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IDC OPINION 

Containers are the heir apparent next generation of compute. However, containers don't just bring a 

new style of infrastructure. Containers are intimately tied to a transformation in application architecture, 

software development methodology, and operational principles. Ultimately, the combination of these 

changes enables the faster delivery of software and more modern, scalable, and agile applications. 

IDC forecasts a five-year CAGR of 79% for enterprise container instances, with over 1.8 billion 

enterprise containers by 2021. 

While web hyperscalers have built containerized applications for many years and have proven the 

concepts behind a new generation of infrastructure and applications, enterprises face a different 

situation as most aren't building greenfield and are juggling older generations of applications. While 

containers can still be used to containerize traditional applications with benefits, larger returns come 

from refactoring the application over time. The majority of enterprise applications lifted and shifted into 

a container will be eventually refactored. Enterprises are beginning a transition phase where they  

are learning new container skills, methodologies, and processes as they begin to both build new  

cloud-native applications and refactor and modernize existing applications. 

The public cloud has played a major role in the development of containers. Container technology and 

the resulting transformational effects were essentially born in the cloud. Cloud providers developed 

much of this technology and the early adoption of containers in the enterprise was predominately in the 

public cloud. Containers in the public cloud were a natural fit because these developers were targeting 

cutting-edge cloud-native applications. Public clouds provided scalable infrastructure as well as 

application and data services that these containerized applications consumed. Today, the growth of 

containers in the public cloud continues to grow. Core container orchestration services are already a 

given, and the focus today is on building a full container application platform, integrating elements 

such as persistent storage, networking, service mesh, and continuous integration/continuous 

deployment (CI/CD) and monitoring and extending to new models like serverless computing.  

By 2021, nearly 60% of all enterprise containers will run in the public cloud. 
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SITUATION OVERVIEW 

Containers are a type of operating system (OS)–level virtualization that provides an isolated,  

resource-controlled environment to run applications. A container is basically a type of sandbox around 

a normal application OS process and is generally considered to be much more isolated than an 

uncontainerized process, but not as strong as a virtual machine (VM). Container images define how 

applications are packaged and only contain the application and its dependencies such as libraries, 

configurations, runtimes, and tools, making a container more lightweight than a VM. The container 

image and runtime are standardized through the Open Container Initiative (OCI), which makes 

containers highly portable and universal. 

Containers are particularly relevant when considering cloud-native applications. Cloud native is 

defined as a new approach to building and running applications that takes advantage of modern  

cloud computing. This isn't exclusive to public clouds, cloud-native applications can also be run on  

on-premises private clouds. Cloud-native approaches can use several techniques, with the following 

being the most common: 

▪ One technique is microservices architecture. Instead of a monolithic architecture, 

microservices break down an app into multiple logical services. Each service can be 

developed independently, leading to greater developer efficiency by allowing more parallel 

development — allowing teams to maintain independence — while at the same time allowing 

the services to work together reliably with stable APIs in spite of fast-changing code. Running 

microservices is also much improved, as each service can be deployed, upgraded, and scaled 

independently. 

▪ DevOps brings software developers and IT operations in closer collaboration to release 

software faster. DevOps engineers are tasked with creating services and process automation 

to allow developers to focus on creating code and then getting that code into testing and 

deployment as quickly as possible in an automated way without additional human overhead. 

▪ Continuous integration/continuous deployment is a common DevOps technique where a 

software build and deployment pipeline automate the release of software updates, constantly 

and in small changes. 

Containers, being highly efficient at packaging applications, portable, and fast start-up and teardown, 

became a perfect fit to encapsulate these new types of applications. Coupled with advanced 

automation, the agility of containers helps automate operations that typically have been done manually 

or required human intervention such as optimized provisioning, auto scaling, and fault recovery. 

Container orchestration systems are also able to automate more complex patterns such as A/B testing 

and rolling upgrades of new software versions. 
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Why Are Enterprises Adopting Containers? 

Enterprises are adopting containers for a number of key reasons (see Figure 1). 

FIGURE 1 

Top Drivers for Containerization 

 

Source: IDC, 2019 

 

Accelerate Software Development 

▪ Modern applications are shifting to cloud-native and microservices architectures, and 

containers are a perfect way to encapsulate these pieces into portable units. 

▪ Development methodologies are changing, with developers shifting to agile methods and 

DevOps and leveraging continuous integration/continuous deployment systems. Containers, 

being lightweight and portable, make great vessels to wrap code with in order to push them 

through these new software pipelines. 

Modernize Applications 

Containers can also be used for existing applications without any refactoring. Use of containers in this 

way allows the application to be more portable for migration to the public cloud and can also retrofit the 

application into newer developer workflows and software pipelines. However, refactoring the 

application will bring further benefits, encouraging customers to first containerize, then refactor parts of 

the application or build modern extensions to the application over time. 
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Automate Operations at Web Scale 

Container orchestration and management systems are designed to deploy and manage distributed, 

cloud-native applications. To do this at any scale, full automation is a core mantra of these systems. 

These systems are also designed to operate at web scale, providing scalability and resiliency 

capabilities to modern applications. This entails monitoring specific performance metrics and health 

checks and automatically scaling or reacting to failure when thresholds are crossed. 

Areas That Containers Do Not Address 

Containers are catching on very quickly in the industry because it has applications to many of the current 

industry trends. But as a hot technology, containers often get overhyped and get spun as a cure-all for a 

variety of problems, and a number of myths and misconceptions can be commonly heard today. 

The following are some areas that containers do not address: 

▪ OS and kernel portability: Remember that a running container is just a sandboxed process.  

That process or application is still bound by the normal rules of operating system/application 

limitations. For example, containers don't let a Linux app run on Windows and vice versa. A Linux 

app inside a container is still a Linux app and still needs a Linux kernel to run. A container may 

make a Linux app more portable across different Linux distributions, provided that the underlying 

container host provides a suitable kernel. 

The OS kernel on a container host is shared across all the containers running on it and the 

kernel version still matters to some applications, so portability is still bound by those 

requirements if changing Linux distributions or versions. 

▪ Infrastructure: Containers are an operating system–level technology, and while they do have 

major impacts on how compute, storage, and networking work, there is still a layer of real 

infrastructure underneath that containers do not manage or provision. Underneath containers still 

exists a physical infrastructure and usually a software-defined compute, storage, or networking 

virtualization layer as well. Containers can provide an abstraction layer on top of infrastructure, 

but containers are not a solution for poorly managed or poorly architected infrastructure. 

Containers and Virtualization 

One common question many enterprise customers have is whether containers replace virtualization. 

For the most part, containers aren't replacing virtualization today because containers and virtualization 

do different things and work together very well. Virtualization operates at the hardware level, 

virtualizing server hardware and carving it up into smaller pieces. Containers operate at the operating 

system level and application packaging level. 

As a result, virtualization is still very useful for functions such as: 

▪ Secure separation. The boundary between containers, while very good compared with an 

uncontainerized process, is not as secure as a VM. In scenarios where strict separation is 

needed, VMs are used today — for instance, to separate multiple tenants in a public cloud. 

▪ More flexible OS and kernel choices. If a container host OS was installed on bare metal, all 

containers would share that same kernel. Using VMs to run multiple container host OSs allows 

mixing of OSs. This could be a mix of Windows and Linux, different Linux distributions, 

different Windows versions, and different patch levels that might be needed by applications. 
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▪ Hardware provisioning. Remember that containers don't manage the underlying infrastructure; 

so that still needs to be managed and provisioned by something. While some bare metal 

provisioning tools exist, the IT industry has spent the past 15 years building virtual 

infrastructure tools, which are much more widespread, flexible, and agile. Virtualization is still 

the best way to carve up a physical server in a secure and granular way, to be used for 

multiple tenants and different operating systems. 

However, just because containers don't necessarily replace virtualization doesn't mean that 

hypervisors aren't evolving to accommodate containerization use cases. See the "Optimizing VMs for 

Containers" section for more details on microVM technology. 

TRENDS IN ENTERPRISE CONTAINER ADOPTION 

IDC forecasts that by 2021, there will be approximately 3 billion containers deployed, more than six 

times growth from 2017 (see Figure 2). Some of this growth is from hyperscale web services providers 

that have long been using containers in their own datacenters to host their applications. But the 

fastest-growing segment is enterprises that are adopting containers both on-premises and in the public 

cloud, accounting for 1.8 billion containers, which is about 60% of the total containers in 2021. As the 

industry transitions to cloud-native applications, containers are serving as the next-generation compute 

primitive and package for those applications. 

FIGURE 2 

Worldwide Container Instances Installed Base, 2016–2021 

 

Source: IDC, 2019 

 

Where Are Containers Deployed? 

Containers initially began to be deployed on the public cloud, which is no surprise given the affinity 

containers have for cloud-native application development. As containers have grown in popularity and 

beyond just cloud-native applications, we are now seeing container infrastructure buildout in  
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on-premises environments. By 2021, containers on public cloud will make up nearly 60% of total 

container deployments (see Figure 3). With the standardization of containers with OCI and the wide 

adoption of Kubernetes, container infrastructure is far more standardized than VMs are, opening up a 

range of hybrid cloud use cases for containers. Containerizing an application will also make it easier to 

migrate that app to the cloud in the future. 

FIGURE 3 

Worldwide Non–Cloud SP Container Instances Installed Base by Deployment Model, 

2016–2021 

 

Source: IDC, 2019 

 

Containers in Production 

Containers have moved into production faster than any other recent compute technology. For example, it 

took nearly a decade from when server virtualization was introduced until the industry saw a significant 

number of production applications deployed in VMs. Server virtualization took time to work out stability and 

performance issues. With containers, 85% of container deployers today are already using containers for 

production workloads and 75% are even using it for tier 1 applications — according to a recent IDC 

container customer survey. Containers are particularly prevalent in DevOps teams, with 95% of DevOps 

users already running some number of applications in containers, though most footprints are still small 

today. So why have containers become stable and trusted so quickly? The key reasons are: 

▪ The core Linux kernel functions that containers use for execution are actually not new but quite 

mature. These functions are also used for other functionality outside of containers. So from a 

fundamental execution standpoint, containers are using very stable and mature technology. 

▪ With containers, there was never any performance hump to get over as with server virtualization. 

Server virtualization has to emulate server hardware and there is overhead with that. Containers 

work completely differently and there is no inherent performance overhead with containers. 
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▪ While containers are new to the enterprise, they aren't new to hyperscale web companies. 

These companies did a lot of the pioneering work in developing the previously mentioned 

Linux kernel functions and also perfecting the architecture, methodology, and processes 

behind container infrastructure and containerized software development. 

▪ Most of the key container technologies are open source projects with broad industry 

participation and high development velocity. This allows software to be developed much faster 

than any single closed source company could do. 

What's Being Containerized? 

With most enterprises, juggling multiple generations of technology and legacy assets is standard. Thus for 

new technology to be deployed broadly in enterprises, it has to be applicable to existing assets and not just 

greenfield buildouts. While many enterprises are beginning cloud-native software development, this is still a 

work in progress in most organizations, and it will take time to make this transition. In IDC's latest container 

customer study, 54% of containers are running existing applications (see Figure 4). However, containers 

aren't transparently compatible with existing applications like VMs were. While 42% of existing apps that 

were containerized required little to no modifications to containerize, 25% required significant modifications. 

One of the major use cases for containers in the enterprise is to modernize applications, and users reported 

that 58% of their existing apps that were containerized will undergo further refactoring over time. 

Even without refactoring, containers can bring benefits to existing applications. Setting up complex 

multipart applications with containers is much faster and easier, and this can greatly assist developer 

productivity on laptops as well as in automated testing environments. Containers also allow developers 

and operators more control over the environment (library versions, etc.), also leading to increased 

code quality and fewer issues with moving apps from desktop to production. Implementing immutable 

infrastructure principles can also assist with faster and more automated testing and patching of 

applications. Even with a tier 3 application, container orchestrators can offer more agile, reactive, and 

automated scaling and availability than VM counterparts, a benefit to apps that are more dynamic. 

However, a great level of benefit is attained when the application is refactored into smaller, loosely 

coupled parts, allowing a higher degree of parallel development and agile operations. This doesn't 

have to necessarily be a full microservices implementation for users to see returns. Most customers 

initially only make changes to the app during the initial containerization that are absolutely necessary, 

typically the changes that are needed to solve compatibility issues with containers. Over time, often 

years, the application will then be slowly refactored. Monoliths can be hard to break apart, and users 

don't generally attack the entire code base. A common approach is to identify the high-change, high-

dependency portions of the app and focus on those areas for maximum return, leaving the more static 

parts of the monolith alone. Extensions and new functionality to the app are generally created as a 

separate, linked service as much as they can, rather than adding it to the monolith. 
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FIGURE 4 

Workload Types in Containers 

 

Source: IDC, 2019 

 

The Rise of Kubernetes 

Much of the attention today in container technology is around Kubernetes, a massive open source project 

that is governed by the Cloud Native Computing Foundation (CNCF). Kubernetes is the most widely used 

and supported container orchestrator, with nearly every vendor offering a Kubernetes-based product or 

service. The CNCF also maintains a Kubernetes conformance test, to ensure that Kubernetes products 

that pass this certification will interoperate with each other. This brings another level of standardization to 

the container stack, which is a benefit to end users — who will reap portability and interoperability benefits 

that VMs were never able to establish. Kubernetes already accounts for the majority of container 

orchestration usage, with 87% of on-premises and 82% of public cloud container deployments using it. 

However, there are several key facts to keep in mind about Kubernetes: 

▪ Kubernetes is the center of a container management system but doesn't address every area of 

container infrastructure or container management, focusing primarily on scheduling and 

orchestration. To build a full container platform or solution, many other components besides 

Kubernetes are required. 

▪ Kubernetes is a complex technology and it is not trivial to deploy, manage, and make highly 

available. Skills will be needed to manage it and a learning curve should be expected. 
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▪ Other container orchestration systems besides Kubernetes still have their place. These 

orchestrators often target specific uses cases that Kubernetes doesn't address well. For 

instance, some systems are designed to be much simpler than Kubernetes, a good choice for 

beginning users and certain application types. Others target legacy application patterns, 

allowing these applications to be containerized without the retrofitting work sometimes 

mandated by Kubernetes for easier migrations. 

FUTURE OUTLOOK 

From Point Technology to Full Platform 

Containers have evolved in a very short time from a small computing primitive into a full enterprise 

platform. This is very similar to how virtualization evolved, with the initial focus on the hypervisor but 

then quickly evolved to virtualization management and then other areas such as storage and 

networking. Containers are rapidly integrating into every area of the datacenter and having an impact 

on every layer of the stack. Some of these areas are: 

▪ Storage. The developing Container Storage Interface (CSI) will define how storage systems 

interface with containers and how they surface storage features to containers. Persistent 

storage wasn't something container platforms initially offered, but now they are an essential 

requirement for most enterprises. Persistent storage is needed for application compatibility 

and to run stateful apps in containers such as databases. 

▪ Networking. The Container Network Interface (CNI) defines how networking systems plug into 

containers. Containers are also spurring the development of new networking technologies 

such as service mesh, which is networking designed for microservices applications. 

▪ Security. IDC research has found that security is a top driver/benefit of containers, while at the 

same time the top challenge. Moving to containers can improve security, such as how fast users 

can patch and update software. But it also introduces a new layer that needs to be secured. 

Some of these technologies are embedded deep within container platforms, such as the isolation 

between containers. Others are external, such as network security or image scanning. 

▪ Management. While Kubernetes handles a lot of the fundamental management capabilities, 

the domain of system management is very large, and no single product can address 

everything. Application monitoring and application performance management are some 

examples of areas outside the scope of Kubernetes. Containers have the potential to operate 

on a much larger scale in terms of the number of instances and are also extremely ephemeral, 

which creates new management problems to be solved. 

Optimizing VMs for Containers 

As container adoption ramps in the industry, infrastructure in many areas, such as virtualization, will 

evolve to become more optimized for containerized workloads. As previously discussed, virtualization 

serves a very different purpose than containers and most containers today are deployed in VMs. 

However, there is a new technology that seeks to optimize the hypervisor and container host OS inside 

the VM. By slimming down the entire footprint, start-up time and resource utilization of the VM can be 

dramatically reduced. This type of VM is often referred to as a microVM and the optimized OS a 

microOS. A microVM/OS strips out any unnecessary feature and code, leaving only what is absolutely 

necessary to run a container. This has several benefits: 

▪ Reduced attack surface for improved isolation and security 



©2019 IDC #US45071219 10 

▪ Reduced resource utilization, with microVMs consuming as little as a handful of megabytes  

of RAM 

▪ Fast start-up time (Traditional VMs and operating systems normally take several minutes to 

boot. A microVM/OS can boot in several hundred milliseconds.) 

MicroVMs in the public cloud have several important applications. As the unit of provisioned compute 

increasingly moves toward containers, such as with serverless and functions, public cloud providers 

need a way to efficiently provision at a per-container level while providing secure separation between 

tenants. Optimized virtualization and container technology can allow public cloud providers to provide 

new container services at a more cost-effective price, with better performance and security. 

The Transition to Containers 

The industry will be in a transition to containers and cloud native for many years. It is a gradual 

evolution in many steps. For the foreseeable future, cloud native and traditional apps will coexist and 

integrate with each other. While 95% of DevOps teams today are using containers in some capacity, 

scaling this to the entire organization is a long-term task. 

Simply containerizing an application doesn't imply that it is now cloud native. An IDC container survey 

shows that 54% of containers today run existing applications that haven't been refactored in any way. 

However, nearly 60% of these existing apps will eventually be refactored over time. Figure 5 shows the 

transition of apps to a cloud-native architecture over the next several years. 

FIGURE 5 

Cloud-Native Apps 

Q. What percentage of your applications are cloud native today? What percentage are expected 

to be cloud native by 2020? 

 

Source: IDC, 2019 
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Choosing a Public Cloud Container Service 

Containers are available in many different services, depending on what the customer needs. Container 

infrastructure, or what many call containers as a service (CaaS), provides just the infrastructure and 

operations layer, letting customers choose and integrate their own developer and build tools. Many 

platform-as-a-service (PaaS) systems now use containers underneath and offer opinionated ways as to 

how applications are built, tested, and deployed. There are newer services emerging as well, such as 

serverless computing and functions as a service (FaaS). Serverless lets users to simply request and get a 

container, without having to manage or know about the container hosts underneath. Functions as a service 

lets users to write code that gets executed when a certain event is triggered. FaaS uses containers behind 

the scenes, but users only manage their code functions and never have to know about or touch a container. 

While it is possible to bring your own software to the public cloud and deploy and manage it yourself, 

there is a general trend toward fully managed cloud services. In the early days of containers, container 

services weren't yet available, so users were forced to manage a container themselves. But now, 

service providers typically offer a wide range of container services and are rapidly iterating on them 

with new innovation. Using a managed service lets the cloud provider do the dirty work of managing 

the infrastructure, freeing up customers to focus more on their application. However, in some cases, 

customers may need to manage the full stack for reasons such as compliance; so clouds need to offer 

the full range of DIY to meet enterprise requirements. 

When considering a public cloud container service, don't forget that infrastructure still matters. Containers 

ultimately still run on real servers, use real storage, and so forth. Containers build on the existing core 

cloud infrastructure of VMs, storage, and networking, so customers still need to evaluate these areas of 

the cloud. The scale, location, features, stability/availability, and cost of this infrastructure will play a key 

role in how well container services operate. Other points to consider include: 

▪ Decide what you want to manage and what the cloud provider should manage. Customers 

generally choose to manage it themselves if those parts either serve as market differentiators, 

have special requirements that cloud can't fulfill, or for compliance and security reasons. For 

many though, infrastructure is becoming less strategic, and customers are choosing to offload 

that layer and focus on the application. Cloud providers now offer managed services that span 

the range of infrastructure, platform/middleware, and app development; so customers have a 

lot of choices of what they can have managed. Keep in mind that the mix of managed may 

vary from application to application and that this may change over time. 

▪ Serverless. Most container services today offer a managed container control plane such as 

Kubernetes. The cloud provider fully manages the deployment, scaling, and upgrades of this 

plane. Customers typically manage the data plane, the servers where containers run. New 

serverless offerings now also offer fully managed data planes at the container level, where the 

cloud provider will manage the provisioning, scaling, and updating of the data plane. This 

serverless can further reduce the infrastructure burden on customers, but customers need to 

evaluate the operating system options, isolation models, and provisioning models to see 

whether it can meet their needs. 

▪ Cost and billing models. There's a large variety of container services out there and more on 

the way, and the cost and billing models vary greatly. Sometimes container orchestration is a 

free service if you pay for the data plane compute and sometimes it is an extra charge. Data 

plane cost models are also changing. Commonly, most clouds charge for the underlying VMs 

at the standard rate. But with some newer serverless models, some may offer more granular 

metering that may have advantages for certain use cases. Customers need to evaluate the 

behavior of their applications and determine which models may be beneficial to them. 
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▪ Integration with the rest of the cloud. To fully operationalize containers, many supporting 

services are needed, such as persistent storage, networking, and identity and access 

management (IAM). Cloud providers generally have offered these services for a long time. But 

customers should investigate how integrated these services are to the container services. This 

should also include operational tools such as monitoring, log management, and analytics. 

Most cloud providers offer some existing capability in this area and these will still be needed 

for containers. However, cloud providers also need to extend this capability deeply into the 

container layer to give customers insight into what's happening at that level. There's a wide 

range of functionality required to build a container platform; so customers need to look beyond 

the basic container execution and cluster management for their future needs. Containers will 

touch every part of the cloud; so customers must evaluate not just a single service but all the 

other services that it may rely on or extend to. 

▪ Operating system support. Enterprises typically manage multiple operating systems spanning 

from free Linux to paid enterprise Linux and Windows. Some applications are more reliant on 

specific versions of the operating system than others. The availability and support for the 

required operating systems is a fundamental issue for enterprises and will affect the usage of 

some services like serverless that may be less flexible. 

▪ Upgrade cadence and disruption. Some projects like Kubernetes are evolving very fast, and 

users today generally will want a faster upgrade cadence for new technologies as new 

releases bring significant new features and fixes. As the technology matures, the cadence 

generally slows down and the upgrade benefits are less from version to version. Customers 

need to determine how often the cloud provider can provide upgrades and what is the 

disruption in service for the upgrades. 

▪ Strength of other application and data platform services. Many containerized applications don't 

just need a solid infrastructure to run on but will want to take advantage of other cloud services 

to build their application with, such as databases, analytics, AI, and machine learning. These 

services may be more valuable and differentiating than infrastructure, depending on what the 

customer is looking to achieve with the application. The depth, cost, and innovation around 

these types of services can be critical to the code running inside of the containers. 

▪ Ecosystem, marketplace, and partners. Ecosystems can make or break a platform. There is 

huge value in having a wide range of complementary solutions available from technology 

partners and integration partners to deliver it. No cloud provider or service can fill every need 

and segment within the market, and the strength and richness of the ecosystem surrounding it 

adds very real value to customers. 

▪ Pace of innovation. A huge value proposition of the cloud is being able to take advantage of 

new innovation quickly and without a huge up-front investment. Clouds are not static things; 

they continually refresh and innovate across all areas of the stack. Containers are a new area, 

but core infrastructure and developer/application/data services are also tied deeply into what 

containers can do. Customers need to consider who they want to bet on to stay at the forefront 

of innovation in order to future-proof their investments. 
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AMAZON WEB SERVICES PROFILE 

Amazon Web Services (AWS) is a pioneer and a leading provider of public cloud services. As one of 

the first and one of the largest public clouds, AWS has matured its technology over time, earning the 

trust of customers and operating with a large global reach and scale. 

AWS is building container services with the goal of allowing its customers to run their containers at 

scale. Containers are just one part of AWS' initiative to support and drive modern application 

development as part of its customers digital transformation journey. AWS sees CI/CD, microservices, 

infrastructure as code, automation, and security/compliance as the key pillars to supporting application 

modernization, with containers as an underlying technology to support these. 

However, AWS realizes that this journey for most is a stepwise path, with customers starting with a lift 

and shift migration to cloud, replatforming applications for cloud services, and finally, refactoring 

applications for microservices. Enterprises start in different ways and adopt different mixes of cloud-

native technologies over time as the paths to application modernization are extremely varied. AWS 

seeks to supply customers with a wide range of cloud services, with container services just being part 

of the total solution, that can help with every step of the journey. 

AWS also realizes that customers will have very different needs for managed services. Some 

customers, whether for differentiation or other reasons such as compliance, will want to manage more 

of the stack, including infrastructure. Others will want a managed approach, offloading the 

infrastructure part to focus on their application. AWS offers a broad range of services to accommodate 

both models and any mix the customer chooses. 

One emerging way to approach computing is with serverless computing. AWS defines serverless as 

an operational model. There is no infrastructure to provision or manage (no servers to provision, 

operate, patch, etc.). 

Key characteristics of serverless are: 

▪ Automatically scales by unit of consumption (scales by unit of work/consumption rather than 

by server unit) 

▪ Pay for value billing model (if you value consistent throughput or execution duration you only 

pay for that unit rather than by server unit) 

▪ Built-in availability and fault tolerance (no need to architect for availability because it is built 

into the service) 

AWS' primary container offerings include: 

▪ Amazon Elastic Container Service (Amazon ECS) is a highly scalable, high-performance 

container orchestration service that supports Docker containers and allows customers to 

easily run and scale containerized applications on AWS. Amazon ECS eliminates the need for 

customers to install and operate their own container orchestration software, manage and scale 

a cluster of virtual machines, or schedule containers on those virtual machines. 
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▪ Amazon Elastic Kubernetes Service (Amazon EKS) makes it easy to deploy, manage, and 

scale containerized applications using Kubernetes on AWS. Amazon EKS runs the open 

source Kubernetes management infrastructure as a managed service across multiple AWS 

availability zones to eliminate a single point of failure. Amazon EKS is certified Kubernetes 

conformant so that customers can use existing tooling and plug-ins from partners and the 

Kubernetes community. Applications running on any standard Kubernetes environment are 

fully compatible and can be easily migrated to Amazon EKS. 

▪ Amazon Elastic Container Registry (ECR) is a fully managed Docker container registry that 

makes it easy for developers to store, manage, and deploy Docker container images. Amazon 

ECR is integrated with Amazon Elastic Container Service, simplifying development to production 

workflow. Amazon ECR eliminates the need to operate container repositories or worry about 

scaling the underlying infrastructure. Amazon ECR hosts your images in a highly available and 

scalable architecture, allowing customers to reliably deploy containers for applications. 

Integration with AWS identity and access management provides resource-level control of each 

repository. With Amazon ECR, there are no up-front fees or commitments. You pay only for the 

amount of data you store in your repositories and data transferred to the internet. 

▪ AWS Fargate is a compute engine for Amazon ECS and EKS that allows customers to run 

containers without having to manage servers or clusters. This removes the need to choose 

server types, decide when to scale clusters, or optimize cluster packing. AWS Fargate 

removes the need for customers to interact with or think about servers or clusters. Fargate lets 

customers focus on designing and building your applications instead of managing the 

infrastructure that runs them. 

▪ The AWS Container Marketplace extends the existing Marketplace to containers, allowing 

customers easy access to a wide range of container ecosystem solutions. The Marketplace offers 

prebuilt Docker images, ECS task definitions, and Helm charts. They can be offered by sellers in 

a variety of pricing models, including free, bring your own license, and usage-based pricing. 

AWS' core infrastructure services also power the company's container services, making them an 

essential foundation that containers are built on. These services are highly performant, scalable, 

reliable, secure, and available in many global locations. For compute, EC2 provides the VMs that run 

container hosts. Storage is available in several different formats (S3 for object storage, EBS for block, 

and EFS for file), which are all available for containers to access. For customers that want to manage 

their own container infrastructure, they will be accessing these services more directly. 

Amazon's container offerings integrate well not only with each other but also within the rest of the 

familiar AWS ecosystem such as VPC networking, Elastic Load Balancer, IAM roles, CloudWatch 

events, CloudTrail logs, and CloudFormation templates to create a full end-to-end container 

infrastructure and operations platform. 

AWS Fargate and Lambda use an optimized microVM technology developed by AWS, called 

Firecracker. Firecracker has been open sourced by AWS and is available on GitHub. Firecracker is a 

virtual machine monitor that works with KVM to operate like a lightweight hypervisor and is designed to 

run serverless applications, such as ephemeral-like functions or Fargate-style containers, which cycle 

very rapidly and are lightweight. Firecracker allows Fargate and Lambda workloads to be run more 

efficiently, allowing them to be offered at competitive price points. The performance is also increased 

by having ultra-fast boot times, which can reduce the cold start latency for containers. And, of course, 

the primary benefit is security, allowing containers to be securely separated with high granularity. 

Firecracker allows users to get not only the benefit of containers but also the isolation and security 

model of virtual machines. 
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Complementing container orchestration is AWS App Mesh, a fully managed service mesh offering.  

A service mesh is a networking technology specifically designed for the needs of microservices 

applications. Traditionally, networks in the cloud are at the lower layers of the network for those 

familiar with the OSI model. In AWS, it is best exemplified by VPC, the virtual private cloud.  

Users set up their CIDRs and their virtual private clouds into which clusters, servers, and containers 

are deployed. All networking happens at that layer. Users deploy an elastic network interface, and then 

attach security groups to it. 

But as users migrate to smaller and smaller microservices-based applications, networking presents new 

challenges. AWS App Mesh, a type of service mesh, is a Layer 7 communications mesh that services 

register into. The mesh applies all the appropriate policies and traffic management so that users can build 

reliable and resilient applications with all the governance and compliance that enterprises need. 

AWS App Mesh is available today and works with ECS, EKS, Fargate, CloudWatch, and X-Ray. 

CHALLENGES/OPPORTUNITIES 

Challenges 

▪ Containers don't fully solve the portability problem. While the container stack is much more 

standardized than with VMs, mobility is only at the infrastructure level. If the code within the 

container is tied to a particular cloud service, API, framework, and so forth, then the container 

is still only as portable as those dependencies. Data that the application depends on can also 

limit portability, depending on the size and cost to move that data (data gravity). 

▪ Containerizing Windows workloads remains a relatively untapped and important segment of 

customers. Amazon must identify the best candidates to build traction. It's still very early for 

these customers and Amazon needs to hone its value proposition for Windows containers. 

▪ Containers as a technology is still very new to enterprises. Even newer is expertise in building 

cloud-native and microservices applications. There is going to be a lot of research, 

experimentation, and learning from enterprises in the coming years in order to adopt 

containers. Cloud providers can provide a lot of the technology as managed services, but 

skills, processes, and people are much slower to change. 

Opportunities 

▪ Amazon has a number of developer tools such as CodeBuild that address the development 

side of containers and these are being integrated into its container services. While not 

everyone wants an opinionated PaaS, Amazon does have the opportunity to build a more  

end-to-end system for those that want a guided PaaS experience. 

▪ Containers are clearly the compute vehicle for the next generation of applications and public 

cloud plays a very large role in that development. Amazon, which has established itself as a 

leading builder of robust cloud infrastructure, can leverage the strength of that infrastructure for 

containers and capture share as the market transitions. However, as critical as infrastructure is, it 

may be the other services developers' access with their code inside the containers, such as data 

services, AI, or ML, that ultimately is the differentiator for Amazon. Differentiation will require 

constant innovation and Amazon must continue to push the envelope. 

▪ With the announcement of App Mesh, AWS is focusing a lot of its investment into application-

level networking and application-level communications across AWS, a key requirement as 

users increasingly transition to microservices. 
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CONCLUSION 

Containers are the foundation for cloud-native applications and fueling a transformational change in 

how enterprises build and run applications. Enterprises will increasingly leverage containers in the 

public cloud to build modern, cloud-native applications and iterate on these applications extremely 

quickly. Enterprises evaluating container services in the cloud need to take a broad view. Containers 

still run on real physical and virtual infrastructure, so basic IaaS robustness and physical presence still 

matter. Users also need to consider containers as a complete and holistic application platform instead 

of a single service. A complete container platform needs to integrate multiple areas of infrastructure 

such as storage, networking, and monitoring, as well as developer-facing tools such as CI/CD 

pipelines and application data services. Containers also serve as the technology foundation for 

serverless and functions as a service, a higher level of abstraction, and a new compute model that can 

benefit certain types of applications. The change that containers are ushering in can't be understated. 

Containers and the public will enable enterprises to operate more like cloud hyperscalers, building and 

iterating apps quickly and operating them at large scale. 
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