
A Distributed Intrusion Detection Prototype
using Security Agents

V. Chatzigiannakis, G. Androulidakis, M. Grammatikou, B. Maglaris

Network Management & Optimal Design Lab (NETMODE),
ECE Department – National Technical University of Athens (NTUA)

9 Iroon Polytechniou str. Zografou, Athens, Greece
{vhatzi, gandr, mary, maglaris}@netmode.ntua.gr

Keywords: Distributed Intrusion Detection, Central Management, Multicast Communication, IDMEF data model

Abstract

Intrusion Detection is the problem of identifying unauthorized use, misuse, and abuse of computer systems by

both system insiders and external intruders. Intrusion Detection Systems provide in depth packet analysis and
application awareness and can be deployed for discovering network attacks. In this scenario a system that gives
intelligence about the traffic on your network is necessary. This paper describes a prototype for Distributed
Intrusion Detection considering a large-scale network environment in order to monitor multiple hosts connected via
a network as well as the network itself. The design and implementation of our Distributed Intrusion Detection
prototype relies on Security Agents which monitor network traffic and report intrusion alerts to a central
management node. The Intrusion Detection Prototype is comprised of sensor and management elements. Distributed
operation is handled through the introduction of multiple sensors and the use of Security Agents that are
responsible for incident reporting and message propagation control.

1. Introduction

An Intrusion Detection System (IDS) has been traditionally categorized according to the way it

collects data and the detection method used on the data collected [1]. If the data processed originates
from one or more hosts, then the IDS is called host-based. This methodology is mostly based on
examining system logs and has become obsolete. However, if the IDS monitors a network of
interconnected hosts for malicious traffic it is called network-based. Network-based intrusion detection
systems are more efficient because of their ability to combine network traffic data with audit data from
individual hosts.

The second categorization divides IDS into anomaly detection and misuse detection systems. Anomaly
detection systems monitor the system and try to decide whether its behavior is normal or not. This is
achieved by keeping user group and host profiles. Usually a group profile is determined by the kind of
programs used, the current time and duration of the user session. A host profile is determined by
checking resources such as cpu and memory usage, the number of processes and users logged in. Such
systems have to be continuously updated and adapted to changes in system and host behavior.

Misuse detection systems on the other hand search for known attack signatures. A signature is a trail
of a known attack. For example, it may be a specific series of bits in the header of an IP packet. Such
systems resemble in their function to anti-virus programs. A weakness of this architecture is that they
have to be updated on day to day basis, by downloading new attack signatures.

Besides these classic approaches to the problem of Intrusion detection, there exists one more category:
the Distributed Intrusion Detection Systems. These systems have recently started to evolve, because of
the expansion of large-scaled networks. Traffic monitoring in such networks has been usually done in the
past by installing sensors on the border routers. Nowadays, this schema seems obsolete, because of the

mailto:@netmode.ntua.gr

burst in network capacity it is impossible for an IDS to monitor a gigabit link without experiencing
packet loss, no matter the hardware used. So, instead of using one central IDS, one should install a
distributed system of sensors spread in the network to be monitored.

However distributed systems introduce new barriers to be surpassed. First, the various sensors must
share a common protocol for communicating with each other. Second, their intercommunication has to be
secure, reliable and efficient; the data sent to the administrator must not be compromised and must not
produce too much extra traffic in the network. Moreover, a large number of sensors drive to an inefficient
management. This problem may become more intense in case of a denial of service attack towards one of
the sub-networks monitored. The alert messages from the sensors that detected the attack could be large
enough to result in extra flooding of the network. Another problem is the correct placement of the
intrusion detection sensors. This is a matter of great consideration and depends on the network topology
and special characteristics such as the number of routers and especially border routers, the bandwidth of
the links connecting routers and switches and the number of hosts. Finally, a major problem of a
Distributed Intrusion Detection System is the efficient manipulation of alerts from its sensors. The
central node of the system has to combine the heterogeneous data it receives and decide whether there is
an attack or not.

2. Architecture

2.1. Setting our goal

The main goal in our design is the intrusion detection in large-scaled networks. To address the

problems discussed previously, we propose the creation of a Distributed System that comprises of
heterogeneous Intrusion Detection Systems. Every sub-system is an autonomous Security Agent and is
installed on a designated host. If a system is attacked and disabled, another may transparently host take
its place. This scheme is efficient because of its ability to combine information from many sources. The
management of this distributed system consists of one or more central IDS nodes.

Figure 1. Agent Architecture

2.2. Agent Structure

The Agent performs a series of operations concerning network monitoring and simultaneously listens

for new directions from the central IDS node. Figure 1 sketches the outline of the agent architecture we
propose. We have designed and implemented three types of agents: a misuse detection agent, an anomaly
detection agent and an agent that conducts SNMP queries. Each Agent comprises of two main tiers. In
the lower tier, the Agent conducts network monitoring, collecting information from the sensor and
passing it to the next level. The upper tier is responsible for communicating with the Central node and for
controlling the lower tier’s operation. Communication with the central node is bidirectional, the agent
sends messages for announcing new attacks and for notifying that is operational whereas the central
node sends new configuration and policy rules.

2.3. System’s intercommunication

Figure 2 presents the system’s intercommunication which is achieved through secure and reliable

multicast messages. There are three main reasons for choosing multicast. The first reason is that by using
multicast the central IDS node may transparently and simultaneously control all agents. The system is
more scalable and easy to manage centrally. Moreover, the use of UDP in the transport layer is more
preferable in the case of a denial of service attack on the network, because TCP traffic is almost
impossible to pass through a flooded link.

Figure 2. Network Architectural concept

Consider a LAN experiencing a DoS attack. If the LAN’s intrusion detection system tried to

communicate with the central node using TCP through the LAN’s upstream link, the connection would
probably fail to be established. Although the packets transmitted by the IDS would reach their

destination, the ACK packets would likely be dropped. The other reason for choosing such a schema is
portability, ease of use and the possibility of using more than one central node for collecting messages.
While the main node reports the site administrator about the security events detected by the various
sensors, the secondary node passively and obscurely listens to the messages sent and is ready to take over
in case of hardware failure or a DoS attack targeting the primary system.

Moreover, it is desirable to use more than one IDS in every sub-network. This way we achieve load
balancing in detection. The wide variety of known attacks usually results in a great load for a signature
based IDS. To solve this problem, every system may focus in a narrow range of attacks so as be more
efficient.

The messages sent by the Agents to the central node are based on IDMEF (Intrusion Detection
Message Exchange Format) [2]. It is a draft of the IETF working group which researches intrusion
detection. IDMEF is an XML Document Type Definition for the exchange of messages between
Intrusion Detection Systems. It supports two kinds of messages: Alerts and Heartbeats. Heartbeats are
periodic messages. They mainly inform the central node that the system sending the message is
operational. Besides that, they carry general information about the Agent. Alerts carry information about
detected attacks, such as the analyzer that produced it, the identification of the attack, the source and
target ports, the IP of the target(s) and other optional data.

In order to solve the problem of security in Multicast we extended the IDMEF data model to support
digital signatures. We propose an extended IDMEF DTD which includes a digital signature of the
message. This way the receiver can verify the integrity and authentication of the message by using the
public key of the sender, stored in its database. The threat of replicated messages is solved by the
timestamp carried in a special tag of the IDMEF DTD called “Creation time”. Multiple alerts that have
the same creation time are rejected.

To address the problem of unreliability in multicast transmission, various protocols have been
introduced, each with varying success in different operating requirements and environments. There are
two main categories of reliable multicast protocols. The first category includes protocols that employ
receiver acknowledgements to inform the sender for the loss of packets and request a retransmission.
These protocols are further divided into two categories based on whether receivers generate positive
(ACKs) or negative acknowledgments (NAKs). Protocol examples using NAKs are PGM[3] and NORM
[4]. The use of NAKs is preferred because it produces less traffic, but in this case the protocol has to be
very sensitive to a NAK loss since it is the only mechanism for providing reliability. Also, the
notification mechanism proves very inefficient for large client numbers, or when packet loss varies
greatly among receivers. Under these circumstances, the source is flooded by ACKs/NAKs or it has to
retransmit large numbers of different groups of packets at the same time, resulting in degrading overall
performance and low scalability.

An alternative that avoids the back channel from the receiver to the sender is the use of Forward Error
Correction (FEC) [5]. This is the second category of reliable multicast protocols where the sender
generates FEC values for selected packets of the content stream that allows detection and repair of data
loss at the receiver end. However, in this case reliability is not absolutely ensured.

The control messages between the nodes are exchanged in a NAK-based reliable multicast protocol
(NORM) whereas the alert messages are sent using FEC coding. So, we ensure that the configuration of
the Agents is reliable and that in case of a DoS attack, alerts will reach one or more central nodes,
provided that they are correctly placed in the network.

3. Security Agents

3.1. Misuse Detection Agent

As we previously mentioned, each security agent consists of two tiers. The lower tier comprises of the

process that handles the misuse detection within our network. Snort [6] has been chosen as the misuse

IDS software for our system. Snort is a libpcap-based [7] software that can be used as a sniffer, packet
logger or network intrusion detection system. In our case, we used Snort as a misuse intrusion detection
tool. The detection of malicious packets is based on known attack signatures. Snort is able to detect a
variety of attacks such as DoS/DDoS attacks, Portscans, HTTP, DNS, SMTP, IMAP, POP3 attacks and
Virus/Worm attacks. Alerts generated from Snort are passed to the upper tier of our agent.

The upper tier of the Misuse Detection Agent receives alert messages from the lower tier and stores
them for a defined period of time in a buffer. For every different case of attack, that is, source IP address
and port, target IP address and port and known attack signature, the upper tier process uses a unique alert
identification. Rate limiting is achieved independently for different types of attacks, sending the alert
message only once in the specified period of time. Agent’s upper tier process is also responsible for
sending the heartbeat messages to the Central IDS Node informing that the misuse IDS system is
operational. The messages sent to the Central IDS Node are formatted using the extended signed IDMEF
format. In addition, the upper tier process listens for commands from the Central IDS Node. It receives
parameters for the rate limiting of alert messages, configuration for the Snort process and new attack
signatures.

3.2. Anomaly Detection Agent

For the lower tier of the Anomaly Detection Agent we developed a prototype anomaly detection tool

[8] that currently focuses on DoS Attacks. The prototype tool consists of two main modules: the collector
and the detector. The collector module is responsible for asynchronously receiving flow data from the
Netflow-enabled [9] router; information is analyzed, mean values and adaptive thresholds are calculated
and stored in a local data structure. The tool extracts and stores packet and flow counters per destination
IP address, as well as total counters and mean values for each pair of input-output interfaces. The
detector process is responsible for calculating the metrics for the interface pairs stored by the collector,
and comparing the results to detection thresholds. It is periodically activated, implements extensive
logging of detection events and generates notifications with security alerts which are sent to the upper
tier.

The upper tier process receives the alerts and sends them to the Central IDS Node using the signed-
IDMEF Format. Moreover, the Central IDS Node adjusts Anomaly Detection Agent’s parameters
(metrics and thresholds for the DoS attack detection algorithm).

3.3. SNMP Query Agent

As the other two agents, the SNMP Query Agent is comprised of two tiers. The lower tier process is a

custom SNMP client that performs SNMP queries at the routers of the network. Values like CPU and
memory usage, active and inactive flows are polled from routers at specific intervals.

The upper tier accepts the values from the SNMP queries and forwards them to the Central IDS Node
after formatting them using the signed-IDMEF data model. The upper tier process is also responsible for
sending heartbeat messages to inform the Central IDS Node that the SNMP client is operational.
Instructions from the Central IDS Node are sent to the SNMP Query Agent, giving information about the
router and the SNMP objects to be polled.

4. Central IDS node

The central IDS node does not monitor the network like the other nodes. Its purpose of existence is

the control and fine tuning of the Agents, the gathering and storage of messages, and the notification of
the administrator when necessary. Attack detection in the central node is done by combining alerts from
different Agents. The central IDS node acts like a manager for the Agents. Through this manager one can

check the alert messages produced in every node, keep the system updated by downloading new
configuration and manage the policy of attack detection per agent.

We define a central policy scheme for the configuration of all the agents. This scheme uses XML and
includes generic configuration for each type of agent. Specific configuration for a particular agent may
also be applied. Once again, to ensure integrity these XML messages contain digital signatures.

 <Policy>

<MisuseDetection id=”all”>
 <Action type=”Add”>
 <signature id=”3445” description=”Sasser Worm”>alert tcp $HOME_NET any -> any 9996 (

msg:"Sasser ftp script to transfer up.exe"; content:"|5F75702E657865|"; depth:250; flags:A+;
classtype: misc-activity; sid:1000000; rev:3;)

 </signature>
 </Action>
</MisuseDetection>
<AnomalyDetection id=”sensor-4”>
 <Action type=”Update”>
 <FlowThresholdDeviation>1.20</FlowThresholdDeviation>
 <PacketThresholdDeviation>1.35</PacketThresholdDeviation>
 </Action>
</AnomalyDetection>
<SNMPQuery id=”all”>
 <Action type=”Remove”>
 <object>MemoryUsage</object>
 </Action>
</SNMPQuery>

 </Policy>

Figure 3. A sample Policy Configuration

In Figure 3 we present a sample Policy Configuration which is sent to the agents. In this specific

message all Misuse Detection Agents are receiving the signature of the “Sasser Worm” [10] in order to
raise an alert when a packet matches this particular signature. In addition, the Anomaly Detection Agent
named “sensor-4” adapts its thresholds to the values that are sent to it. Finally, all SNMP Query Agents
stop polling “MemoryUsage” object from the corresponding router.

 The central node correlates information from the Agents and tries to decide whether there is an
incoming or an outgoing attack and whether it affects one or more subnetworks. The decision is not
based on an expert system, it is based on scenarios. A scenario must contain one or more policy rules
installed in the Agents. When a new alert message arrives, the central IDS node checks whether it has
already received alerts contained in the same scenarios. The certainty of a reported attack is proportional
to the percentage of the policy rules matched.

Scenarios that describe “Misuse Detection” attacks usually contain one policy rule. However, for
every simple scenario described by one policy rule, there is one more that checks if the attack has
multiple targets. This scenario’s alert is triggered if the same rule is matched in more than one sub-
network.

 For the anomaly detection engine some of the scenarios used are the following:
• Alarms from the SNMP Query Agent stating increase in the CPU usage of a router are combined

with alarms from the equivalent Anomaly Detection Agent concerning increase in traffic. If both
increases exceed the thresholds set by the administrator, the central IDS node detects a DoS
attack.

• The system checks if a sub-network participates in a DoS attack by combining alerts from the
Misuse Detection Agents for 'rootkit' signatures in packets originating from compromised hosts
and alerts from Anomaly Detection Agents for increase of outgoing traffic.

• If more than one sub-networks experience “Anomaly Detection” attacks the system decides
whether they belong to the same attack by checking network traffic characteristics such as source
and target ports, number of flows or packets.

Until now, we have successfully tested each type of Agent independently. By experimenting on the
parameter values of every Agent we have developed efficient metrics and configuration. Our experiments
have led us to believe that by combining much information it is difficult to create efficient policy rules
and train the system to make correct decisions. So the target of our research is the discovery of efficient
scenarios rather than a complicated expert system.

5. Related Work

Over the past years many Distributed Intrusion Detection Systems have been developed. These

schemes were a result of research on methods of aggregating data generated by individual intrusion
detection systems placed across large-scale networks.

The GrIDS (Graph Based Intrusion Detection System) [11] which is developed at the University of
California, Davis is a hierarchical graph-based IDS capable of doing distributed data collection and
analysis in large networks. Data source modules running at hosts across the network report information to
graph engines resulting in building a graph representation of network activity. Data sources can be either
network sniffers or an IDS that works on a single host.

The EMERALD project [12] which is developed at the Computer Science Laboratory at SRI
International proposes a distributed intrusion detection scheme that besides the act of detecting attacks
has also the ability to automatically respond to them. EMERALD works both as an anomaly detection
system, using the profiler engine to perform statistical profile-based anomaly detection and a misuse
detection system, using the signature engine which employs a rule-coding scheme. Response to suspected
attacks is done with the use of the resolver which is an expert system that implements the response policy
based on the intrusion reports produced by the profiler and signature engines.

The AAFID (Autonomous Agents For Intrusion Detection) architecture [13] developed at the Purdue
University is a distributed intrusion detection system that consists of multiple independent entities, called
autonomous Agents. These Agents perform a very specific function or more complex activities and can
be added and removed dynamically from the system, without having to restart the whole IDS system.

The Indra (Intrusion Detection and Rapid Action) scheme [14] proposes a distributed and reactive
intrusion detection system based on individual daemons running at hosts across the network. These
daemons distribute the intrusion attempt information that each one gathers, among all other daemons
forming a trusted network. The communication between the daemons is based on peer-to-peer systems
and is achieved through a cryptographic mechanism that provides support for sending encrypted and
digitally signed messages. The reaction to suspected intrusion attempts is implemented through
controlled access to resources.

6. Future Work

We intend to use the NTUA campus as a test bed for our framework. Up until now we have only

installed and tested our distributed system in a closed environment in our laboratory and emulated attacks
for our experiments. NTUA has a class B network with almost 150 active LANs and 5000 active hosts.
Its size makes it ideal for our experiments. We plan to install the Misuse Detection Agent in some of the
LANs, configure the border routers to feed the Anomaly Detection Agent with Netflow data and SNMP
data to the SNMP Query Agent. The central node will be able to fuse real information and the policy
rules will be tested in real security incidents. Finally, we intend to extend our research by focusing on the
discovery and testing of new scenarios.

7. Conclusions

We presented a Distributed Intrusion Detection System for a large scale network environment. The

framework implements a distributed scheme via a scalable and secure distributed architecture that
provides efficient and transparent control to the central monitoring system. The system we outlined relies
on Security Agents that monitor the network and report security alerts to central IDS nodes via multicast
messages. We have design and implemented three types of Agents: a Misuse Detection Agent, an
Anomaly Detection Agent and a SNMP Query Agent. System’s intercommunication is based on reliable
multicast and the integrity of exchanged messages is assured by the use of digital signatures. The system
provides ease of management as almost all administrative operations can be conducted centrally.
Information sent from the Agents is gathered in the central node, and attack detection is based on
predefined scenarios. Finally, we plan to validate this architecture and produce quantitative results via
experiments on the NTUA campus.

8. References

[1] Biswanath Mukherjee, Todd L. Heberlein, and Karl N. Levitt, “Network Intrusion Detection”, IEEE Network, May/June
1994

[2] D.Curry and H. Debar, “Intrusion Detection Message Exchange Format Data Model and Extensible Markup Language
(XML) Document Type Definition”, Internet Draft, November 2002.

[3] RFC 3208 - PGM Reliable Transport Protocol Specification
[4] NORM Internet Draft: http://ietf.org/internet-drafts/draft-ietf-rmt-pi-norm-09.txt
[5] RFC 3453 - The Use of Forward Error Correction (FEC) in Reliable Multicast
[6] Snort project - http://www.snort.org
[7] Libpcap library – http://www.tcpdump.org
[8] G. Androulidakis, V. Chatzigiannakis, M.Grammatikou, F.Stamatelopoulos, “Network Flow-Based Anomaly Detection of

DDoS Attacks”, Terena Networking Conference 2004, Rhodes, Greece, June 2004.
[9] Cisco Netflow, http://www.cisco.com/warp/public/732/Tech/nmp/netflow/index.shtml .
[10] Sasser Worm - http://securityresponse.symantec.com/avcenter/venc/data/w32.sasser.worm.html.

[11] Stuart Staniford-Chen, R. Crawford, M. Dilger, J. Frank, J. Hoagland, K. Levitt, D. Zerkle. GrIDS: A Graph-Based
Intrusion Detection System for Large Networks. Proceedings of the 19th National Information Systems Security
Conference, 1996.

[12] Phillip A. Porras and Peter G. Neumann. EMERALD: Event Monitoring Enabling Responses to Anomalous Live
Disturbances. In 1997 National Information Systems Security Conference, October 1997.

[13] Jai Sundar Balasubramaniyan, Jose Omar Farcia-Fernandez, David Isacoff, Eugene Spafford, and Diego Zamboni. An
Architecture for Intrusion Detection using Autonomous Agents. Technical report 98/05, Purdue University, 1998.

[14] Q. Zhang and R. Janakiraman, “Indra: A Distributed Approach to Network Intrusion Detection and Prevention”,
Washington University Technical Report # WUCS-01-30, 2001.

http://ietf.org/internet-drafts/draft-ietf-rmt-pi-norm-09.txt
http://www.snort.org
http://www.tcpdump.org
http://www.cisco.com/warp/public/732/Tech/nmp/netflow/index.shtml
http://securityresponse.symantec.com/avcenter/venc/data/w32.sasser.worm.html

