
 
 

 

 

 

 

 

 

SPECIAL 
 

Scalable Policy-awarE Linked Data arChitecture for  

prIvacy, trAnsparency and compLiance 

 

 

 

 

 

Deliverable D3.3  
 

Backend Scalability and Robustness testing report V1 

 

 

 

 

Document version: V1.0 



SPECIAL  Page 2 of 34 

D3.3 Backend Scalability and Robustness testing report V1 PU 

 

SPECIAL DELIVERABLE 

 
Name, title and organisation of the scientific representative of the project's coordinator:  

Ms Jessica Michel  t: +33 4 92 38 50 89 f: +33 4 92 38 78 22 e: 5jessica.michel@ercim.eu 

GEIE ERCIM, 2004, route des Lucioles, Sophia Antipolis, 06410 Biot, France 

Project website address: http://www.specialprivacy.eu/  

 

Project  

Grant Agreement number 731601 

Project acronym: SPECIAL 

Project title: Scalable Policy-awarE Linked Data arChitecture for  5 

prIvacy, trAnsparency and compLiance 

Funding Scheme: Research & Innovation Action (RIA) 

Date of latest version of DoW against 

which the assessment will be made: 

17/10/2016 

Document  

Period covered: M01-M18 

Deliverable number: D3.3 

Deliverable title Backend Scalability and Robustness testing report V1 

Contractual Date of Delivery: 30-06-2018 

Actual Date of Delivery: 30-06-2018 

Editor (s): J.D. Fernández (WU), Wouter Dullaert (TF) 

Author (s): J.D. Fernández (WU), Wouter Dullaert (TF) 

Reviewer (s): Sabrina Kirrane (WU), Rigo Wenning (ERCIM), Rudy 

Jacob (PROXIMUS) 

Participant(s): U. Milosevic (TF), Jonathan Langens (TF), P.A.~Bonatti 

(CeRICT) 

Work package no.: 3 

Work package title: Big Data Policy Engine 

Work package leader: TF 

Distribution: PU 

Version/Revision: 1.0 

Draft/Final: Final 

Total number of pages (including cover): 34 



SPECIAL  Page 3 of 34 

D3.3 Backend Scalability and Robustness testing report V1 PU 

 

Disclaimer 
 

This document contains description of the SPECIAL project work and findings. 

The authors of this document have taken any available measure in order for its content to be 

accurate, consistent and lawful. However, neither the project consortium as a whole nor the 

individual partners that implicitly or explicitly participated in the creation and publication of this 

document hold any responsibility for actions that might occur as a result of using its content. 

This publication has been produced with the assistance of the European Union. The content of this 

publication is the sole responsibility of the SPECIAL consortium and can in no way be taken to reflect 

the views of the European Union. 

The European Union is established in accordance with the Treaty on European Union (Maastricht). 

There are currently 28 Member States of the Union. It is based on the European Communities and 

the Member States cooperation in the fields of Common Foreign and Security Policy and Justice and 

Home Affairs. The five main institutions of the European Union are the European Parliament, the 

Council of Ministers, the European Commission, the Court of Justice and the Court of Auditors 

(http://europa.eu/). 

SPECIAL has received funding from the European Union’s Horizon 2020 research and innovation 

programme under grant agreement No 731601. 

 



Contents

1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1 Introduction 8
1 The SPECIAL platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.1 Considerations and Technical Requirements . . . . . . . . . . . . . . . 10
1.2 State of the Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Evaluation strategy for the SPECIAL platform 13
1 Choke Point-based Benchmark Design . . . . . . . . . . . . . . . . . . . . . . 14
2 Data Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3 Benchmark Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4 Key Performance Indicators (KPIs) . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Evaluation 20
1 Experimental Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2 Scaling the Compliance Checking Process . . . . . . . . . . . . . . . . . . . . 21

2.1 Streaming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2 Batch processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 Preliminary Results on STC-bench Compliance Tasks . . . . . . . . . . . . . . 25
3.1 C-T1: Different Complexities of Policies . . . . . . . . . . . . . . . . 25
3.2 C-T2: Increasing Number of Users . . . . . . . . . . . . . . . . . . . 26
3.3 C-T4: Increasing Data Generation Rates . . . . . . . . . . . . . . . . . 27
3.4 C-T5: Batch Performance . . . . . . . . . . . . . . . . . . . . . . . . 29

4 Conclusions 31

H2020-ICT-2016-2017
Project No. 731601



List of Figures

1.1 A Scalable Consent, Transparency and Compliance Architecture . . . . . . . . 9

3.1 Median and average latencies with increasing number of compliance checkers . 21
3.2 Latencies (in 95% percentile) with increasing number of compliance checkers . 22
3.3 Latencies (in 95%, 75% and 50% percentile) with increasing number of com-

pliance checkers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.4 CPU usage with increasing number of compliance checkers . . . . . . . . . . . 23
3.5 Memory usage with increasing number of compliance checkers . . . . . . . . . 23
3.6 Total batch throughput by the compliance checker with increasing number of

compliance checkers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.7 Distribution of batch throughput by the compliance checker with increasing

number of compliance checkers . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.8 Median and average latencies with increasing complex policies . . . . . . . . . 25
3.9 Latencies (in 95% percentile) with increasing complex policies . . . . . . . . . 26
3.10 Median and average latencies with increasing number of users . . . . . . . . . 27
3.11 Latencies (in 95% percentile) with increasing number of users . . . . . . . . . 27
3.12 Median and average latencies with increasing generation rates . . . . . . . . . 28
3.13 Latencies (in 95% percentile) with increasing generation rates . . . . . . . . . 28
3.14 CPU usage for compliance checking with increasing generation rate . . . . . . 29
3.15 Total batch compliance checking throughput with increasing number of compli-

ance checkers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.16 Distribution of batch compliance checking throughput with different users and

work load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

H2020-ICT-2016-2017
Project No. 731601



List of Tables

1.1 Transparency and compliance services. . . . . . . . . . . . . . . . . . . . . . . 10

2.1 Transparency queries for the data subject and the data controller . . . . . . . . 17
2.2 Transparency tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3 Compliance tasks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1 Space requirements with increasing generation rate . . . . . . . . . . . . . . . 29

H2020-ICT-2016-2017
Project No. 731601



D3.3: Scalability and Robustness testing report V1 7/34

1 Summary

The aim of this deliverable is to test the scalability and robustness of the SPECIAL platform
such that the results can be used to inform future releases of the platform.

What is in this deliverable

In this version of the deliverable we pay particular attention to: (i) introducing the general
benchmark scenario and the non-functional desiderata, in Chapter 1; (ii) setting up the method-
ology that will guide this and future versions of this deliverable, including the preparation of
the synthesised test data and the identification of key performance indicators, in Chapter 2;
(iii) providing an initial evaluation of the SPECIAL platform both in terms of performance and
scalability, in Chapter 3, and conclusions in Chapter 4.

This deliverable builds upon technical requirements from D1.3 Policy, transparency and
compliance guidelines V1, D1.4 Technical Requirements V1 and D1.8 Technical Requirements
V2, the SPECIAL policy language which is described in D2.1 Policy Language V1, and the
SPECIAL transparency and compliance framework presented in Deliverable D2.3 Transparency
Framework V1 and D2.4 Transparency and Compliance Algorithms V1. The System Under Test
(SUT) refers to the current second release of the SPECIAL platform, presented in D3.2 Policy
& events release V1.

What is not in this deliverable

Considering the iterative and agile nature of the project, this deliverable is not meant to serve
as a complete evaluation of the SPECIAL platform, but rather as a summary of our current
tests and results that will be updated regularly as the project advances. Thus, we do not deal
here the security aspects, which are subject of the public penetration/hacking challenges in WP5
(D5.3Public penetration/hacking challenges). Note also that the usability testing is provided in
WP4 (D4.2 Usability testing report V1). Instead, this document aims to describe the perfor-
mance and scalability test to be performed in current and future version of the platform.

Similarly, we do not deal with any issue related to compliance checking (based on busi-
ness rules) of existing Line of Business and Business Intelligence / Data Science applications
(described in Deliverable D2.3 Transparency Framework V1). It is worth noting that the imple-
mentation and testing plans of the pilots are devoted to WP5 (D5.1 Processing and aggregation
pilot and testing plans V1, D5.3 Sharing Pilot and testing plans V2 and D5.5 Final Pilot imple-
mentations and testing plans V3). The information of this deliverable, and its future versions,
will be used to guide these evaluations.

H2020-ICT-2016-2017
Project No. 731601



Chapter 1

Introduction

In this chapter we introduce our benchmark scenario by summarizing the current functionality
and components of the SPECIAL platform, our System Under Test (SUT). Then, we collect
requirements and considerations that will guide our benchmark approach, which is presented in
the next chapter. Finally, we review relevant state of the art.

1 The SPECIAL platform

One of the core technical objectives of SPECIAL is to implement consent, transparency and
compliance mechanisms for big data processing. The SPECIAL platform uses Semantic Web
technology in order to model the information that is necessary to automatically verify that data
is processed according to obligations set forth in the GDPR (i.e. usage policies, data processing
and sharing events, and the regulatory obligations).

As presented in D1.4 Technical Requirements V1 and D1.8 Technical Requirements V2, the
SPECIAL platform consists of three primary components:

(i) The SPECIAL Consent Management Component is responsible for obtaining consent from
the data subject and representing it using the SPECIAL usage policy vocabulary (D2.1
Policy Language V1);

(ii) The SPECIAL Transparency Component is responsible for presenting data processing and
sharing events to the user in an easily digestible manner following the SPECIAL policy
log vocabulary (D2.3 Transparency Framework V1); and

(iii) The SPECIAL Compliance Component focuses on demonstrating that data processing
and sharing complies with usage control policies (D2.4 Transparency and Compliance
Algorithms V1).

This deliverable specifically focuses on evaluating the scalability and robustness of the SPE-
CIAL transparency and compliance components. Note that the SPECIAL consent management
component is mostly related to our efforts on user interaction in WP4 (cf. see D4.2 Usability
testing report V1).

In D3.2 Policy & events release V1, the SPECIAL transparency and compliance compo-
nents are materialized in a practical implementation of the SPECIAL platform. Therefore, this
deliverable will report on the preliminary evaluations of the developed prototype.

The system architecture of our current system is depicted in Figure 1.1.

H2020-ICT-2016-2017
Project No. 731601



D3.3: Scalability and Robustness testing report V1 9/34

Application 1 Log

Application 2 Log

Application 3 Log

Compliance Checker 
(Embedded HermiT)

Consent Management 
Dashboard

Transparency & 
Compliance Dashboard

Consent Management 
Backend

OpenLink 
Virtuoso

Application 1

Application 2

Application 3

Transparency & 
Compliance Dashboard

Backend

{	
  	
  }Elasticsearch

Compliance Log

Apache Kafka

Ember.js 
Frontend

Mu.semte.ch

Figure 1.1: A Scalable Consent, Transparency and Compliance Architecture

SPECIAL Transparency Component. Data processing and sharing event logs are stored in
the Kafka1 distributed streaming platform, which in turn relies on Zookeeper2 for config-
uration, naming, synchronization, and providing group services. A Kafka topic is used to
store application logs, while a separate compliance topic is used to store the enriched log
after compliance checks have been completed.

As logs can be serialized using JSON-LD, it is possible to benefit from the faceting brows-
ing capabilities of Elasticsearch3, and the out of the box visualization capabilities pro-
vided by Kibana.

Compliance Checker. The compliance checker, which currently includes an embedded Her-
miT4 reasoner uses the consent saved in a Virtuoso triple store together with the appli-
cation logs provided by Kafka to check that data processing and sharing complies with
the relevant usage control policies. The results of this check are saved onto a new Kafka
topic.

Interaction between the various architectural components is managed by mu.semte.ch5 an
open source micro-services framework for building RDF enabled applications.

To the best of our knowledge, no benchmark exists for the GDPR-based compliance and
transparency services such as the ones provided by the SPECIAL platform. However, the ex-
istence of such systems and benchmarks is of utmost importance to identify shortcomings, op-
timize the performance and guide future directions. In the following, we provide additional
considerations and technical requirements that are relevant in order to benchmark compliance
and transparency components emerging from our efforts in SPECIAL, and we review relevant
state of the art. Our benchmarking approach and evaluation is presented in the next chapters.

1https://kafka.apache.org/
2https://zookeeper.apache.org/
3https://www.elastic.co/products/elasticsearch
4http://www.hermit-reasoner.com/
5https://mu.semte.ch/

H2020-ICT-2016-2017
Project No. 731601



D3.3: Scalability and Robustness testing report V1 10/34

Table 1.1: Transparency and compliance services.
Component Functionalities Current support in SPECIAL

platform (release - D3.2)
Transparency List the data processing and sharing events happened Total
component Find data processing and sharing events by data subject, by consent, by

temporal window
Partial (temporal filter is not sup-
ported)

Add data processing and data sharing events to the transparency ledger Total
Export the transparency data in an interoperable format Total

Compliance Coherency validation of transparency data and consent data Total
component Can be called by an access control system for ex-ante compliance

checking
Not supported

Can process the transparency ledger for ex-post compliance checking Total
Get statistics for key parameters (#consents, #revocations, #data sharing
events, #data processing events ...)

Partial (supported for most parame-
ters)

1.1 Considerations and Technical Requirements

Table 1.1 recalls the services we foresee for the transparency and compliance components (see
D1.8 Technical Requirements V2), and the current support in the SPECIAL platform (release -
D3.2). As can be seen, most of the transparency services are already in place. However, our
current prototype only supports basic filtering of processing and sharing events. Our current
benchmark, presented in the next chapter, will consider this basic functionality, while more
expressive queries are deferred to future versions of this deliverable. In turn, the compliance
component implements the core functionality, but does not currently support ex-ante compliance
checking. Thus, in this version of the deliverable we focus on ex-post compliance checking,
which will be extended as soon as the platform implements ex-ante mechanisms.

1.1.1 Non-functional requirements

Before discussing the practical benchmark and its results, let us recall and discuss some of the
non-functional desiderata presented in D1.3 Policy, transparency and compliance guidelines V1
(also reviewed by Bonatti et al. [3]) and D1.8 Technical Requirements V2:

Storage: Given the volume of events and policies that will need to be handled, the scalability
of event data processing is a major consideration. Parameters such as the number of data
subjects, the number of consent requests and the number of data processing steps, have a
multiplicative effect.

In this respect, as described in D3.2 Policy & events release V1, the SPECIAL platform
makes use of a specific Kakfa feature, referred to as log compaction, which reduces stor-
age needs. In particular, the compliance checker feeds on a compacted Kafka topic which
holds the complete policies for all data subjects, where duplicates are removed. We can
expect other platforms to use similar features in order to reduce the storage footprint.

It is also worth mentioning that the replication factor of the underlying distributed filesys-
tem can increase the storage needs significantly (but improves the overall fault-tolerance
of the system), hence this information is crucial for benchmarking. In our current sce-
nario, we consider a replication factor of two, i.e., data is written to two nodes.

Finally, note that we consider instantaneous data sharing and processing events. In Deliv-
erable D2.3 Transparency Framework V1, we discuss a grouping feature for the events,

H2020-ICT-2016-2017
Project No. 731601



D3.3: Scalability and Robustness testing report V1 11/34

which is not currently supported by the SPECIAL platform and will be consider as part
of future work.

Scalability: Because of the multiplicative effect is it important that the SPECIAL architecture
can adapt to larger volumes i.e. via both horizontal and vertical scaling.

As shown in Figure 1.1, the SPECIAL platform runs on proven open source software that
is used at large scale by some of the largest companies in the world6 [4, 5, 13]. In D3.2
Policy & events release V1, we provide details on how the system can scale to support a
load beyond what a single instance can handle.

Thus, the benchmark tasks should build upon a real-word large-scale scenario, where the
ability of the system to scale horizontally and vertically can be validated.

Performance & responsiveness: The total volume of data should only marginally impact the
performance and responsiveness of the services. Creating a single data store will destroy
the data locality for some services, impacting the responsiveness.

As discussed in D3.2 Policy & events release V1, Kafka is specifically dedicated for high-
performance, low-latency commit log storage. Given its streaming focus (yet it efficiently
supports batch oriented workload), the system can perform near real time data process-
ing. Similarly, the SPECIAL transparency component is based on Elasticsearch, which
provides efficient query times, heavily relying on the filesystem cache.

Our benchmarking scenario is designed to assure that the SPECIAL platform can cope
with such requirements, assuring an overall efficient performance and low latency.

Availability & Robustness & long-term applicability: Since transparency and compliance man-
agement is bound to a legal obligation, solutions should be guaranteed to work for many
years. For personal data, the GDPR calls for a long-term durable solution. If changed,
the new system should be capable of importing the existing transparency and compliance
data.

The SPECIAL platform makes use of the ability of Kafka to store records in a fault-
tolerant durable way. For example, as described in D3.2 Policy & events release V1,
in case of catastrophic failure where all consumers die, the system can recover the last
processed event from a special state topic. This prevents redoing work which was already
done previously and avoid data loss.

The evaluation of fault-tolerance aspects is deferred to future work.

Security: In addition to the above requirements, all components in the ecosystem must adhere
to a general requirement of data security, as it is imperative that a breach of security does
not hinder the operations of the systems.

D3.2 Policy & events release V1 discusses current authentication and authorization meth-
ods for the SPECIAL platform. While, D1.8 Technical Requirements V2 identifies data
privacy threats mitigations. In this deliverable we do not directly address this aspect,
as security aspects will be subject of the public penetration/hacking challenges in WP5
(D5.3Public penetration/hacking challenges).

6Elasticsearch use cases:7

H2020-ICT-2016-2017
Project No. 731601



D3.3: Scalability and Robustness testing report V1 12/34

1.1.2 Considerations for Compliance Checking

SPECIAL policies are encoded using a fragment of OWL2-DL. As discussed in Deliverable
D2.3 Transparency Framework V1 and D2.4 Transparency and Compliance Algorithms V1,
the main policy-related reasoning tasks are reduced to subsumption and concept consistency
checking. That is, checking whether a data controller’s policy P0 complies with a data subject
policy (i.e. consent) P1 amounts to checking whether the inclusion P0 v P1 is entailed by the
ontologies for the policy language and the vocabulary.

As mentioned above, and depicted in Figure 1.1, our prototype performs the compliance
checking on the HermiT reasoner. In practice, the subsumption algorithm is OWL API 3.4.3 1
compliant, hence HermiT should be easily swapped with any other OWL API 3.4.3 compliant
reasoner, such as the provided in D2.4 Transparency and Compliance Algorithms V1. Thus,
this deliverable focuses on evaluating the current HermiT reasoner, while the integration with
the algorithm in D2.4 Transparency and Compliance Algorithms V1, and the evaluation of its
performance is deferred to future versions of this deliverable.

1.2 State of the Art

To the best of our knowledge, no established benchmark covers the identified transparency and
compliance operations, summarized in Table 1.1 nor the requirements listed in Section 1.1.1,
which are the main objective of the SPECIAL platform. This motivates our proposed benchmark
(presented in the next chapter), which covers most of the core operations and requirements, and
it is designed to be flexible and extensible in the future.

Nevertheless, much work has been done in benchmarking OWL2 reasoners, which is a cen-
tral aspects for the compliance component, as discussed above. Traditionally, the elements in
OWL benchmarking are classified in data schema, workload and performance metrics [2, 8, 9,
10]. The former mostly refers to the structural complexity of the data schema and the usage of
particular ontology constructs. The workload comprises (i) the data generation process, which
often produces datasets of different sizes, and (ii) the queries or reasoning tasks to be performed
by the reasoner, which should be able to evaluate the inference capability and scalability of
reasoner. Finally, the performance metrics describe the quantitative measures that should be
evaluated, such as: loading time, which can include different subtasks such as loading ontolo-
gies and checking ABox consistency [2], query response time, i.e. the time needed to solve the
given reasoning task, completeness and soundness [7].

When it comes to well-established OWL benchmarks, the Lehigh University Benchmark
(LUBM) [8] is one of the first and most popular proposals. LUBM considers an OWL Lite
ontology with different ABox sizes, where different reasoning tasks of answering conjunctive
queries are proposed. The University Ontology Benchmark (UOBM) [10] extends LUBM to
include both OWL Lite and OWL DL ontologies and constructs. In turn, Weithöner et al [14]
discuss deficiencies and challenges of OWL benchmarks, listing a set of potential requirements
such as separating measurements in each step of the process, allowing for different ontology
serializations, or disclosing the reasoners capabilities with respect to query caching.

Recently, the OWL reasoner evaluation (ORE) competition [12] provides different reasoning
challenges. ORE is generally based on the tasks of consistency, classification, and realisation,
on two OWL profiles (OWL DL and EL). Regarding the data corpus, ORE considers (i) different
ontologies submitted by users and (ii) sampled ontologies from different domains.

H2020-ICT-2016-2017
Project No. 731601



Chapter 2

Evaluation strategy for the SPECIAL
platform

In this chapter we present the benchmark for the GDPR-based transparency and consent we
developed in the context of the SPECIAL project, referred to as the SPECIAL Transparency and
Consent Benchmark (STC-bench) hereinafter.

The application scenario considers the SPECIAL BeFit scenario of fitness tracking pre-
sented in D1.3 Policy, transparency and compliance guidelines V1, which deals with a potential
large volume of streaming content, namely location and heart data from BeFit devices.

As we motivated in the previous chapter, there is a lack of benchmarks to evaluate the
GDPR-based compliance and transparency services such as the ones provided by the SPECIAL
platform. Thus, in addition to serving our evaluation purposes, we expect STC-bench to
become a valuable asset for similar systems implementing GDPR-based transparency and com-
pliance.

We design STC-bench following the same methodology as most of the benchmarks under
the H2020 HOBBIT1 (Holistic Benchmarking of Big Linked Data) project [11]. Thus, the design
of the benchmark considers three main aspects:

(i) First, we identify the choke points, that is, the identified technical difficulties that the
benchmark should consider to challenge the system under test (our SPECIAL platform).
We present our choke points in Section 1.

(ii) Then, the benchmark data is selected. In our case, and given our scenario, we propose a
generator of synthetic data, described in Section 2.

(iii) Finally, we design benchmarking tasks to cover the identified choke points. Section 3
presents and discusses the current tasks in STC-bench.

The STC-bench data generator and the results of the evaluation (presented in the next
chapter) are publicly available in our website2, which will be continuously updated with the last
results of our tests.

1https://project-hobbit.eu/
2https://www.specialprivacy.eu/benchmark

H2020-ICT-2016-2017
Project No. 731601

https://project-hobbit.eu/
https://www.specialprivacy.eu/benchmark


D3.3: Scalability and Robustness testing report V1 14/34

1 Choke Point-based Benchmark Design

We design STC-bench following the same methodology as most of the benchmarks under the
H2020 HOBBIT project [11]. Thus, the development of the benchmark is driven by so-called
“choke-points”, a notion introduced by the Linked Data Benchmark Council (LDBC) [1, 6]. A
choke-point analysis is aimed at identifying important technical challenges to be evaluated in
a query workload, forcing systems onto a path of technological innovation. This methodology
depends on the identification of such workload by technical experts in the architecture of the
system under test.

Thus, we analysed the SPECIAL platform with the technical experts involved in the SPE-
CIAL policy vocabulary, the transparency and the compliance components. Following this
study, we identified the transparency and compliance choke points described below.

Transparency choke points:

CP1 - Concurrent access. The benchmark should test the ability of the system to efficiently
handle concurrent transparency requests as the number of users grows.

This choke point mostly affects the scalability and the performance and responsiveness
requirements identified in the previous chapter (see Section 1.1). On the one hand, the
system must scale to cope with the increasing flow of concurrent transparency requests.
Ideally, the system can dynamically scale based on the work load without interruptions,
being transparent to users. On the other hand, the performance and responsiveness (in
particular, the latency of the responses) should be unaffected irrespective of the number
of users or, at worst, being affected marginally.

In the current version of the SPECIAL platform (release - D3.2), the transparency com-
ponent fully relies on Elasticsearch, where different thread pools can be specified3.

CP2 - Increasing data volume. The system should provide mechanisms to efficiently serve
the transparency needs of the users, even when the number of events in the system (i.e.
consents, data processing and sharing events) grows.

In this case, in addition to the previous consideration on scalability and the performance
and responsiveness, special attention must be paid to the storage requirements and the
indexing mechanisms of the system, such that the accessing times do not significantly
depend on the existing data in the system (e.g. the number of events).

As mentioned in the previous chapter, the SPECIAL platform makes use of log com-
paction to reduce the space needs (see (D3.2 Policy & events release V1 for further de-
tails). As for Elasticsearch, we use the default configuration, where further inspection on
different compression options (e.g. using the DEFLATE algorithm4) is deferred to future
work.

CP3 - Ingestion time in a streaming scenario. The benchmark should test that the transparency
needs are efficiently served in a streaming scenario, i.e. the user should be able to access

3See Elasticsearch documentation: https://www.elastic.co/guide/en/elasticsearch/
reference/current/modules-threadpool.html

4See compression in Elasticsearch: https://www.elastic.co/blog/
store-compression-in-lucene-and-elasticsearch

H2020-ICT-2016-2017
Project No. 731601

https://www.elastic.co/guide/en/elasticsearch/reference/current/modules-threadpool.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/modules-threadpool.html
https://www.elastic.co/blog/store-compression-in-lucene-and-elasticsearch
https://www.elastic.co/blog/store-compression-in-lucene-and-elasticsearch


D3.3: Scalability and Robustness testing report V1 15/34

the information of an event (and the result of the compliance check) shortly after the event
arrives to the system.

This choke point implies that no significant delays are introduced (i) by the compliance
checker, and, specifically (ii) by the ingestion of the event in the transparency system.

Interestingly, engines such as Elasticsearch are mostly focused on read-intensive opera-
tions. Thus, the benchmark should consider this choke point to evaluate whether write-
intensive streaming scenarios can become a bottleneck in the system.

Compliance choke points:

CP4 - Different “complexities” of policies. In general, policies can be arbitrarily complex, af-
fecting the overall performance of any compliance checking process. Thus, the bench-
mark must consider different complexities of policies, reflecting a realistic scenario.

In our case, as discussed in the previous chapter, SPECIAL policies are encoded using a
fragment of OWL2-DL, where the main task of the reasoner is to perform subsumption
and concept consistency checking. Although this process could be very efficient, the
complexity of the policy can be determined by: (i) the number on intersecting concepts
in each category (data, processing, purpose, storage and recipients) of the SPECIAL
Minimum Core Model (MCM), given that each of them has to be considered to perform
the compliance checking, and (iii) the number of UNION policies that conform to the user
consent, given that the compliance checker must analyse all of them before assuring that
one event is not compliant with a given consent.

CP5 - Increasing number of users. The benchmark should test the ability of the system to
efficiently scale and perform as increasing number of users, i.e. data processing and
sharing events, are managed.

As previously discussed, the current version of the SPECIAL platform relies on Kafka to
implement the compliance component. Kafka, can scale both horizontally and vertically,
balancing topic partitions between cluster nodes. In this scenario, the benchmark must
be able to provide a stress test to evaluate the the performance of the system when the
number of users grows and starts to exceed the resource capabilities of the system.

CP6 - Expected passed/fail tests. In general, the benchmark must consider a realistic scenario
where policies are updated, some consents are revoked, and others are updated. The
benchmark should provide the means to validate whether the performance of the system
depends on the ratio of passed/fail tests in the work load.

Note that our current version of the SPECIAL platform preserves the full history of poli-
cies and consents. However, the transparency component only considers the last consent
of users to evaluate the compliance of the processing and sharing events. The implemen-
tation and evaluation of past consents is deferred to future work.

CP7 - Data generation rates. The system should cope with consents and data processing and
sharing events generated with increasing rates, addressing the “velocity” requirements of
most big data scenarios.

In our case, Kakfa provides the necessary toolset to deal with real-time streaming needs.
However, the capacity of the system is delimited by the infrastructure (the underlying

H2020-ICT-2016-2017
Project No. 731601



D3.3: Scalability and Robustness testing report V1 16/34

cluster). The benchmark should be flexible enough to test the capabilities of the deployed
system and its scalability.

Note also that this choke point is of particular interest for “online users” in ex-ante com-
pliance checking scenarios (as shown in Table 1.1).

CP8 - Performant streaming processing. The benchmark should be able to test the system in
a streaming scenario, where the compliance checking should fulfil the aforementioned
requirements of performance and responsiveness (latency).

Note that the SPECIAL platform is specifically designed to cover such streaming needs.
Nonetheless, the benchmark should help in determining the expected latency distribution
for a given work load on a supporting infrastructure.

CP9 - Performant batch processing. In addition to streaming, the system must deal with per-
formant compliance checking in batch mode.

In our case, this choke point is particularly relevant as SPECIAL is based on the streaming-
based Kafka framework, which can also manage batch processing. In future work, we plan
to evaluate batch-based frameworks such as our proposal SPIRIT (see D2.4 Transparency
and Compliance Algorithms V1). SPIRIT is an architecture that leverages the SANSA5

stack for transparency and compliance, based on Spark and Flink distributed processing
tools.

2 Data Generation

In the following we present the STC-bench data generator to test the compliance and trans-
parency performance of the SPECIAL platform.

First, and foremost, note that the data generation should consider two related concepts: the
controllers’ policies and the data sharing and processing events that are potentially compliant
with the user consent.

When it comes to the policies, we distinguish three alternative strategies to generate pseudo
random policies:

(a) Generating policies in the PL fragment of OWL 2, disregarding the SPECIAL minimum
core model (MCM);

(b) Generating random policies that comply to the SPECIAL minimum core model (MCM);

(c) Generating not fully random (i.e. pilot oriented policies) subsets of the business policies.

In this deliverable, we focus on the second alternative, providing a synthetic data genera-
tor following the BeFit scenario. In future versions of this deliverable, we plan to investigate
alternative approaches.

In addition, the classes in the policies and the log events can come from the standard SPE-
CIAL policy vocabulary, or can be extended with new terms from an ontology. At this stage, we
consider the SPECIAL policy vocabulary as the core input.

Thus, the STC-bench data generator can produce both policies and data sharing and pro-
cessing events. The following parameters can be set:

5http://sansa-stack.net

H2020-ICT-2016-2017
Project No. 731601

http://sansa-stack.net


D3.3: Scalability and Robustness testing report V1 17/34

Table 2.1: Transparency queries for the data subject and the data controller
ID User Query
Q1

Data subject

All events of the user
Q2 Percentage of events of the user passed
Q3 Percentage of events of the user failed
Q4 All events of the user passed
Q5 All events of the user failed
Q6 Last 100 events of the user
Q7 All events of the user from a particular application
Q8

Data controller

All events
Q9 Percentage of events passed
Q10 Percentage of events failed
Q11 All events passed
Q12 All events failed
Q13 Last 100 events
Q14 All events from a particular application

• Generation rate: The rate at which the generator outputs events. This parameter under-
stands golang duration syntax eg: 1s or 10ms.

• Number of events: The total number of events that will be generated. When this parame-
ters is <=0 it will create an infinite stream .

• Format: The serialization format used to write the events (json or ttl).

• Type: The type of event to be generated: log, which stands for generating data sharing
and processing events, or consent, which generate new user consents.

• Number of policies: The maximum number of policies to be used in a single consent.

• Number of users: The number of UserID attribute values to generate.

3 Benchmark Tasks

In the following we present the set of concrete benchmark tasks for the SPECIAL compliance
and transparency components. As for transparency tasks, note that the envisioned user stories in
D3.2 Policy & events release V1 list potential interaction with users, but they are too general to
describe functionality to be considered in our current quantitative approach for benchmarking.
A qualitative analysis can be deferred to pilot evaluations in WP5.

Thus, we establish here a set of simple tasks to be performed by the SPECIAL transparency
component. The transparency tasks are illustrated in Table 2.2. In this case, the system is aimed
at resolving user and controller transparency queries. Further work is needed to identify the
expressivity of these queries. We consider a minimum subset of queries, described in Table 2.1.

In turn, Table 2.3 shows the tasks to be performed by the SPECIAL compliance component
in order to cover all choke points identified above. Each task delimits the different parameters
involved, such as the scenario (streaming or batch processing), the number of users, etc. These
parameters follow the choke points, and their values are estimated based on consultation with
the SPECIAL pilot partners. Note that all tests set a test time of 30 minutes, which delimits the
number of events generated given the number of users and event generation rate in each case.

H2020-ICT-2016-2017
Project No. 731601



D3.3: Scalability and Robustness testing report V1 18/34

Table 2.2: Transparency tasks, all referring to user and controller transparency queries
Task #Users Event Rate Policies #events Pass Ratio Choke Point

T-T2

100

none UNION of 5 p. 500M events Random CP1
1K
10K
100K
1M

T-T3 1000 none UNION of 5 p.

1M

Random CP2
50M
100M
1B
10B

T-T4 1000

1 ev./60s

UNION of 5 p. 500M events Random CP3
1 ev./30s
1 ev./10s
1 ev./s
10 ev./s

Table 2.3: Compliance tasks.
Task Subtask Scenario #Users Event Rate Policies Test Time Pass Ratio Choke Point

C-T1

C-T1-1

Streaming 1000 1 ev./10s

1 policy

30 minutes Random CP4,CP8
C-T1-2 UNION of 5 p.
C-T1-3 UNION of 10 p.
C-T1-4 UNION of 20 p.
C-T1-5 UNION of 30 p.

C-T2

C-T2-1

Streaming

100

1 ev./10s UNION of 5 p. 30 minutes Random CP5,CP8
C-T2-2 1K
C-T2-3 10K
C-T2-4 100K
C-T2-5 1M

C-T3

C-T3-1

Streaming 1000 1 ev./10s UNION of 5 p. 30 minutes

0%

CP6,CP8
C-T3-2 25%
C-T3-3 50%
C-T3-4 75%
C-T3-5 100%

C-T4

C-T4-1

Streaming 1000

1 ev./60s

UNION of 5 p. 30 minutes Random CP7,CP8
C-T4-2 1 ev./30s
C-T4-3 1 ev./10s
C-T4-4 1 ev./s
C-T4-5 10 ev./s

C-T5

C-T5-1

Batch

100

- UNION of 5 p.

100K events

Random CP9
C-T5-2 1K 1M events
C-T5-3 10K 10M events
C-T5-4 100K 100M events
C-T5-5 1M 1B events

H2020-ICT-2016-2017
Project No. 731601



D3.3: Scalability and Robustness testing report V1 19/34

4 Key Performance Indicators (KPIs)

In order to evaluate the ability of the SPECIAL platform to cope with the previously described
tasks we defined the following key performance indicators (KPIs) for the first version of this
benchmark:

• Compliance Latency: the amount of time between the point in which the compliance
check of an event was performed and the time when the event was received. In our case,
we consider that the compliance check is performed when the result is written to the
appropriate Kafka topic storing the results of the process.

• Compliance Throughput: The average number of events checked per second.

• Average transparency query execution: The average execution time for the query.

• CPU Usage by Node: The average CPU usage by node in the system.

• Memory Usage by Node: The average memory usage by node in the system.

• Disk Space: The total disk space used in the system.

In addition to these indicators, when the system is deployed in a real-world scenario, the
overhead with respect to the Line of Business application can be provided. This indicator can
be considered in the future testing plans of the pilots, to WP5 (D5.1 Processing and aggrega-
tion pilot and testing plans V1, D5.3 Sharing Pilot and testing plans V2 and D5.5 Final Pilot
implementations and testing plans V3).

H2020-ICT-2016-2017
Project No. 731601



Chapter 3

Evaluation

This chapter shows the preliminary results on the evaluation of STC-bench on the current
version of the SPECIAL platform (release - D2.4).

In this deliverable, we focus on compliance, as it is the most data and processing intensive
task of the project, showing how STC-bench can be applied to measure the capabilities of a
particular installation of the SPECIAL platform. Thus, the preliminary results are not meant
to be complete or to reflect the full capacities of the SPECIAL platform, but they set up an
initial baseline to guide future developments and evaluations. The large-scale evaluation of the
complete transparency and compliance framework provided within the SPECIAL platform will
be provided in future version of this deliverable, following the STC-bench methodology and
guidelines presented here.

The remaining of the chapter is organized as follows. Section 1 provides details on the
specification of the system running the SPECIAL platform under test. In Section 2 we perform
a first analysis on the importance of scaling the number of compliance checking processes.
Then, we present the preliminary results on the aforementioned STC-bench compliance tasks,
presented in the previous chapter.

1 Experimental Framework

Our experiments run in an installation of the SPECIAL platform (release - D2.4) on a cluster
consisting of 3 nodes. Although, it is expected that large-scale companies could provide more
computational resources, this installation (i) can serve many data-intensive scenarios as we will
show in the results, (ii) is meant to provide clear guidelines on the scalability of the platform,
which can help to plan future installations and evaluations.

The characteristic of the cluster are the following:

• Number of Nodes: 3.

• CPUs: Each node consists of 4 CPUs per machine (2 cores per CPU).

• Memory: 16 GB per node.

• Disk Space: 100 GB per node.

• Operating System: CoreOS stable (1745.7.0).

H2020-ICT-2016-2017
Project No. 731601



D3.3: Scalability and Robustness testing report V1 21/34

Figure 3.1: Median and average latencies with increasing number of compliance checkers

• Replication Factor: 2. As mentioned this implies that data is written to 2 nodes, enhancing
fault-tolerance at the cost of additional space requirements and a minimum time overhead.

2 Scaling the Compliance Checking Process

Before delving into the concrete results on the STC-bench tasks (shown in the previous sec-
tion) we present here a first study on the scalability of the system with respect to the number of
processes executing compliance checking.

As stated in D3.2 Policy & events release V1, topics in Kafka are divided into partitions,
which are the actual log structures persisted on disk. The number of partitions establishes an
upper limit to how far the processing of records can be scaled out, given that a partition can only
be assigned to a single consumer (in a consumer group). Thus, the total number of partitions of
the application log topic will decide how many instances of the compliance checker can process
the data in parallel.

Given the available resources of the cluster, we decided to set up 10 partitions, which puts
an upper limit of 10 compliance checkers running in parallel.

As a first evaluation, we show how the system behaves with increasing compliance checkers
running in parallel. We perform the test in a streaming (Section 2.1) and Batch processing
(Section 2.2) scenario.

2.1 Streaming

For this scenario, we evaluate the streaming task C-T1-1 from STC-bench, shown in Table
2.3. Note that the task considers a stream of 120,0000 events from 1,000 users, where each
user generates 1 event every 10 seconds. That is, we evaluate an event stream that, on average,
generates 1 event every 10ms.

Figure 3.1 shows the median and average latencies (in milliseconds, with logarithm scale)
with different number of compliance checkers in parallel, ranging from 1 to 10 (with 10 being
our the upper limit defined by the number of partitions as explained above). Note that the me-
dian is usually preferred to the average given that the latency distribution can be skewed. Results

H2020-ICT-2016-2017
Project No. 731601



D3.3: Scalability and Robustness testing report V1 22/34

Figure 3.2: Latencies (in 95% percentile) with increasing number of compliance checkers (1, 3,
5, 10 checkers)

Figure 3.3: Latencies (in 95%, 75% and 50% percentile) with increasing number of compliance
checkers (1, 10 checkers)

show that the (median) latency is at the level of seconds when 1 or 2 parallel checkers are con-
sidered (in particular, 75s for 1 checker, and 6s for 2 checkers), with a noticeable improvement
if 3 or more compliance checkers are running in parallel, providing a stable latency of 19-21 ms.
As expected, the slightly higher average figures denotes the expected skewed distribution.

Given this behaviour, we inspect the percentile latency, i.e, the value at which a certain
percentage of the data is included. Figure 3.2 represents (in milliseconds and logarithm scale)
the latency at 95% percentile, using 1, 3, 5 or 10 parallel checkers. For instance, a value of
‘100’ ms means that 5% of the events have a latency greater than or equal to ‘100’ ms. The
distribution of 95% percentiles first shows that the latencies are stable using 3 or more checkers,
but it is increasing if only 1 checker is used. This reflects that 1 checker cannot cope with the
stream rate (in this case, 1 event every 10ms) and new events have to queue until they can be
processed. In contrast, 3 or more checkers provides regular 95% percentile latencies. Thus, in
general, only 5% of the events can experience latencies over 1 second when 3 and 5 checkers
are in place, while this latency drops to 100ms when 10 checkers are used.

H2020-ICT-2016-2017
Project No. 731601



D3.3: Scalability and Robustness testing report V1 23/34

Figure 3.4: CPU usage (in %) with increasing number of compliance checkers

Figure 3.5: Memory usage (in GB) with increasing number of compliance checkers

Figure 3.3 completes this analysis, depicting 50, 75 and 95% percentiles for the extreme
cases of having 1 or 10 checkers in place. In this case, the 50 and 75 % percentiles are close to
the 95%, which reflects that most of the data is in the range of the 95% percentile.

In the following, we evaluate the CPU usage (in percentage) and memory usage (in GBs)
with increasing number of parallel compliance checkers (1, 3, 5 and 10), shown in Figures 3.4
and 3.5 respectively. We report the average and the maximum number.

Results shows that (i) CPU usage increases as more parallel compliance checkers are run-
ning in parallel, and (ii) the memory consumption remains stable around 10GB, with no major
influence of the number of checkers. While the first result reflects the expected behaviour when
running multiple instances, the memory consumption shows that Kafka is able to optimize the
use of the memory and adapt to the number of parallel checkers. In addition, it is worth mention-
ing that Kafka is able to add compliance checkers dynamically. Further inspection on memory
management and automatic adjustment of the number of checkers based on the work load is
deferred to future work.

Overall, although different application scenarios can have highly demanding real-time re-
quirements, we expect that these figures, e.g. serving a 95% percentile latency of 100ms with

H2020-ICT-2016-2017
Project No. 731601



D3.3: Scalability and Robustness testing report V1 24/34

Figure 3.6: Total batch throughput (in events/s) by the compliance checker with increasing
number of compliance checkers

Figure 3.7: Distribution of batch throughput (in events/s) by the compliance checker with in-
creasing number of compliance checkers

an event stream of 1 event every 10ms, can cover a wide range of real-world scenarios. Recall
that the limit of 10 parallel compliance checkers is solely bounded to the number of partitions
in the installation, which depends on the resources of the cluster.

2.2 Batch processing

As stated in choke point CP9, the system must also deal with performant compliance checking
in batch. Thus, we repeat the previous analysis looking at different number of compliance
checkers for the case of batch processing. To this aim, we evaluate the batch task C-T5-1
from STC-bench, shown in Table 2.3. This task considers 100,0000 events that are already
loaded in the system. Given that we process events in batch, we inspect the provided throughput
(processed events per seconds) using an increasing number of compliance checkers.

Figure 3.6 shows the total batch throughput (in events/s) for 1, 3, 5 and 10 compliance
checkers running in parallel. Similarly to the streaming scenario, the performance is improved
significantly as more instances are running concurrently. In this case, we can observe a sublinear

H2020-ICT-2016-2017
Project No. 731601



D3.3: Scalability and Robustness testing report V1 25/34

Figure 3.8: Median and average latencies with increasing complex policies

behaviour, where the throughput ranges from 79 events/s with 1 checker to 286 events/s with
10.

Figure 3.7 shows the distribution of batch throughput (in events/s) across time, for 1, 3, 5 and
10 compliance checkers. Results are consistent with the throughput reported above, showing
the scalability of the system with increasing checkers running in parallel. Interestingly, the
throughput is not constant, but it tends to decrease at the end of the process. This reflects the
behaviour of Kafka, which assign records to a partition (and thus to a compliance checker) based
on the data subject ID. As some partitions can be more loaded than others, some instances of
the compliance checking may need more time to complete.

Although the results for batch processing are already promising, further work is needed to
inspect and optimize the usage of the multiple checkers towards a linear scalability.

3 Preliminary Results on STC-bench Compliance Tasks

This section provides preliminary results on the STC-bench tasks, shown in the previous sec-
tion. As mentioned above, rather than showing a complete evaluation on an optimized and
performant infrastructure, we focus on testing an installation of the SPECIAL platform and
pinpointing good spots for optimisation.

We limit our scope to the functionalities provided by the current SPECIAL platform and the
scaling capabilities of the infrastructure (see the specifications in Section 1). In the following
we present the results for all the compliance tasks (C-T1 to C-T5 from Table 2.3), disregarding
C-T3, which we devote for future work. The description of each task and subtask is provided in
the previous chapter (see Table 2.3).

3.1 C-T1: Different Complexities of Policies

Recall that this task regards the behaviour of the system in a streaming scenario (at 1 event/10s
per user and 1K users) when different complexities of policies, measured as the number of
union policies, are considered. In this scenario, we make use of 5 compliance checkers running
in parallel (as detailed in Section 2.1, there is little difference between 3-10 instances).

H2020-ICT-2016-2017
Project No. 731601



D3.3: Scalability and Robustness testing report V1 26/34

Figure 3.9: Latencies (in 95% percentile) with increasing complex policies

Figure 3.8 shows the median and average latencies (in milliseconds) with 1, 5, 10, 20 and
30 union policies. Results show that the median latency ranges between 19-24 ms, hence it does
not increase linearly as the number of union policies grows. The higher figures for the average
latency again denotes a skewed distribution.

Thus, we inspect the latency at 95% percentile (the value at which 95% of the data is in-
cluded), depicted in Figure 3.9 for 1, 10 and 30 policies. The distribution shows that, in all
scenarios, the latency at 95% percentile is stable, with small differences with increasing com-
plex policies. Results also shows that, in general, only 5% of the events can experience latencies
over 1 second, even when the consents consist of 30 union policies.

3.2 C-T2: Increasing Number of Users

The second task in STC-bench focuses on evaluating the scalability of the system with in-
creasing number of users, from 100 to 1 million. These users are considered to be generating
events in parallel, each of them at a rate of 1 event every 10 seconds. In the following evaluation,
we limit our study to the first three subtask, covering up to 10,000 users given the characteris-
tics of the experimental infrastructure (see Section 1). Note that serving 10,000 users at the
aforementioned rate already implies to manage a stream of 1,000 events every second. In this
scenario, we consider 10 compliance checkers (see Section 2.1) running in parallel in order to
cope with such demand. As mentioned above, we expect that this evaluation can serve as a
baseline to shed light on the potential of the SPECIAL platform, guiding our current efforts.

Figure 3.10 shows the median and average latencies for 100, 1000 and 10,000 users. Results
show that the system is able to provide a median latency of less than 30ms with 1,000 users
(generating 1 event every 10 seconds simultaneously), which is increased up to 111ms with
10,000 users (producing a total of 1,000 events per second). However, the average latency in
this last case exceeds several seconds.

In order to highlight potential worst-case scenarios, we represent the latency at 95% per-
centile in Figure 3.11. Note that an increasing number of users results in more events, hence the
different number of events in each scenario. Interestingly, results show two different scenarios.
On the one hand, a low number of users (100-1,000) results in a 95% percentile around 100 ms,

H2020-ICT-2016-2017
Project No. 731601



D3.3: Scalability and Robustness testing report V1 27/34

Figure 3.10: Median and average latencies with increasing number of users

Figure 3.11: Latencies (in 95% percentile) with increasing number of users

with an initial warm-up step that produces higher latencies. On the other hand, a higher number
of users (10,000) leads to increasing latencies as the number of events grows, i.e. events are
queued for several seconds. The main reason is that the number of compliance checkers (10,
given the amount of computational resources in the cluster) cannot cope with the overall actual
ratio of 1,000 events every second. The scalability results with increasing number of compliance
checkers (presented in Section 2) show that the SPECIAL platform is able to scale horizontally,
hence coping with higher number of users. The evaluation of the SPECIAL platform on a dif-
ferent cluster configuration is deferred to future versions of this deliverable.

3.3 C-T4: Increasing Data Generation Rates

This task evaluates the performance of the system with increasing streaming rates. In this evalu-
ation, we consider all subtasks except for C-T4-5, which implies a rate of 1 ev/100us that is not
feasible with the experimental cluster. Given that the maximum speed is 1 ev/s (per user), we
consider 10 compliance checkers running in parallel in order to try to cope with such demand.

H2020-ICT-2016-2017
Project No. 731601



D3.3: Scalability and Robustness testing report V1 28/34

Figure 3.12: Median and average latencies with increasing generation rates. The rate refers to
events per user, 1K users are evaluated)

Figure 3.13: Latencies (in 95% percentile) with increasing generation rates. The rate refers to
events per user, 1K users are evaluated)

Figure 3.12 represents the median and average latencies (in milliseconds and logarithm
scale), while the latency at 95% percentile is shown in Figure 3.13 (in logarithm scale). Several
comments are in order. First, note that the median values in Figure 3.12 are consistent with our
previous latency measures (Sections 2.1 and refss:t1), obtaining values between 19-22 for rates
up to 1 ev/10s (per user). Then, as expected, the median latency increases up to 98 at the highest
rate of 1 ev/s.

The huge skewed distribution for the highest rates is revealed by the 95% percentile shown
in Figure 3.13. Note that we fix the benchmark time in 20 minutes, so more events are generated
with increasing generation rates. Results shows that, although the latency reaches a stable stage
for rates up to 1 ev/10s (per user), the latency at 95% percentile grows steadily for streams at
1 ev/1s. This fact shows that the current installation cannot cope with such high rate and new
events have to queue until they can be processed. The maximum latency reaches 250s for 120K
events.

H2020-ICT-2016-2017
Project No. 731601



D3.3: Scalability and Robustness testing report V1 29/34

Figure 3.14: CPU usage (in %) for compliance checking with increasing generation rate (1K
users)

Table 3.1: Space requirements (MB) with increasing generation rate.
# Users Event Rate (per user) # Events Disk Space (MB)
1,000 1 ev./60s 20,000 733
1,000 1 ev./30s 40,000 659
1,000 1 ev./10s 120,000 1,696
1,000 1 ev./1s 1,200,000 11,068

Finally, in this case, we also inspect the CPU usage and the overall disk space of the solution.
The CPU usage (in percentage) is represented in Figure 3.14. As expected, results shows that the
CPU usage increases (but sublinearly) with the generation ratio. The disk space requirements are
given in Table 3.1. It is worth mentioning that the disk space depends on multiple factors, such
as the individual size of the randomly generated events, the aforementioned level of replication,
the number of nodes and the level of logging/monitoring in the system. The reported results
already shows the log compaction feature of Kafka as, on average, less bytes are required to
represent each of the events with increasing event rates. In the future, we plan to study the
overhead with respect to the Line of Business applications, as mentioned in the previous chapter
(Section 4).

3.4 C-T5: Batch Performance

Recall that this task considers a batch processing scenario, i.e. events are already loaded in
the system, with increasing number of events and users. In this evaluation, we consider all
subtasks except for C-T5-4 and C-T5-5. Thus, we test up to 10 million events (considering
100K events per user). We inspect the provided throughput (processed events per seconds)
using an increasing number of compliance checkers. As in previous cases, we here consider 10
compliance checkers running in parallel.

Figure 3.15 shows the total batch throughput (in events/s) for 100K, 1M and 10M events.
The total throughput increases with the number of events, being over 150 processed events/s in
all cases, with a maximum of 608 events/s in the case of 10M events.

In turn, Figure 3.16 looks at the distribution of the throughput for the case of 1M and 10M

H2020-ICT-2016-2017
Project No. 731601



D3.3: Scalability and Robustness testing report V1 30/34

Figure 3.15: Total batch compliance checking throughput (in events/s) with increasing number
of compliance checkers

Figure 3.16: Distribution of batch compliance checking throughput (in events/s) with different
users and work load. We consider 1000 events per user

events. As mentioned above, we noticed a reduction of the throughput towards the end of the
process, which can point to a different work load in each partitions. Further inspection on
potential optimizations in this regard is deferred to future work.

H2020-ICT-2016-2017
Project No. 731601



Chapter 4

Conclusions

This deliverable presents the methodology that will guide the scalability and robustness tests of
the SPECIAL platform. First, we set up the scenario and discuss some of the non-functional
desiderata. Then, we describe our benchmark for transparency and compliance, referred to as
STC-bench, which (i) is designed on the basis of well-identified choke points (challenges) that
would affect the performance of the SPECIAL platform and similar systems, (ii) provides a syn-
thetic data generator that generates SPECIAL policies and data processing and sharing events,
and (iii) describes key performance indicators and well-defined transparency and compliance
tasks. We expect that STC-bench can become a valuable asset beyond SPECIAL for those
tools aimed at GDPR-based transparency and compliance.

Finally, we provide a preliminary evaluation of the current version (release - D2.4) of the
SPECIAL platform, limited to compliance tasks and an infrastructure consisting of a cluster of
3 nodes (each of them with 8 cores, 16GB memory and 100GB disk space per node).

Our evaluation focuses on illustrating the future use of STC-bench and identifying spots
for optimisation. In particular, our preliminary results show that:

• The SPECIAL platform scales (sublinearly) with the number of compliance checkers run-
ning in parallel (see Section 2.1), both in a streaming and a batch scenario. Although these
results are promising, further work is needed to inspect and optimize the usage of multiple
checkers and to achieve a linear scalability.

• The system in place is able to serve a 95% percentile latency of 100ms with an event
stream of 1 event every 10ms, which can cover a wide range of real-world scenarios.

• The system presents non-negligible delays (several seconds) when the event generation
rate is faster than 1 event every 10ms. We expect to cover this scenario following two
complementary strategies: (i) adding computational resources to the cluster, which will
increase the number of partitions and thus compliance checkers, (ii) optimizing the com-
pliance checking per se. As for this latter, we plan to compare our current built-in Hermit
reasoner to a custom reasoner following the algorithm in D2.4 Transparency and Compli-
ance Algorithms V1.

• The performance is marginally affected by the increasing complexity of the policies, i.e.
where user consent can consist of several union policies.

• The system scales with increasing number of users, but the increased generation ratio can
affect negatively the latency as mentioned above.

H2020-ICT-2016-2017
Project No. 731601



D3.3: Scalability and Robustness testing report V1 32/34

• The system is able to perform compliance checking in batch mode, obtaining (median)
throughputs of up to 608 events per second. We plan to analyse the assignment of parti-
tions and compliance checkers in order to optimize the process. In addition, we plan to
compare to batch-oriented systems such as SANSA1.

Overall, we expect that these insights can guide our future research and development steps
of the SPECIAL platform.

1http://sansa-stack.net/

H2020-ICT-2016-2017
Project No. 731601



Bibliography

[1] R. Angles, P. Boncz, J. Larriba-Pey, I. Fundulaki, T. Neumann, O. Erling, P. Neubauer,
N. Martinez-Bazan, V. Kotsev, and I. Toma. The linked data benchmark council: a graph
and rdf industry benchmarking effort. ACM SIGMOD Record, 43(1):27–31, 2014.

[2] J. Bock, P. Haase, Q. Ji, and R. Volz. Benchmarking owl reasoners. In ARea2008-
Workshop on Advancing Reasoning on the Web: Scalability and Commonsense. Tenerife,
2008.

[3] P. Bonatti, S. Kirrane, A. Polleres, and R. Wenning. Transparent personal data processing:
The road ahead. In International Conference on Computer Safety, Reliability, and Security,
pages 337–349. Springer, 2017.

[4] L. Engineering. Running kafka at scale, 2015. URL https://engineering.
linkedin.com/kafka/running-kafka-scale.

[5] N. Engineering. Kafka inside keynote pipeline, 2016.
URL https://medium.com/netflix-techblog/
kafka-inside-keystone-pipeline-dd5aeabaf6bb.

[6] O. Erling, A. Averbuch, J. Larriba-Pey, H. Chafi, A. Gubichev, A. Prat, M.-D. Pham, and
P. Boncz. The ldbc social network benchmark: Interactive workload. In Proceedings of the
2015 ACM SIGMOD International Conference on Management of Data, pages 619–630.
ACM, 2015.

[7] Y. Guo, Z. Pan, and J. Heflin. An evaluation of knowledge base systems for large owl
datasets. In International Semantic Web Conference, pages 274–288. Springer, 2004.

[8] Y. Guo, Z. Pan, and J. Heflin. Lubm: A benchmark for owl knowledge base systems. Web
Semantics: Science, Services and Agents on the World Wide Web, 3(2-3):158–182, 2005.

[9] S. A. Khan, M. A. Qadir, M. A. Abbas, and M. T. Afzal. Owl2 benchmarking for the
evaluation of knowledge based systems. PloS one, 12(6):e0179578, 2017.

[10] L. Ma, Y. Yang, Z. Qiu, G. Xie, Y. Pan, and S. Liu. Towards a complete owl ontology
benchmark. In European Semantic Web Conference, pages 125–139. Springer, 2006.

[11] A.-C. N. Ngomo and M. Röder. Hobbit: Holistic benchmarking for big linked data.
ERCIM News, 2016(105), 2016.

[12] B. Parsia, N. Matentzoglu, R. S. Gonçalves, B. Glimm, and A. Steigmiller. The owl
reasoner evaluation (ore) 2015 competition report. Journal of Automated Reasoning, 59
(4):455–482, 2017.

H2020-ICT-2016-2017
Project No. 731601

https://engineering.linkedin.com/kafka/running-kafka-scale
https://engineering.linkedin.com/kafka/running-kafka-scale
https://medium.com/netflix-techblog/kafka-inside-keystone-pipeline-dd5aeabaf6bb
https://medium.com/netflix-techblog/kafka-inside-keystone-pipeline-dd5aeabaf6bb


D3.3: Scalability and Robustness testing report V1 34/34

[13] B. Svingen. Publishing with apache kafka at the new york
times, 2017. URL https://www.confluent.io/blog/
publishing-apache-kafka-new-york-times/.

[14] T. Weithöner, T. Liebig, M. Luther, S. Böhm, F. Von Henke, and O. Noppens. Real-world
reasoning with owl. In European Semantic Web Conference, pages 296–310. Springer,
2007.

H2020-ICT-2016-2017
Project No. 731601

https://www.confluent.io/blog/publishing-apache-kafka-new-york-times/
https://www.confluent.io/blog/publishing-apache-kafka-new-york-times/

