В компьютерном зрении часто приходится работать с двумерными изображениями, и значительно реже - с 3D объектами. Из-за этого многие ML инженеры чувствуют себя неуверенно в этой области: много незнакомых слов, непонятно, куда тут применить старых друзей Resnet и Unet. Поэтому сегодня я хотел бы немного поговорить о 3D на примере задачи определения шести степеней свободы, что в каком-то виде синонимично 3D object detection. Я разберу одну из свежих работ на эту тему с некоторыми отступлениями.
Кратко о задаче
Для начала давайте определимся, что такое шесть степеней свободы (6 DoF - degrees of freedom). Представим себе некоторый ригидный (неизменяемый, т.е. при трансформации все точки будут оставаться на той же дистанции друг от друга) объект в трехмерном мире. Чтобы описать его положение относительно наблюдателя понадобится 6 измерений: три будут отвечать за повороты по разным осям, а еще три - за смещение по соответствующим осям. Соответственно, имея эти шесть чисел, мы представляем, как объект расположен относительно какого-то базиса (например, точки, с которой ведется фотосъемка). Эта задача является классической для робототехники (где находится объект, который нужно схватить роборукой?), дополненной реальности (где нарисовать маску в MSQRD, ушки в Snapchat или кроссовки в Wanna Kicks) , беспилотных автомобилей и других доменов.
Я буду рассматривать статью MobilePose: Real-Time Pose Estimation for Unseen Objects with Weak Shape Supervision (Hou et al., 2020). Эта статья, написанная авторами из Google Research, предлагает надежный и, что немаловажно, быстрый пайплайн для решения задачи, будет уместно разобрать его по частям.