away from the Sun in the Coper-
nican model. See Figure 4.1. More sophisticated calculations of this type can
compute the ratio between the distances to Mars and Earth when Mars appears
in other locations relative to the Sun than in quadrature. Kepler discovered
that this ratio varied slightly at such locations, leading him to conclude that
the Copernican model was not perfectly accurate; eventually he was able to use
these sorts of calculations to work out a better description of the orbits of Earth
and Mars, leading to his famous laws of planetary motion.

Tycho Brahe modified the Copernican model to an equivalent model, now
known as the Tychonic model, which placed the Earth at the origin (0, 0) rather
than the Sun, but nevertheless gave the same observational predictions as the
Copernican model. To oversimplify® matters, the modification was simply to
subtract the Copernican position (4.1) of the Earth from every object in the
Solar System using the vector subtraction law (a,b) — (¢,d) == (a — ¢,b — d),
thus for instance the Sun would now be placed at

(0,0) — (rg cos(wpt + 0g), rg sin(wgt + 0g)) (4.7

3Here we neglect a separate modification of the Tychonic model, which was to make the
entire Solar System also rotate around the Earth once a day, instead of having the Earth
rotate on its axis once a day.
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Figure 4.1: The relative positions of the Sun, Earth, and Mars at quadrature.

rather than at the origin (0,0), and Mars would now be placed at

(rar cos(wart + Opr), rar sin(wpst + 0pr)) — (rg cos(wpt + 0g), re sin(wet + 0g)).

(4.8)
In Tychonic model, the Sun would now revolve around the Earth in a perfect cir-
cular motion (4.7), while the position (4.8) of Mars is formed by superimposing
an additional rotation (4.5) of Mars around the Sun.

One can also view the motion (4.8) in a different way: instead of start-
ing with the Sun’s position (4.7) and adding the original rotation (4.5) on
top of it, one could start with the circular motion described by (4.5) (which
is no longer occupied by any celestial body), and add the additional motion
—(rg cos(wgt + 0g),rgsin(wgt + 0g)) on top of it; thus Mars would now be
thought of as revolving around an uninhabited point in space which in turn
orbits the Earth. The equivalence of these two perspectives can be viewed as
a consequence of one of the most fundamental properties of vector arithmetic,
namely the commutativity v + w = w + v of vector addition.

The Ptolemaic model is similar to the Tychonic model, with the main differ-
ence being that the location of planets such as Mars is scaled by an additional
positive scalar factor \j; from the position (4.8) in the latter model, giving a
location of the form

At (rag cos(wart+0nr), mas sin(wpart+0nr))— A (g cos(wpt+0g), re sin(wet+0g)).

As the operation of multiplying a vector by a positive scalar does not affect its
orientation, such a scaling would not affect predictions of where Mars would ap-
pear in the night sky. In the Ptolemaic model, a planet such as Mars would then
rotate around an uninhabited point Az (rar cos(wart + Oar), 7as sin(wart + 6ar))
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in space, which traced out a large circle known as a deferent. The smaller circle
around this point that Mars moved along was known as an epicycle. There
were additional complications to account for the cycle of day and night, and
also Ptolemy ended up shifting some of the circles to not quite be centered at
the Earth in order to try to match observational data more perfectly; as such,
the model ended up being quite complicated, and eventually abandoned af-
ter Kepler’s version of the Copernican model became accepted by astronomers.
However, a basic insight of the Ptolemaic model still persists in modern math-
ematics, namely that any periodic motion can be described (at least approxi-
mately) by superimposing one or more circular motions atop each other, much
as the epicycle motion was superimposed upon the deferent motion. Nowadays,
this insight is captured by the modern theory of Fourier series, which we will
not discuss here.

The three laws of Kepler were eventually demonstrated by Isaac Newton
to be consequences of his famous laws of motion, and particularly the inverse
square law of gravitation, which asserts that the gravitational force exerted on an
object is inversely proportional to the square of the distance to that object. The
full derivation of Kepler’s laws from Newton’s laws requires a certain amount
of calculus and will not be reproduced in full here. Instead, we will mention
just two aspects of the derivation. Kepler’s second law can be derived from the
law of conservation of angular momentum in Newtonian mechanics; this law
makes an orbiting body spin faster as it gets closer to the center of its rotation,
much as an ice skater spins faster when pulling her arms closer to her body; this
increased speed compensates perfectly for the reduced amount of area covered
by the orbit when it is close to the center, leading to the second law. Kepler’s
third law is a bit tricky to demonstrate in full, but one can anticipate it by
the following back-of-the-envelope calculation. Suppose that a planet stays at a
distance roughly R from the Sun, and takes a period T to perform a full orbit.
The distance traversed by this orbit is then proportional to R, so the velocity
of the planet is proportional to R/T. After a half-period %T of the orbit, the
velocity should reverse in orientation; to achieve this, the acceleration exerted
on the orbit needs to be proportional to (R/T)/(3T), which is proportional
to R/T?. On the other hand, the inverse square law asserts that the force
exerted on the planet is proportional to 1/R?; by Newton’s famous second law,
the acceleration must also be proportional to 1/R?. We conclude that R/T? is
proportional to 1/R?, which after some algebra implies that T2 is proportional
to R3, which aligns with Kepler’s third law.



