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“Very often in mathematics the crucial problem is to recognize and to discover what are the 
relevant concepts; once this is accomplished the job may be more than half done.”1

“One of the greatest contributions a mathematician can make is to spot something so simple 
and powerful that everybody else has missed it.”2

Note 1: The reader who is sorely pressed for time should begin by reading our shortest proof 
of the 3x + 1 Conjecture.  (A proof of the Conjecture solves the 3x + 1 Problem.)  See “Third 
Proof of the 3x + 1 Conjecture” on page 21.

Note 2: Letters designating appendices have been recently changed as a result of a reorganiza-
tion of this paper.

 
Note 3: The reader can safely assume, initially, that all referenced lemmas in this paper are 

true, since their proofs have been checked and deemed correct by several mathematicians. 

Note 4: We will offer shared-authorship to any mathematician who creates a proof of the 3x 
+1 Conjecture that differs from those in this paper, but that makes use of materials in this paper.

Note 5: The author is seeking a professional mathematician to help prepare this paper for pub-
lication.  The author will pay any reasonable consulting fee, give generous credit in the Acknowl-
edgments (but only with the mathematician’s prior written approval), and offer shared-authorship 
for significant contribution to content.
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A Solution to the 3x + 1 Problem
Abstract
 The 3x + 1 Problem asks if  repeated iterations of the function C(x) = (3x + 1)/(2a) always ter-

minate in 1  Here x is an odd, positive integer, and a = ord2(3x + 1), the largest positive integer 
such that the denominator divides the numerator.  The conjecture that the function always eventu-
ally terminates in 1 is the 3x + 1 Conjecture.  An odd, positive integer that maps to 1 is called a 
non-counterexample; an odd, positive integer that doesn’t map to 1 is called a counterexample (to 
the Conjecture).

Our first proof (given under:“First Proof of the 3x + 1 Conjecture” on page 11) is based on a 
structure called tuple-sets that represents the 3x + 1 function in the “forward” direction.      In our 
proof, we show that the 35-level elements of all 35-level tuples in all 35-level tuple-sets are the 
same, regardless if counterexamples to the Conjecture exist or not1.  From this fact, a simple 
inductive argument allows us to conclude that all tuple-sets are the same, whether counterexam-
ples exist or not, and hence that counterexamples do not exist.  

Our second  proof (given in “Second Proof of the 3x + 1 Conjecture” on page 12), like the 
first, is based on tuple-sets.    In this proof, we define anchor, which is the i-level element of the 
first i-level tuple in an i-level tuple-set.  We then show that there is one and only one set of 
anchors for all i, regardless if counterexamples exist or not.  We then show that this implies that 
there is one and only one set of infinite tuples, regardless if counterexamples exist or not, and 
from this we deduce that, if counterexamples exist, then some infinite tuples must be both coun-
terexample and non-counterexample tuples, which is absurd, hence counterexamples do not exist 
and the Conjecture is true.

Our third proof (given in “Third Proof of the 3x + 1 Conjecture” on page 21) has three ver-
sions. The first is based on a structure called the 1-tree.  This tree is a y-tree, where the root y is a 
range element of the 3x + 1 function; y-trees represent the 3x + 1 function in the “inverse” direc-
tion.  The second version is based on the remarkable fact that each finite sequence of iterations of 
the 3x + 1 function can in principle be traced on a certain spiral diagram. The third version is also 
based on the 1-tree.

As far as we have been able to determine, our approaches to a solution of the Problem are 
original. 

1. A phrase of the form “q regardless if p” is equivalent to “(if p then q) and (if not-p then q)”.  It  is mean-
ingful and in fact true as long as q is true, which it always is in this paper.  Instances of the phrase occur in 
everyday speech, for example, “Fermat’s Last Theorem is true regardless if the Riemann Conjecture is 
true”.,
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A Solution to the 3x + 1 Problem
Introduction

Statement of Problem
For x an odd, positive integer, set

where ord2(3x + 1) is the largest exponent of 2 such that the denominator divides the numerator.  
Thus, for example, C(17) = 13 (ord2(3(17) + 1) = 2) , C(13) = 5 (ord2(3(13) + 1) = 3), C(5) = 1 
(ord2(3(5) + 1) = 4). Each of these constitutes one iteration of the 3x + 1 function.  The 3x + 1 
Problem, also known as the 3n + 1 Problem, the Syracuse Problem, Ulam’s Problem, the Collatz 
Conjecture, Kakutani’s Problem, and Hasse’s Algorithm, asks if repeated iterations of C always 
terminate at 1. The conjecture that they do is hereafter called the 3x + 1 Conjecture, or sometimes, 
in this paper, just the Conjecture. We call C the 3x + 1 function; note that C(x) is by definition 
odd.

An odd, positive integer such that repeated iterations of C terminate at 1, we call a non-
counterxample.  An odd, positive integer such that repeated iterations of C never terminate at 1, 
we call a counterexample.

Other equivalent formulations of the 3x + 1 Problem are given in the literature; we base our 
formulation on the C function (following Crandall) because, as we shall see, it brings out certain 
structures that are not otherwise evident.

Summary of Research on the Problem
As stated in (Lagarias 1985), “The exact origin of the 3x + 1 problem is obscure.  It has circu-

lated by word of mouth in the mathematical community for many years.  The problem is tradition-
ally credited to Lothar Collatz, at the University of Hamburg.  In his student days in the 1930’s, 
stimulated by the lectures of Edmund Landau, Oskar Petron, and Issai Schur, he became inter-
ested in number-theoretic functions.  His interest in graph theory led him to the idea of represent-
ing such number-theoretic functions as directed graphs, and questions about the structure of such 
graphs are tied to the behavior of iterates of such functions.  In the last ten years [that is, 1975-
1985] the problem has forsaken its underground existence by appearing in various forms as a 
problem in books and journals...”

Lagarias has performed an invaluable service to the 3x + 1 research community by publishing 
several annotated bibliographies relating to the Problem.  These are accessible on the Internet.

 

On the Structure of This Paper
To enhance readability, we have placed proofs of all lemmas in “Appendix A — Statement 

and Proof of Each Lemma” on page 26.

C x( )
3x 1+

2ord2 3x 1+( )
--------------------------=
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In Memoriam
Several of the most important lemmas in this paper were originally conjectured by the author 

and then proved by the late Michael O’Neill.  He made a major contribution to this research, and 
is sorely missed.
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A Solution to the 3x + 1 Problem
Tuple-sets: The Structure of the 3x + 1 Function in the “Forward” 
Direction

A Comment

The structure, tuple-sets, that we are about to describe, is one of two remarkably simple struc-
tures1 that we have discovered underlying the 3x + 1 function, a function that is still referred to, at 
least informally, as “chaotic”.  The reader can get an idea of the alternative structures that, at the 
time of this writing, are used throughout the 3x + 1 literature, by browsing papers in Google that 
come up in response to the search string, “Collatz graphs”. For example, see:

https://www.fq.math.ca/Scanned/40-1/andaloro.pdf, 
http://go.helms-net.de/math/collatz/aboutloop/collatzgraphs.htm

Brief Description of Tuple-sets

The following should be sufficient for the reader to understand our proofs of the 3x + 1 Con-
jecture that are based on tuple-sets, namely those in “First Proof of the 3x + 1 Conjecture” on 
page 11 and “Second Proof of the 3x + 1 Conjecture” on page 12.

1. We use the definition of the 3x + 1 function in which all successive divisions by 2 are col-
lapsed into a single exponent of 2 (see “Statement of Problem” on page 3).  Thus, for example, the 
tuple <9, 7, 11> represents the fact that 

9 maps to 7 in one iteration of the function, via the exponent 2, because (3(9) + 1)/22 = 7 ;
7 maps to 11 in one iteration of the function, via the exponent 1, because (3(7) + 1)/21 = 11.

2. We see that the sequence of exponents associated with the tuple  <9, 7, 11> is {2, 1}.

3. A tuple-set TA is the set of all finite tuples that are associated with the exponent sequence A 
(and “approximations” to A, but this is not important for our proofs of the 3x + 1 Conjecture).  In 
our example, A = {2, 1}.  

In addition to the tuple <9, 7, 11> , the tuple-set TA = T{2, 1} contains the tuples <25, 19, 29> , 
<41, 31, 47>, and an infinity of others, each associated with the exponent sequence {2, 1}.  (See 
“Lemma 1.0: the “Distance” Functions d(i, i) and d(1, i)” on page 9.)

4. Facts about tuple-sets:

An i-level tuple-set TA, i  2, contains (among other tuples, see previous step) all (i + 1)-ele-
ment tuples that are associated with the exponent sequence A.

There is an infinity of tuples in each tuple-set.

1. The other is y-trees, as described under “y-Trees: The Structure of the 3x + 1 Function in the “Backward”, 
or Inverse, Direction” on page 18.
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A Solution to the 3x + 1 Problem
The set of all tuple-sets contains tuples representing all finite iterations of the 3x + 1 function.

Full Description of Tuple-sets

Definitions

Iteration
An iteration takes an odd, positive integer, x, to an odd, positive integer, y, via one application 

of the 3x + 1 function, C.  Thus, in one iteration C  takes 17 to 13 because C(17) = 13.

Tuple
A (finite) tuple is a finite sequence of zero or more successive iterations of C, that is, <x, C(x), 

C2(x), ..., Ck(x)>, where k  0.
A finite tuple is the prefix of an infinite tuple.  If x is a non-counterexample, then x is the first 

element of an infinite tuple <x, y, ..., 1, 1, 1, ... >.  Of course, if x is a range element of C, then x 
can be an element other than the first in another non-counterexample tuple. 

In the literature, a tuple (finite or infinite) is usually called a trajectory or an orbit.
If x is a counterexample, then x is the first element of an infinite tuple <x, y, ... > which does 

not contain 1. Of course, if x is a range element of C, then x can be an element other than the first 
in another counterexample tuple.

A counterexample tuple must be one of two types: either there is an infinitely-repeated finite 
cycle of elements (none of which is 1) in the infinite tuple having the counterexample x as first 
element, or else there is no such cycle, but there is no 1 in the infinite tuple having the counterex-
ample x as first element — in other words, there is no upper bound to the elements of the infinite 
tuple.

Exponent, Exponent Sequence
If C(x) = y, with y = (3x + 1)/2a,  we say that a is the exponent associated with x. In more for-

mal language, this can be expressed as ord2(3x + 1) = a.  Sometimes we simply write e(x) = a.  
The sequence A = {a2, a3, ..., ai}, where a2, a3, ..., ai are the exponents associated with x, C(x), ..., 
C(i - 1)(x) respectively, is called an exponent sequence.  We number exponents beginning with a2 
in order that the subscript corresponds to a level number in the corresponding tuple-set.  See 
“Levels in Tuples and Tuple-sets” on page 7. For all i  2, there are always i – 1 exponents in the 
exponent sequence associated with an i-level tuple-set

We say that x maps to y via ai if C(x) = y and ord2(3x + 1) = ai .  By extension, we say that x 
maps to z if z is the result of a finite sequence of iterations of C beginning with x, that is if the 
tuple <x, y, ..., z> exists.

Tuple-set1

Let A = {a2, a3, ..., ai} be a finite sequence of exponents, where i 2The tuple-set TA  con-
sists of all and only the tuples that are associated with all successive approximations to A.  Thus 
6



A Solution to the 3x + 1 Problem
TA consists of all and only the following tuples.  (Note: First elements x in different tuples are dif-
ferent odd, positive integers.  No two tuples in a tuple-set have the same first element.) 

all tuples <x> such that x does not map to an odd, positive integer via a2;

all tuples <x, y> such that x maps to y via a2 but y does not map to an odd, positive integer via 
a3;

all tuples <x, y, y> such that x maps to y via a2 and y maps to y via a3, but  y does not map to 
an odd, positive integer via a4; 

...

all tuples <x, y, yy(i – 3)y(i – 2)> such that x maps to y via a2 and y maps to y via a3  and ... 
and y(i – 3) maps to y(i – 2) via the exponent ai.  (The longest tuple in an i-level tuple-set has i ele-
ments.)

In other words, for each i-level exponent sequence A:

there are tuples <x> whose associated exponent sequence is a prefix of A for no exponent of A, 
and

there are other tuples <x, y> whose associated exponent sequence is a prefix of A for the first 
exponent of A, and 

there are other tuples <x, y, y> whose associated exponent sequence is a prefix of A for the 
first two exponents of A, and

...
there are other tuples <x, y, z, ..., y(i – 2)> whose associated exponent sequence is a prefix of A 

for all i – 1 exponents of A.  

Tuples are ordered in the natural way by their first elements.
The set of first elements of all tuples in a tuple-set is the set of odd, positive integers (see proof 

under “The Structure of Tuple-sets” on page 9). Thus, there is a countable infinity of tuples in 
each tuple-set.

For each i 2, tuple-sets are a partition of the set of all i-level tuples. 

Levels in Tuples and Tuple-sets
Let A be an i-level exponent sequence, {a2, a3, ..., ai}. The reason subscripts of exponents 

begin with 2, rather than with 0 or 1, is so that they correspond to levels in each tuple-set. (No 
tuple-set has only one level, because that would mean it is associated with no exponent sequence.) 
Let TA be the tuple-set determined by A. Then, by definition of tuple-set, there exist j-level tuples 
in TA, where 1  j  i, that is, tuples t = <x, y, ..., z>, where x is the 1-level element of t, y is  the 2-

1. The literature contains several results that establish properties of the 3x + 1 function that are equivalent to 
some of those for tuple-sets. However, the language is very different, and the definition of the 3x + 1 func-
tion that is used is not ours, but the original one, in which each division by 2 is a separate node in the tree 
graph representing the function. 
7



A Solution to the 3x + 1 Problem
level element of t, ..., and z is the j-level element of t. We say that TA is an i-level tuple-set, and we 
sometimes speak of the set of j-level tuple-elements in TA, where 1  j  i. 

For 2   j   i, two tuples are said to be consecutive at level j if no j-level or higher-level tuple 
exists between them.

Example of Tuple-set
As an example of (part of) a tuple-set: in Fig. 1, where A = {a2, a3, a4} =  {1, 1, 2} and where 

we adopt the convention of orienting tuples vertically on the page, the tuple-set TA includes:

 the tuple <1>, because e(1) = 2 a2 = 1);  
 the tuple <3, 5> , because e(3) = (a2 = 1), but e(5) = 4  (a3 = 1); 
 the tuple <5>, because e(5) = 4 a2 = 1);   
 the tuple <7, 11, 17, 13> because e(7) = 1 (a2 = 1) and e(11) = 1 (a3 = 1) and e(17) = 2 
      (a4 = 2);
etc.

Fig. 1.  Part of the tuple-set TA associated with the sequence A = {1, 1, 2}

The number 18 between the arrows at level 3 and the number 4 between the arrows at level 1 
are the values of the level 3 and level 1 distance functions, respectively, established by Lemma 1.0 
(see “Lemma 1.0: the “Distance” Functions d(i, i) and d(1, i)” on page 9). 

In each i-level tuple-set TA, where i 2, for each odd, positive integer x there exists a tuple 
whose first element is x.  The tuple may be one-level (<x>), or 2-level (<x, y>), or ... or i-level
 (<x, y, yy(i – 3)y(i – 2)>).  Thus each tuple-set is non-empty.

Graphical Representation of the Set of All Tuple-sets
It is clear from the definition of tuple-set that the set of all tuple-sets can be represented by an 

infinitary tree in which each node is a tuple-set.  We can imagine the tuple-set (which contains an 

1 3 5 7 9 11 13 15 17 19 21 23 25 27

5 11 17 23 29 35 41

...

...

17

13

35 53
18

4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 ...

...

...

1

2

3

4

level

tuple
no.
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A Solution to the 3x + 1 Problem
infinity of tuples) extending into the page.

The Structure of Tuple-sets
It is important for the reader to understand that the structure of each tuple-set is unchanged by 

the presence or absence of counterexample tuples.  Regardless if counterexample tuples exist or 
not, the set of first elements of all tuples in each tuple-set is always the same, namely, the set of 
odd, positive integers.  Proof: Let x be any odd, positive integer and let A = {a2, a3, ..., ai}, where 
i 2,  be any exponent sequence.  Then there are exactly two possibilities:

(1) x maps to a y in a single iteration of the 3x + 1 function, C, via the exponent a2, or 
(2) x does not map to a y in a single iteration of C via the exponent a2.

But if (1) is true, then a tuple containing at least two elements, with x as the first, is in TA; if (2) 
is true, then the tuple <x> is in TA.. There is no third possibility.

For each tuple-set, the first element of the first tuple is 1, the first element of the second tuple 
is 3, the first element of the third tuple is 5, etc.

It can never be the case that, if counterexample tuples exist, then somehow there are “more” 
tuples in a tuple-set than if there are no counterexample tuples1.  

Furthermore, the distance functions defined in “Lemma 1.0: the “Distance” Functions d(i, i) 
and d(1, i)” on page 9 are the same regardless if counterexample tuples exist or not. 

Extensions of Tuple-sets
Since there is a tuple-set for each finite sequence A of exponents, it follows that each tuple-set 

TA has an extension via the exponent 1, and an extension via the exponent 2, and an extension via 
the exponent 3, ...  In other words, if A = {a2, a3, ..., ai}, then there is a tuple-set TA´, where A´ = 
{a2, a3, ..., ai, 1}, and a tuple-set TA´´, where A´´ = {a2, a3, ..., ai, 2}, and a tuple-set TA´´´, where 
A´´´ = {a2, a3, ..., ai, 3}, ...

All this is true whether or not the tuple-set TA and/or any of its extensions contains counterex-
ample tuples or not. 

For further details on extensions of tuple-sets,  see “How Tuple-sets ‘Work’” and the proof 
that there exists an extension for each tuple-set (“Lemma 3.0 Statement and Proof”) in our paper, 
“Are We Near a Solution to the 3x + 1 Problem?” on occampress.com. 

Lemma 1.0: the “Distance” Functions d(i, i) and d(1, i)
(a) Let A = {a2, a3, ..., ai},  where i  2, be a sequence of exponents, and let  t(r), t(s) be tuples 

consecutive at level2 i in TA.  Then d(i, i) is given by: 

1. To make this statement more precise: in no tuple-set does there ever exist a first element of a tuple, regard-
less how large that first element is, such that there are more tuples in that tuple-set having smaller first ele-
ments if counterexamples exist, than if counterexamples do not exist.
2. For 2   j   i, two tuples are consecutive at level j if no j-level or higher-level tuple exists between them 
(see “Levels in Tuples and Tuple-sets” on page 7.
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A Solution to the 3x + 1 Problem
(b) Let t(r), t(s) be tuples consecutive at level i in TA.  Then  d(1, i) is given by:

Proof: see “Lemma 1.0: Statement and Proof” on page 26

It follows from part (a) of the Lemma that the set of all i-level elements of all i-level first 
tuples in all i-level tuple-sets is {z | 1  z < 2 • 3i – 1}, where z is an odd, positive integer not divis-
ible by 3.

Remark: Relationships similar to those described in parts (a) and (b) of the Lemma hold for 
successive j-level tuples, where 2  j < i. The following table shows these relationships for (i – j)-
level elements of tuples consecutive at level (i – j) in an i-level tuple-set, where 0 j (i – 1). The 
distances are easily proved using Lemma 1.0. 

Further details can be found in the section,  “Remarks About the Distance Functions” in our 
paper, “Are We Near a Solution to the 3x + 1 Problem?”, on occampress.com.

Lemma 2.0 Counterexample tuples in tuple-sets if counterexamples exist
Assume a counterexample exists.  Then for all i 2, each i-level tuple-set contains an infinity 

of i-level counterexample tuples and an infinity of i-level non-counterexample tuples.

Table 1: Distances between elements of tuples consecutive at level i

Level
Distance between (i – j)-level elements 

of tuples consecutive at level (i – j), 
where 0 j (i – 1)

i

i  1

i  2

i  3

... ...

2

1 ...  

d i i  2 3 i 1– =

d 1 i  2 2a2  2a3  2ai =

2 3i 1–

2 3i 2– 2ai 

2 3i 3– 2ai 1– 2ai 

2 3i 4– 2ai 2– 2ai 1– 2ai 

2 3 2a32ai 1– 2ai 

2 2a2 2a3 2ai 1– 2ai
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Proof: “Lemma 2.0: Statement and Proof” on page 31

First Proof of the 3x + 1 Conjecture

The 3x + 1 Problem asks if repeated iterations of the function C(x) = (3x + 1)/(2a) always ter-
minate in 1  Here x is an odd, positive integer, and a = ord2(3x + 1), the largest positive integer 
such that the denominator divides the numerator.  The conjecture that the function always eventu-
ally terminates in 1 is the 3x + 1 Conjecture.

(Note: the reader is asked to inform us of the first sentence that the reader believes contains an 
error, and what that error is.)

1. Definitions: an anchor tuple is the first i-level tuple in an i-level tuple-set, where i  2.  An 
anchor is the i-level element of the anchor tuple in an i-level tuple-set.  It is easily shown that, for 
each i  2, the number of anchors in all i-level tuple-sets is 2 ꞏ 3((i – 1) – 1) (see “Second Proof of 
the 3x + 1 Conjecture” on page 12).  

We know, by computer test1, that for all i, 2  i 35, the anchor in each i-level tuple-set is a 
non-counterexample.  Thus, the following argument does not apply to the 3x – 1 function, where 
already at i = 2, there is an i-level tuple that contains a counterexample.  (The tuple is <7, 5>, 
which is the start of the infinite cycle <7, 5, 7, 5, ... >, hence 5 is a counterexample  (as is 7).)

2.  For each 35-level tuple-set TA, the sequence S of 35-level elements in the sequence of 35-
level tuples  is given by y + n(2 • 3(35 – 1)), where n  0 and y is the anchor tuple in TA. The 
sequence S  is the  sequence if counterexamples do not exist.  It is also the sequence if counterex-
amples exist. (A similar statement occurs in Version 1 of “Third Proof of the 3x + 1 Conjecture” 
on page 21.)

Proof: Follows from part (a) of “Lemma 1.0: the “Distance” Functions d(i, i) and d(1, i)” on 
page 9.  The Distance Functions are not themselves functions of the truth or falsity of the 3x + 1 
Conjecture.

Note: the fact that the set of anchors in all 35-level tuple-sets are non-counterexamples is 
emphatically not the case for the 3x – 1 function, where one of the elements, 5, of a two-level 
tuple-set is already a counterexample. Thus there exists a first 2-level tuple, namely <7, 5>, in a 2-
level tuple-set that is a counterexample tuple.  The anchors for each greater i include counterex-
amples.  Each of the anchor tuples is therefore a counterexample tuple.  So our proof  cannot be 
used to prove the false 3x – 1 Conjecture2.

1. See results of tests performed by Tomás Oliveira e Silva, www.ieeta.pt/~tos/3x+1/html. All consecutive 
odd, positive integers less than 20  • 258  5.76  •  1018, which is greater than 3.33  • 1016  2 • 3(35 - 1),  have 
been tested and found to be non-counterexamples. These include the set of anchors in the set of all 35-level 
tuple-sets .
2. See “Appendix B — On The 3x – 1 Test” on page 41.
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A Solution to the 3x + 1 Problem
3. Since each 35-level tuple-set has an extension via each possible exponent, namely, via 1, 2, 
3, ..., we can use an inductive argument beginning with step 2  to arrive at the conclusion that the 
set of all non-counterexample tuples if counterexamples do not exist, is the same as the set of all 
non-counterexample tuples if  counterexamples exist. 

4.We must now ask if counterexamples can exist in TA in j-level tuples, where j < 35.  The 
answer is No, because each j-level tuple in TA extends to a 35-level tuple in some other 35-level 
tuple-set, and TA  is any 35-level tuple-set.  From step 2 we know that there is one and only one 
sequence S of 35-level elements in the sequence of 35-level tuples in any 35-level tuple-set.  Thus 
if any j-level tuples are counterexample tuples, they always behave the same as non-counterexam-
ple tuples.

6. So we must conclude from step 3 that counterexamples behave the same as non-counterex-
amples, which is absurd, or else that the set of counterexamples is the empty set.  In either case, 
our conclusion must be that the 3x + 1 Conjecture is true..

.    .  .   . .      
Remark 1

The reader might enjoy answering — or attempting to answer — question (I), below, which 
arises from the following facts:

Let the i-level tuple t = <x, ..., 1>, which is clearly a non-counterexample tuple (x is a non-
counterexample).  Let A be the i-level exponent sequence associated with t.  Then t is the first i-
level tuple in the tuple-set TA.  The level-1 (first) element of t is x, the evel-i element of t is 1.

The level-1 (first) element of the nth i-level tuple in TA is given by 
x + (n – 1)( ), and 
the level-i element of the nth i-level tuple in TA is given by 1 + (n – 1)(2 • 3i – 1), where n  1 

(by parts (b) and (a) of “Lemma 1.0: the “Distance” Functions d(i, i) and d(1, i)” on page 9).

(I)
How does TA differ if (1) counterexamples exist, and (2) counterexamples do not exist?

Remark 2
The reader might enjoy reading at least some of the possible strategies in “Possible Strategies 

for Other Proofs of the 3x + 1 Conjecture Using Tuple-sets” on page 15.

Remark 3
A wealth of additional results and possible strategies is available in our paper, “Are We Near a 

Solution to the 3x + 1 Problem?” on occampress.com.  

 Second Proof of the 3x + 1 Conjecture

The following proof of the 3x + 1 Conjecture is based on the idea underlying the proof of  
(“First Proof of the 3x + 1 Conjecture” on page 11). Like that one, it shows that the set of all 
tuple-sets (structure and contents) is the same, whether or not counterexamples exist.  This 
implies that, if counterexamples exist, there is a contradiction, hence counterexamples do not 

2 2a2  2a3  2ai 
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exist.  

(Note: we ask the reader to inform us of the first sentence that the reader believes contains an 
error, and what that error is.)

1. Definitions: an anchor tuple is the first i-level tuple in an i-level tuple-set, where i  2.  An 
anchor is the i-level element of the anchor tuple in an i-level tuple-set.

(a) If x is a range element of the 3x + 1 function, then x is eventually — for some i  2 — an 
anchor

Proof: If x exists, then for some i  2,  x <  2 ꞏ 3(i – 1) .  Therefore, x is an anchor (part (a) of 
“Lemma 1.0: the “Distance” Functions d(i, i) and d(1, i)” on page 9). 

It follows trivially that x is also an anchor for all greater i.  (“Once an anchor, always an 
anchor.”)

(b)  If x is a non-counterexample anchor, then it is a non-counterexample anchor whether or 
not counterexamples exist.  

Proof: The arithmetic defining the 3x + 1 function is not itself a function of the truth or falsity 
of the 3x + 1 Conjecture. 

 Thus, for example, 13 is a non-counterexample (maps to 1) today, and if the Conjecture is 
proved true tomorrow, it will be a non-counterexample tomorrow, and if the Conjecture is proved 
false tomorrow it will still be a non-counterexample.

(Actually, the statement (b) holds for non-counterexamples in general, not just non-counterex-
ample anchors.)

2. At this point, it is reasonable to assume that there are two possible sets of anchors: one con-
taining counterexamples if counterexamples exist, and one not containing counterexamples, if 
counterexamples do not exist.

However this assumption is false. 

(1) There is one and only one set of anchors, regardless if counterexamples exist or not.

Proof:

(a) The “distance” between consecutive i-level elements of an i-level tuple-set is 2 ꞏ 3(i – 1) 
(follows from part (a) in “Lemma 1.0: the “Distance” Functions d(i, i) and d(1, i)” on page 9). 

Thus, for example, the distance between the first and second 2-level elements of any 2-level 
tuple-set having 1 as first element, namely, between the elements 1 and 7,  is 2 ꞏ 3(2 – 1) =  2 ꞏ 31 = 
6.  The distance between the second and third elements, that is, between the elements 7 and 13, is 
likewise 6.  Etc.

(b) Each i-level anchor is less than 2 ꞏ 3(i – 1) (follows from part (a) in “Lemma 1.0: the “Dis-
tance” Functions d(i, i) and d(1, i)” on page 9).  Of course, each anchor is greater than 0, by defi-
nition of the domain of the 3x + 1 function.
13



A Solution to the 3x + 1 Problem
(c) For each i  2, the number of anchors in all  i-level tuple-sets is 2 ꞏ 3((i – 1) – 1) (follows 
from part (a) in “Lemma 1.0: the “Distance” Functions d(i, i) and d(1, i)” on page 9).  

Thus, for example, the number of anchors in all 2-level tuple-sets is  2 ꞏ 3((2 – 1) – 1) ) = 2 ꞏ 30 = 
2.  These anchors are 1 and 5.  It is easy to show that 1 is mapped to by all even exponents, and 5 
is mapped to by all odd exponents.  Those are the only two possibilities for the anchors of 2-level 
tuple-sets. 

The number of anchors in all 3-level tuple-sets is 2 ꞏ 3((3 – 1) – 1) ) = 2 ꞏ 31 = 6.  These anchors 
are 1, 5, 7, 11, 13, 17. 

(d) The set of (i + 1)-level anchors comes into being as follows:

If a is an i-level anchor then a is an (i + 1)-level anchor, because if a is less than 2 ꞏ 3(i – 1), as 
it must be if a is an i-level anchor, then a is certainly less than 2 ꞏ 3((i + 1) – 1).   

Since the i-level tuple-set element a + 1 ꞏ (2 ꞏ 3(i – 1)) is less than 2 ꞏ 3((i + 1) – 1), the element is 
an (i + 1)-level anchor.  

Since the i-level tuple-set element a + 2 ꞏ (2 ꞏ 3(i – 1)) is less than 2 ꞏ 3((i + 1) – 1), the element is 
an (i + 1)-level anchor.  

No other element of an i-level tuple-set is less than 2 ꞏ 3((i + 1) – 1), and therefore no other ele-
ment of an i-level tuple-set is an (i + 1)-level anchor. 

The reader can see an example of this increase in anchors from level 2 to level 3 in step 2 (c).

(e) The process we have described is unique.  It yields all i-level anchors for all i  2.  There is 
thus one and only one set of anchors.  In other words:

If counterexamples do not exist, then the set of all anchors is exactly the set that results from 
the process we have described. Call that set S.

If counterexamples exist, then the set of all anchors is exactly the set that results from the pro-
cess we have described.  In other words, if counterexamples exist, then the set of all anchors is the 
same set S. 

3. Computer tests1 have shown the Conjecture to be valid for all consecutive odd positive 
integers up to at least 1018 + 1, which includes all the anchors (each of which is a non-counterex-
ample anchor) from level 2 through at least level 35.

(This is not true in the case of the 3x – 1 function since the first counterexample in the case of 
that function is 5.)

Furthermore, there is an infinity of non-counterexample anchors at levels greater than 35. 
Proof: each range element, hence each non-counterexample anchor at levels 2 through 35 is 
mapped to by an infinity of odd, positive integers (see Lemma 13.0 in our paper, “Are We Near a 
Solution to the 3x + 1 Problem?”, on occampress.com), and range element there is an infinity of 

1. See results of tests performed by Tomás Oliveira e Silva, www.ieeta.pt/~tos/3x+1/html. All consecutive odd, posi-

tive integers less than 20  • 258  5.76  •  1018, which is greater than 3.33  • 1016  2 • 3(35 - 1),  have been tested and 

found to be non-counterexamples. These include the set of all 35-level anchors.
14
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them in that infinity of odd, positive integers is also mapped to by an infinity of odd, positive inte-
gers, etc..  The fact that there is an infinity of these range elements in each case means that an 
infinity of them are greater than the largest anchor at level 35. 

The unique process for generating anchors (step 2) then continues to generate anchors for all 
levels beyond 35.  The set of anchors so generated for each level is the same whether or not coun-
terexamples exist (the process is unique).  So, in particular, we can regard the process as generat-
ing the set of all non-counterexample anchors. 

If counterexamples exist, the set of anchors so generated is the same as the set of anchors if 
counterexamples do not exist.  Each anchor is an element of an infinite tuple.  Non-counterexam-
ple infinite tuples are, by definition, of the form <x, ..., 1, 1, 1, ... >, whereas counterexample 
infinite tuples are of the form <y, ... >, with no element equal to 1.  

And so if counterexamples exist, then some counterexample anchors are the same as non-
counterexample anchors, which is absurd.  Therefore the 3x + 1 Conjecture is true. 

Another way of stating our argument here is:
The set of all tuple-sets (structure and contents) is the same, whether or not counterexamples 

exist.  Therefore there is no difference between the set of all counterexamples and the set of all 
non-counterexamples.  Therefore, counterexample tuples behave exactly the same as non-coun-
terexample tuples, which is absurd.  Therefore counterexamples do not exist, and the Conjecture 
is true. 

Remark 1
Suppose that the anchors were all and only those odd, positive integers that map to 1.  Sup-

pose, further, that if counterexamples exist, they never become anchors.  Then there would be no 
difficulty:  the set of anchors would be fixed, whether or not counterexamples existed, and they 
would all map to 1.

However, the simple argument in step 1 (a) shows that if counterexamples exist, they must 
eventually be anchors.  And so there is, in reality, a difficulty: how to reconcile this fact with the 
fact that the set of anchors is fixed whether or not counterexamples exist.  Our proof, above, 
shows one way to reconcile this fact.

Remark 2
The reader might enjoy reading at least some of the possible strategies in “Possible Strategies 

for Other Proofs of the 3x + 1 Conjecture Using Tuple-sets” on page 15.

Remark 3
A wealth of additional results and possible strategies is available in our paper, “Are We Near a 

Solution to the 3x + 1 Problem?” on occampress.com.  

Possible Strategies for Other Proofs of the 3x + 1 Conjecture Using 
Tuple-sets

First Possible Strategy
1. Each range element of the 3x + 1 function is mapped to by all finite exponent sequences, 
15
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plus a possible final “buffer” exponent (“Lemma 7.0: Statement and Proof” on page 37).

2. Definition: an anchor tuple is the first i-level tuple in an i-level tuple-set, where i 
If an odd, positive integer exists, then for some smallest i, it must be an element of an anchor 

tuple.  It is, furthermore, an element of all extensions of that anchor tuple, that is, it is an element 
of an anchor tuple for all greater i.  (Easy proofs.)

Thus,  if counterexamples exist, each counterexample must eventually — for some i —  be the 
first element of an anchor tuple.

3. For each finite exponent sequence A, there is one and only one tuple-set TA associated with 
A.

Thus for each finite exponent sequence A,  there is one and only one anchor tuple associated 
with A.

4. Assume counterexamples exist.  (By computer tests, we know that the minimum counterex-
ample is greater than 1018, hence our argument here does not also apply to the 3x – 1 function, 
where the smallest counterexample is known to be 5.)

 Then eventually, that is, for some i,  there must be anchor tuples that are counterexample 
tuples.  However, since there is one and only one anchor tuple for each tuple-set, and one and only 
tuple-set associated with each exponent sequence, each of these counterexample anchor tuples 
takes the place of a non-counterexample anchor tuple.

But then there are exponent sequences that do not map to 1, contradicting Lemma 7.0 (see 
step 1).  Hence counterexamples do not exist, and the 3x + 1 Conjecture is true.

Second Possible Strategy
1. Definition: an anchor tuple is the first i-level tuple in an i-level tuple-set, where i 
.
If an odd, positive integer exists, then for some smallest i, it must be an element of an anchor 

tuple.  It is, furthermore, an element of all extensions of that anchor tuple, that is, it is an element 
of an anchor tuple for all greater i.  (Easy proofs.)

2. If a counterexample exists, then there is a minimum counterexample, yc.  It must be an ele-
ment of an infinite tuple no element of which is less than yc (otherwise, yc would not be the mini-
mum counterexample).

3. Call any tuple the last element of which is less than the first, a downward-slope tuple. 
Clearly, yc can never be the first element of a downward slope tuple.  We will say, yc must always 
be the first element of a non-downward-slope tuple.  In particular, if yc is an element of an anchor 
tuple, then in all extensions of the anchor tuple, any sub-tuple of which yc  is the first element, 
must be a non-downward-slope sub-tuple.

4. But there is one and only one set of tuple-sets.  Each finite exponent sequence is associated 
with one and only one tuple-set.  So every downward-slope tuple is associated with a downward-
slope exponent sequence; and similarly for every non-downward-slope tuple.
16
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5. But this is true whether or not counterexamples exist.  Thus, in particular, if counterexam-
ples do not exist, there is nevertheless the same set of non-downward-slope exponent sequences 
as there is if counterexamples exist.

It appears, then, that there is no difference (in structure and content)  between the set of all 
tuple-sets if counterexamples exist, and the set of all tuple-sets if counterexamples do not exist. 

We conclude that counterexamples must be the same as non-counterexamples, which is 
absurd.  Therefore counterexamples do not exist.

A Failed Strategy
The following strategy has failed repeated attempts to make it yield a proof of the 3x + 1 Con-

jecture.

Show that for all i 2, each i-level counterexample tuple is always the second, or third, or 
fourth, or ..., but never the first i-level tuple in any tuple-set.  That would mean that no counterex-
ample tuple exists, for if an odd positive integer exists (for example, a counterexample), it must 
eventually, for some i, and for all greater i, be an element of a first i-level tuple in an i-level tuple-
set.  (Such tuples are called anchor tuples.)

The problem is that this assumes that non-counterexample tuples having the same i-level 
exponent sequence as counterexample tuples, are always anchor tuples, and therefore that coun-
terexample tuples are always the second, or third, or fourth, or ...  tuple in the tuple-set.. This 
assumes the truth of what we are trying to prove, and hence is an invalid argument.
17
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y-Trees: The Structure of the 3x + 1 Function in the “Backward”, or 
Inverse, Direction

Definition of the y-Tree
Let y be a range element of the 3x + 1 function.  Then y and the set of all odd, positive integers 

that map to y in one or more iterations of the 3x + 1 function, is a tree called the y-tree.

Properties of the y-Tree
 Let the set of all odd, positive integers that map to a range element y in one iteration of the 3x 

+ 1 function be called a “spiral”.  
Then if x is an element of a “spiral”, 4x + 1 is the next larger element.
Proof:
     1. Assume the root y is mapped to by an even exponent.  Then there exists an x such that:
         

     
     2. Multiply numerator and denominator by 22.  Then we have

or 

The reader can check that the result is not y if we divide numerator and denominator by 21.

A similar argument applies if y is mapped to by an odd exponent.

If x is an element of a “spiral”, then the next smaller element is (x –1)/4, so that 4((x –1)/4) 
+ 1 = x.  In other words, the 4x + 1 rule applies to all successive elements of a “spiral”.

Proof:

So the next smaller element maps to y in one iteration of the 3x + 1 function,  and hence is in 
the “spiral”. 
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2
2
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 Each root y of a y-tree is mapped to, in one iteration of the 1-tree, either by all even or by all 
odd exponents. Thus a “spiral” contains an infinity of odd, positive integers. 

Proof:
 In the previous proof, our exponent increases by 2, yielding the next exponent of the same 

parity.  

Note: another  explanation for the above properties of  a “spiral” will be found in the section, 
“Some Properties of the Spiral Drawing” on page 23.)

  The successive elements of a “spiral” are mapped to in accordance with a rule that can be 
expressed as ... 2, 1, 3, 2, 1, 3, ..., where “2” means “is mapped to by all even exponents”, “1” 
means “is mapped to by all odd exponents”, and “3” means “is not mapped to because element is 
a multiple-of-3, hence not a range element”.  The proof in brief is the following:

The reader can substitute the left-hand side of the left-hand equation for x in the right-hand 
side of the right-hand equation, and work through the algebra to see that the two equations in fact 
hold.

The repetition of a multiple-of-3 every third successive element of a “spiral” can be seen from 
the following.  Let 3m be a multiple-of-3.  Then, by the 4x + 1 rule described above in this list of 
properties, we have, for the third successive element after the 3m element:

Each of the two terms on the right-hand side of the equation are multiples of 3, and so we have 
our result.

Finally, we must prove that the next successive element of a “spiral” following a multiple-of-
3 is an element that is mapped to by all even exponents.

Let 3m be a multiple-of-3.  The next successive “spiral” element is 4(3m) + 1.  We ask if there 
exists a w such that 

Multiplying through by 22 we get

Hence w exists.  It is equal to U + 1.
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  Because each “spiral” contains an infinity of range elements, each y-tree is infinitely deep.

 There is one and only one possible y-tree for each y.  
    Proof: Otherwise, a range element could be mapped to, via the same exponent, by two or 

more odd, positive integers, contrary to the definition of the 3x + 1 function.

 Level 1 of a y-tree is the set of all odd, positive integers that map to y in one iteration of the
          3x + 1 function;
   Level 2 of a y-tree is the set of all odd, positive integers that map to all elements of Level 1
           in one iteration of the 3x + 1 function;
   Level 3 of a y-tree is the set of all odd, positive integers that map to all elements of Level 2 
           in one iteration of the 3x + 1 function;
   etc.

Can y-Trees and Tuple-sets Be Merged?
The answer is yes.  Pick any node x in a y-tree.  Then the sequence of nodes mapped to y from 

x is a tuple in a tuple-set. 
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Third Proof of the 3x + 1 Conjecture

Version 1 of Proof
1. If the reader has come here directly from Note 1 on the first page of this paper, he or she 

should read “Statement of Problem” on page 3.

2. The First Level of the 1-tree is the set S = {1, 5, 21, 85, 341, ... }. It contains all odd, posi-
tive integers that map to 1 in one iteration of the 3x + 1 function.  

All odd, positive integers from 1 to at least 1020 + 1 have been confirmed, by computer test, to 
be non-counterexamples.

3. Let T denote all and only the y-trees in the 1-tree such that 1 y 020 + 1. (The root y of 
each y-tree is a range element of the 3x + 1 function. Each y-tree contains an infinity of y-trees, 
and so, obviously,  not all of these y-trees are such that 1 y 020 + 1. )

4. Clearly, the portion of the 1-tree that is T is what this portion would be if counterexamples 
did not exist.

But it is also what this portion would be if counterexamples did exist.

5. Consider the remainder of the 1-tree, namely, not-T.  This is the portion of the 1-tree  that is 
descended from all range elements of the set S such that the smallest is greater than 020 + 1.  

It is clear that not-T  must be the same whether or not counterexamples exist, given that, by 
“Lemma 3.0: Statement and Proof” on page 31, there is one and only one 1-tree, whether or not 
counterexamples exist.

6. Therefore if counterexamples exist, they must be the same as non-counterexamples, which 
is absurd.  Hence counterexamples do not exist, and the 3x + 1 Conjecture is true.

Remark 1
This version passes the 3x – 1 Test for the following reason.
In the 3x – 1 function, make a list of all consecutive range elements that are known, by com-

puter test, to be non-counterexamples.  But this list contains only 1, because the next consecutive 
range element is 5, and 5 is a counterexample.  And so, clearly T  in the 3x – 1 case has no y-trees 
at all besides the redundant 1-tree, contrary to T in the 3x + 1 case. 

Version 2 of Proof
1. If the reader has come here directly from Note 1 on the first page of this paper, he or she 

should read “Statement of Problem” on page 3.

2. This Version utilizes a spiral drawing on which, remarkably, any finite sequence of itera-
tions of the 3x + 1 function can be traced.   The spiral is not the same type of “spiral” as associ-
ated with y-trees, although one of its properties (see“Some Properties of the Spiral Drawing” on 
page 23) in fact explains why that “spiral” is as it is.  Our proposed proof is the same as for “Ver-
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sion 1 of Proof” on page 21.  
A drawing of the spiral is in preparation.  However, it is simple enough that the reader can 

make his or her own drawing for the time being.  Here are the instructions:

Spiral Drawing
2.1 Place the pencil point in the center of a white sheet of paper, make a dot, and label it 1.

2.2. Extend a line about 1/4-inch below the 1, make a dot, and label it 2.

2.3. Curve the line to the left 90 degrees, then curve it around until a point is reached that is 
about 1/4-inch directly above the original 1. Make a point, and label it 3.  Continue curving the 
line around until you reach a point about 1/4-inch below the 2, and label it 4.

2.4. Continue curving the line clockwise, about 1/4-inch from the previous line, until you 
reach a point 90 degrees clockwise from the 4. Make a point, and label it 5.  

2.5. Continue curving the line around until you reach a point directly over the 3, and about 1/
4-inch above it.  Make a point and label it 6.  

Continue curving the line around until you reach a point 90 degrees clockwise from the 6, 
make a point, and label it 7.

Continue curving the line around until you reach a point about 1/4-inch below the 4, and label 
it 8.

3. Now go back and draw straight lines starting at each odd number, and perpendicular to the 
spiral at that number, and extending toward the edge of the page.

Do this for all odd numbers from now on.

4. Continue the line around until you reach a point 45 degrees clockwise from 8, and label it 9, 
and extend a straight line from it, as described in step 3. 

Continue curving the line around you reach the straight line extending from 5. Make a point 
and label it 10

Proceed in this manner until you have labeled, say, 20 numbers.

5.  Here is how to trace one iteration of the 3x + 1 function.  We will use the odd, number 3 as 
our starting number.  

5.1 Place the pencil point on 3 and move it out to the point 6.  This represents multiplying 3 by 
2.  

Now move the pencil point clockwise 3 + 1 points on the portion of the spiral you are on.  
That will bring you to 10, on the straight line extending from 5.  You have, in effect, arrived at 
3(3) + 1 = 2(3) + 3 + 1.

Move the pencil point along the straight line to where the line starts.  This is the odd number 
5, and you have completed one iteration of the 3x + 1 function.

6. We know by computer test that all consecutive odd, positive integers from 1 through at least 
1020 + 1 are non-counterexamples.  

Thus the computation of each of these integers terminates on the vertical straight line in your 
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diagram, namely, the one with points labeled 1, 2, 4, 8, ...

7.  Now in principle you can place your pencil point on the smallest odd, positive integer that 
has not been computer-tested, and carry out as many iterations of the function as you wish.  

The key point is that, whether or not counterexamples exist, there is one and only one set of 
iterations that can be carried out on the spiral. At no point in your movements of the pencil, is 
there a possibility of two different next movements.  There is always only one.  (Certainly the fact 
is obvious for the part of the spiral containing all consecutive points from 1 through 1020 + 1.) 

This is the equivalent of “Lemma 3.0: Statement and Proof” on page 31.  
Therefore if counterexamples exist, they are the same as non-counterexamples, which is 

absurd.  Hence the Conjecture is true.

Some Properties of the Spiral Drawing
Each odd, positive integer is in the drawing.  Thus there is no chance that the drawing could 

contain only non-counterexamples, with the counterexamples being “elsewhere”.

The following properties are obvious, yet we feel that the reader should keep them in mind:
For each k  1, there are 2k odd, positive integers between 2k and 2k + 1.  
Half of these are consecutive odd numbers.  They alternate with even numbers.

The drawing explains why the “spiral”s that we introduced in the section “Properties of the 
y-Tree” on page 18, are as they are:

(1) Each odd, positive integer n in the spiral is the start of a straight line that is in principle 
infinitely long.  

(2) Points on the line are labeled n, 2n, 4n, 8n, 16n, ...  Thus, for example, points on the line 
starting with n = 7 are 7, 14, 28, 56, 112, ... 

(3) There is a first point k on the line such that there exists an odd, positive integer j such that 
3j + 1 = k.  Thus, in the case of the line starting with n = 7, that first point k is 28, because 3(9) + 1 
= 28 (j in this case is 9).  

(4) When k is divided by one of 21 or 22, the result is our original n.  Thus here, 28 divided by 
22 gives us our starting number 7. 

(5) The number 4j + 1 gives us another number, namely,  j, such that 3j + 1 is another num-
ber, namely,  k on the straight line.  In our case, 4(9) + 1 = 37 (which is   j and 3(37) + 1 = 112 
(which is k.

(6) When k is divided by 22 times the previous power of 2, or, in our case, by 2222 = 16 , we 
get our starting number 7.  

(7) In this manner, we generate all the successive numbers j,  j,   j, ... that constitute the ele-
ments of a “spiral”.  Each number maps to our original number n by 22 times the previous power 
that mapped to n.

A Possible Trigonometric Proof of the 3x + 1 Conjecture
The spiral drawing presents us with a tantalizing challenge, namely, that of obtaining a geo-

metric — a trigonometric — proof of the Conjecture, based on the movement of an infinitely-long 
rod, one end fastened at the origin, and moving from odd number to odd number in accordance 
with successive iterations of the function.

Each position of the rod at an odd number, is at a unique angle.  So in effect we are summing 
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unique angles.  Or summing unique fractions of a circle (which is how an angle can be regarded –
here we measure fractions of a circle in the clockwise direction, starting with the rod pointing 
straight down).  We ask if each such sum always terminates with the rod pointing straight down 
(which is equivalent to the function having yielded 1).

Some examples follow.  The rod points straight down at the conclusion of each sum.
Starting at 3, we have 1/2 + 3/4 + 3/4 = 2; or, in terms of 1/4’s: 2/4 + 3/4 + 3/4 = 2;
Starting at 5, we have 1/4 + 6/8 = 1; or, in terms of 1/8’s: 2/8 + 6/8 = 1;
Starting at 17, we have 1/16 + 9/16 + 10/16 + 3/4 = 2; or, in terms of 1/16’s: 1/16 + 9/16 + 10/

16 + 12/16 = 2.

We want to prove that each sufficiently long sequence of successive partial rotations of the rod 
— each sufficiently long sequence of successive fractions of a circle — will result in the rod point-
ing straight down. 

Version 3 of Proof
1. If the reader has come here directly from Note 1 on the first page of this paper, he or she 

should read “Statement of Problem” on page 3.

2. If counterexamples do not exist, then the 1-tree contains all and only the odd, positive inte-
gers.

3. If counterexamples exist, then the 1-tree contains only a proper subset of the odd, positive 
integers.

4. Therefore there are two possible 1-trees.

5. However, “Lemma 3.0: Statement and Proof” on page 31 states that there is one and only 
one possible 1-tree, whether or not counterexamples exist.  In other words, Lemma 3.0 states:

5.1 If counterexamples do not exist, then the 1-tree contains the elements of a set J.
5.2  If counterexamples exist, then the 1-tree contains the elements of the same set J.

5.3 Therefore there is one and only one possible 1-tree, whether or not counterexamples exist..

6. Steps 4 and 5.3 are a contradiction.  It is brought about by the possibility that counterexam-
ples can exist.  Therefore they don’t exist, and we have a proof of the Conjecture.

Remark
Our proof passes the 3x – 1 Test, because step 2 is not relevant in the 3x – 1 case, since coun-

terexamples are known to exist (the smallest is 5).  Therefore, when applied to the 3x – 1 case, 
step 4 would have to read “There is only one possible 1-tree.”  Hence there is no contradiction 
between this modified step 4 and step 5.  So our proof does not also prove the (false) 3x – 1 Con-
jecture.

.
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Appendix A — Statement and Proof of Each Lemma

Lemma 1.0: Statement and Proof
Definition: let TA be an i-level tuple-set, where i  2.  Let t(r), t(s) denote tuples consecutive at 

level i, with r < s in the natural ordering of tuples by first elements. Let t(r)(h), t(s)(h) denote the 
elements of t(r), t(s) at level h, where 1  h  i. Then we call |t(s)(h) -  t(r)(h)| the distance between 
t(r) and t(s) at level h.  We denote this distance by d(h, i) and call d the distance functions (one 
function for each h).

Lemma 1.0
 (a) Let A = {a2, a3, ..., ai},  where i  2, be a sequence of exponents, and let  t(r), t(s) be tuples 

consecutive at level i in TA.  Then d(i, i) is given by: 

(b) Let t(r), t(s) be tuples consecutive at level i in TA.  Then  d(1, i) is given by:

Thus, in “Fig. 1. Part of the tuple-set TA associated with the sequence A = {1, 1, 2}” on 
page 8, the distance d(3, 3) between t8(3) = 35 and t4(3) = 17 is 2 ꞏ 3(3-1) = 18.  The distance d(1, 2) 
between t12(1) = 23 and t10(1) = 19 is 2 ꞏ 21 = 4.

Proof:
The proof is by induction.

Proof of Basis Step for Parts (a) and (b) of Lemma 1.0:
Let t(r) and t(s) be the first and second 2-level tuples, in the standard linear ordering of tuples 

based on their first elements, that are consecutive at level i = 2 in the 2-level tuple-set TA, where A 
= {a2}.  (See Fig. 2 (1).)

d i i  2 3 i 1– =

d 1 i  2 2a2  2a3  2ai =
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Fig. 2 (1).  Illustration for proof of Basis Step of Lemma 1.0.

Then we have:

                                                                                                                                                 (1.1)

                                                       

and since, by definition of d(1, 2),

we have:

                                                                                                (1.2)           

Therefore, since, by definition of d(i, i), 

level

1

2

3

4

d(2, 2) = 

(1, 2) = dt(r)(1)

t(r)(2)

t(s)(1)

t(s)(2)

tuple tr

tuple ts

2 •

2 •2 a2

3t r  1  1+

2a2

-------------------------- t r  2 =

t s  1  t r  1  d 1 2( )+=

3 t r  1  d 1 2( )+  1+

2a2

----------------------------------------------------- t s  2 =

t r  2  d 2 2( )+ t s  2 =
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we can write, from (1.1) and (1.2):

By elementary algebra, this yields:

Now d(2, 2) must be even, since it is the difference of two odd, positive integers, and further-
more, by definition of tuples consecutive at level i, it must be the smallest such even number, 
whence it follows that d(2, 2) must = 3 • 2,  and necessarily 

A similar argument establishes that d(2, 2) and d(1,2) have the above values for every other 
pair of tuples consecutive at level 2.

Thus we have our proof of the Basis Step for parts (a) and (b) of Lemma 1.0.

Proof of Induction Step for Parts (a) and (b) of Lemma 1.0

Assume the Lemma is true for all levels j, 2  j  i and that TA is an i-level tuple-set, where A 
= {a2, a3, ..., ai}.

Let  t(r) and t(s) be tuples consecutive at level i, and let t(r) and t(f)  be tuples consecutive at 
level i +1.  (See Fig. 2 (2).)

3t r  1  1+

2a2

-------------------------- d 2 2( )+
3 t r  1  d 1 2( )+  1+

2a2

-----------------------------------------------------=

2a2d 2 2( ) 3 d 1 2( )=

d 1 2  2 2
a2=
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Fig. 2 (2).  Illustration for proof of Induction Step of Lemma 1.0.

Then we have:

and since, by definition of d(i, i), 

 for some g  1, we have:

                                                                                            
                                                                                                                                              

level

1

2

3

i

i + 1

tuple

tr

tuple
ts

tuple
tf

d(i+1,i+1) = 2•3i

d(i, i)=2•3i-1

d(1, i) =

2 2a22a32ai

t f  i 1+  t r  i 1+  d i 1 i 1++( )+=

t f  i  t r  i  g 2 3i 1– +=
t(r)(i)

t(r)(i + 1)

3t r  i  1+

2ai 1+

------------------------- t r  i 1+ =

t f  i  t r  i  g d i i( )+=

3 t r  i  g d i i( )+  1+

2ai 1+

--------------------------------------------------------- t f  i 1+ =
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Thus, since

 we can write:

This yields, by elementary algebra:

As in the proof of the Basis Step, d(i+1, i+1) must be even, since it is the difference of two 
odd, positive integers, and furthermore, by definition of tuples consecutive at level i+1, it must be 
the smallest such even number.  Thus d(i+1, i+1) = 3 • d(i, i), and 

.
 Hence

Now g is the number of tuples consecutive at level i that must be “traversed” to get from t(r) to 
t(f).  By inductive hypothesis, d(1, i) for each pair of these tuples is:

 
hence, since 

we have

.
A similar argument establishes that d(i+1, i+1) and d(1, i+1) have the above values for every 

pair of tuples consecutive at level i+1.

Thus we have our proof of the Induction Step for parts (a) and (b) of Lemma 1.0.  The proof of 
Lemma 1.0 is completed. 

t r  i 1+  d i 1 i 1++( )+ t f  i 1+ =

3tt r  i 
1+

2ai 1+

----------------------- d i 1+ i 1+( )+
3 tt r  i 

gd i i( )+  1+

2ai 1+

---------------------------------------------------=

2a i 1+ d i 1+ i 1+( ) 3 gd i i( )=

g d i i  2
ai 1+ d i i =

g 2
ai 1+=

d 1 i  2 2
a2 2

a3   2
ai =

g 2
ai 1+=

d 1 i 1+  d 1 i  2
ai 1+=
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Lemma 2.0: Statement and Proof
Assume a counterexample exists.  Then for all i 2, each i-level tuple-set contains an infinity 

of i-level counterexample tuples and an infinity of i-level non-counterexample tuples.

      Proof:

      1. Assume a counterexample exists. Then:

          There is a countable infinity of non-counterexample range elements.
               Proof: Each non-counterexample maps to a range element, by definition of range 
                    element.
                Each range element is mapped to by an infinity of elements
                   ( “Lemma 6.0: Statement and Proof” on page 35).  A countable infinity of these
                    are range elements (proof of “Lemma 7.0: Statement and Proof” on page 37).

          There is a countable infinity of counterexample range elements.
               Proof: same as for non-counterexample case.

      2. For each finite exponent sequence A, and for each range element y, non-counterexample or 
counterexample, there is an x that maps to y via A possibly followed by a buffer exponent 
(“Lemma 7.0: Statement and Proof” on page 37).  The presence of the buffer exponent does 
not change the fact that x is the first element of a tuple associated with the exponent sequence 
A. 

Lemma 3.0: Statement and Proof
There is one and only one  possib1e 1-tree, whether or not counterexamples exist.   
(In other words, 
 If counterexample do not exist, then the 1-tree contains all and only the elements of a set J;
 if counterexamples exist, then the 1-tree contains all and only the elements of the same set J.)

Short Proof:

1. “Once a non-counterexample, always a non-counterexample.”  Proof: the proof is a gener-
alization of our canonical example, 13: “13 is a non-counterexample today; if the 3x + 1 Conjec-
ture is proved true tomorrow, it will be a non-counterexample; and if the Conjecture is proved 
false tomorrow it will still be a non-counterexample”.  Similar facts follow for all non-counterex-
amples by definition of the 3x + 1 function (no odd, positive integer can map to two or more dif-
ferent values in one iteration of the function.)  

2. “Once a non-counterexample, always a non-counterexample” can be expressed as the state-
ment of Lemma 3.0. 

Longer Proof:

Proof of “There is one and only one possible 1-tree...”
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The 1-tree  =

(Level 1 = {odd, positive integers y | y maps to 1 in one iteration of the 3x + 1 function}1) 
(Level 2 = {odd, positive integers y | y maps to an element of Level 1 in one iteration of the 
      3x + 1 function}) 
(Level 3 = ({odd, positive integers y | y maps to an element of Level 2  in one iteration of the
      3x + 1 function} 
...

Since 1 is a range element of the 3x + 1 function, it is the root of a y-tree (in this case, the 1-
tree).  Each y-tree has several basic, well-defined properties.  (For full details, and references to 
the elementary proofs, see “Properties of the y-Tree” on page 18 and “y-Trees: The Structure of 
the 3x + 1 Function in the “Backward”, or Inverse, Direction” on page 18):

Each y is mapped to by an infinity of odd, positive integers in one iteration of the 3x + 1 func-
tion.  We call this infinity of odd, positive integers, a “spiral”.

If x is an element of a “spiral”, then 4x + 1 is the next larger element.
Each “spiral” contains an infinity of range elements, and an infinity of multiples of 3, which 

are not range elements because they are not mapped to by any odd, positive integer.  
Each “spiral” element maps to y (in one iteration of the 3x + 1 function), by either all odd 

exponents, or by all even exponents.
The sequence of these types of “spiral” elements is given by a rule that can be expressed as ... 

2, 1, 3, 2, 1, 3, ..., where “2” means “is mapped to by all even exponents”, “1” means “is mapped 
to by all odd exponents”, and “3” means “is not mapped to because element is a multiple-of-3, 
hence not a range element”.  

Because of the infinity of range elements in each “spiral”, it is clear that the structure of each 
y-tree is the result of an infinitely recursive process.  Thus each y-tree is infinitely deep.

Proof of “...whether or not counterexamples exist
If an odd, positive integer x maps to 1 (that is, if x is a non-counterexample, hence an element 

of the 1-tree), then it maps to 1 regardless if counterexamples exist or not.  Informally, we say, 
“Once a non-counterexample, always a non-counterexample.” Thus, for example,

13 maps to 1 today;
if the 3x + 1 Conjecture is proved true tomorrow it will still map to 1;
if the 3x + 1 Conjecture is proved false tomorrow it will still map to 1.

If it were not the case that “Once a non-counterexample, always a non-counterexample”, 
some odd, positive integers could map to two different odd, positive integers, contrary to the defi-
nition of the 3x + 1 function. 

Remark 1
Some readers claim that the Lemma is trivial, “unnecessary”.  But this claim is based on a 

false assumption.  These readers assume (correctly) that 1 is mapped to by all exponents of only 

1. This set is S = {1, 5, 21, 85, 341, ... }.  
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one parity, but they assume (incorrectly) that there are nevertheless two possibilities: (1) the 1-tree 
contains all odd, positive integers, or (2) the 1-tree contains only a proper subset of the odd, posi-
tive integers.  

However, that implies that a given range element, although it is mapped to by one and only 
one exponent (in one iteration of the 3x + 1 function), nevertheless can be mapped to by two dif-
ferent odd, positive integers via that one exponent!  But that is impossible, given the definition of 
the 3x + 1 function.  

In actuality, we know that 1 is mapped to by all even exponents.  There is no possibility that it 
might be mapped to by any odd exponents.  Furthermore, for each range element y (and 1 is a 
range element) and each (even) exponent, y is mapped to by one and only odd, positive integer in 
one iteration of the 3x + 1 function.

Hence there is one and only one possible 1-tree, whether or not counterexamples exist.

Remark 2 
The Lemma passes the 3x – 1 Test.  The reason is that the Lemma asserts that there is one and 

only one possible 1-tree, whether or not counterexamples exist.  At the time of this writing, no 
counterexample to the 3x + 1 Conjecture is known, even though all consecutive odd, positive inte-
gers between 1 and at least 1018 –  1 have been found, by computer test1, to be non-counterexam-
ples. But a counterexample to the 3x – 1 Conjecture is known (the smallest is 5), and so it is 
emphatically not true that there is one and only one possible 1-tree for the 3x – 1 function, 
whether or not counterexamples exist.  If no counterexamples to the  3x – 1 Conjecture existed, 
the 1-tree for the 3x – 1 function would certainly be different than the existing one.

Remark 3
The Lemma statement is, of course, very counter-intuitive.  Even we who first stated it, and 

then proved it, found ourselves spending time trying to understand how it could be true.  
But it is true, as the reader can check by going over the proof.

Lemma 4.0: Statement and Proof
No multiple of 3 is a range element.

Proof :
If

    

then  1  0 mod 3, which is false.  

1. See results of tests performed by Tomás Oliveira e Silva, www.ieeta.pt/~tos/3x+1/html. All consecutive 
odd, positive integers less than 20  • 258  5.76  •  1018, which is greater than 3.33  • 1016  2 • 3(35 - 1),  have 
been tested and found to be non-counterexamples.

3x 1+
2a

--------------- 3m=
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Lemma 5.0: Statement and Proof
Each odd, positive integer (except a multiple of 3) is mapped to by a multiple of 3 in one iter-

ation of the 3x + 1 function.

Proof:

Since the domain of the 3x + 1 function is the odd, positive integers, the only relevant genera-
tors are 3(2k + 1), k .  We show that, for each odd, positive integer y not a multiple of 3, there 
exists a k and an a such that

     
                                            ,                                                          (11.1)

where a is necessarily the largest such a, since y is assumed odd.
 Rewriting (11.1), we have:

                                            .                                                                          (11.2) 

Without loss of generality, we can let y r mod 18, where r is one of 1, 5, 7, 11, 13, or 17 
(since y is odd and not a multiple of 3, these values of r cover all possibilities mod 18).  Or, in 
other words, for some q, r, . Then, from (11.2) we can write:      

                                           .                                               (11.3)
                                                                                                 
Since the first term on the left-hand side is a multiple of 9, (2a - 1)r – 5 must also be if the 

equation is to hold.  We can thus construct the following table.  (Certain larger a also serve 
equally well, but those given suffice for purposes of this proof.)

Table 2: Values of r, a, for Proof of Lemma

r a

1 6 27

5 1 0

7 2 9

11 5 171

1
3

4 99

1
7

3 63

y
3 3 2k 1+   1+ 

2
a

----------------------------------------------=

y2a 1– 5– 9k=

y 18q r+=

18 2a 1– q 2a 1– r 5–+ 9k=

2a 1– r 5–
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Given q and r (hence y), we can use r to look up a in the table, and then solve (11.3) for inte-
gral k, thus producing the multiple of 3 that maps to y in one iteration of the 3x + 1 function.  

Lemma 6.0: Statement and Proof
(a) Each range element y is mapped to, in one iteration of the 3x + 1 function, by every expo-

nent of one parity only.  Furthermore,
(b) For each of the two parities, there exists a range element that is mapped to by every expo-

nent of that parity.

Proof of part (a):
Steps 1 and 2 are slightly edited versions of proofs by Jonathan Kilgallin and Alex Godofsky.  

Any errors are entirely ours.  Step 3 is a slightly edited version of a proof by Michael Klipper.  
Any errors are entirely ours.

1. We first show that if y is mapped to by the exponent a, then y is mapped to by every expo-
nent greater than a that is of the same parity as a.  

Let y be a range element, and let x map to y via the exponent a.  Then

We wish to show that there exists an  x´ such that  x´ maps to y via the exponent 2a + 2.   That 
is, we wish to show that there exists an  x´ such that

Rewriting, this gives 

Substituting for y yields

y
3x 1+

2
a

---------------=

y
3x 1+

2
a 2+

-----------------=

x 2
a 2+

y 1–
3

------------------------=

x

2
a 2+ 3x 1+

2
a

--------------- 
  1–

3
-------------------------------------------=
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Simplifying, this gives  x´ = 4x + 1.  Since x is an odd, positive integer, clearly  x´ is as well. 

Thus, by induction, if y is mapped to via the exponent a , it is mapped to by every exponent 
greater than a of the same parity. 

2. Next we show that if y is mapped to by the exponent a which is greater than 2, then it is 
mapped to by every exponent less than a that is of the same parity as a.  

Let y be a range element, and let x map to y via the exponent a where a > 2.  Then

We wish to show that there exists an  x´ such that  x´ maps to y via the exponent 2 a – 2.   That 
is, we wish to show that there exists an  x´ such that

Rewriting, this gives 

Substituting for y yields

Simplifying yields  

y
3x 1+

2
a

---------------=

y
3x 1+

2
a 2–

-----------------=

x 2
a 2–

y 1–
3

------------------------=

x

2
a 2– 3x 1+

2
a

--------------- 
  1–

3
------------------------------------------=

x x 1–
4

-----------=
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3.  We must now show that x´ = (x – 1)/4 is an odd, positive integer.  This means we must 
show that  (x – 1) = 4(2k + 1) for some k    0,  or that (x – 1) =  8k + 4, hence that x = 8k + 5.  
Thus, we must prove x  5 mod 8.

We know that x maps to y via a, where a 3.  Thus, y = (3x + 1)/2a, so 2ay = 3x + 1.  Because 
a 3, 2ay is a multiple of 8.  Thus, (3x + 1)  0 mod 8, and 3x 7 mod 8.  This readily implies 
x  5 mod 8.

4. Thus, by induction, if y is mapped to via the exponent a, where a > 2,  then it is mapped to 
by every exponent less than a of the same parity. 

Proof of part (b):
We now show that for each of the two parities there exists a range element that is mapped to 

by every exponent of that parity.

1.  Fix a range element y, and suppose that x maps to y via the exponent a. Now a is either 
even or odd, hence a = 2n + h, where h is either 0 or 1.  Since y = (3x + 1)/2a, it follows that (2a)y 
= 3x+1.  Reduce the equation mod 3, and we get (2h)y  1 mod 3, by the following reasoning: 
(2a)y  1 mod 3 implies (22n + h)y  1 mod 3 implies 22n 2hy  1 mod 3 implies 2hy  1 (mod 3) 
because 22n = 4n 1 mod 3.  

2. Since y is fixed, either y  1 or y  2 mod 3.  (We know that y, a range element, is not a mul-
tiple of 3 by “Lemma 4.0: Statement and Proof” on page 33).  If y  1 mod 3, then we have 2h(1) 
1 mod 3, which implies that h must be 0.  If y  2 mod 3, then we have (2h)(2)  1 mod 3, imply-
ing that h must be 1. 

Lemma 7.0: Statement and Proof
Let y be a range element of the 3x + 1 function.  Then for each finite exponent sequence A, 

there exists an x that maps to y via A possibly followed by a “buffer” exponent.  (For example, if  
y is mapped to by even exponents, and our exponent sequence A ends with an odd exponent, then 
there must be an even “buffer” exponent following A, and similarly if y is mapped to by odd expo-
nents and A ends with an even exponent. However, there are other cases in which a “buffer” 
exponent is required.)

 

Proof:
1. Each range element y is mapped to by all exponents of one parity (“Lemma 6.0: Statement 

and Proof” on page 35).

2. Each range element y is mapped to by a multiple of 3 (“Lemma 5.0: Statement and Proof” 
on page 34).
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Each range element is mapped to by an infinity of range elements (“Lemma 5.0: Statement 
and Proof” on page 34).

3. Let y be a range element and let S = {s1, s2, s3, ... } be the set of all odd, positive integers 
that map to y in one iteration of the 3x + 1 function.   In other words, S is the set of all elements in 
a “spiral”.  Furthermore, let the si be in increasing order of magnitude. It is easily shown that si+1 
= 4si + 1.

(In Fig. 18, y = 13, S = {17, 69, 277, 1109, ... }

Fig. 18
(Note: for a graphical representation of part of the tree having 1 as its root instead of 13, see 

“Recursive “Spiral”s: The Structure of the 3x + 1 Function in the “Backward”, or Inverse, Direc-
tion” in our paper, “Are We Near a Solution to the 3x + 1 Problem?”, on occampress.com.)

4. If si is a multiple of 3, then 4si +1 is mapped to, in one iteration of the 3x + 1 function,  by 
all exponents of even parity.

To prove this, we need only show that x is an integer in the equation

Multiplying through by 22 and collecting terms we get

13

17 69 277 1109

369 739

22
24

26

28

11

21
22

21

...

4 3u  1+
3x 1+

2
2

---------------=

48u  4+ 3x 1+=
38



A Solution to the 3x + 1 Problem
and clearly x is an integer.

5. If sj is mapped to by all even exponents, then 4sj + 1 is mapped to, in one iteration of the 3x 
+ 1 function, by all exponents of odd parity.

(The proof is by an algebraic argument similar to that in step 4.)

6. If sk is mapped to by all odd exponents, then 4sk + 1 is a  multiple of 3.
(The proof is by an algebraic argument similar to that in step 4.)

7. The Lemma follows by an inductive argument that we now describe.

Let y be a range element.  It is mapped to by all exponents of one parity.  Thus it is mapped to 
by an infinite sequence of odd, positive integers.  As a consequence of steps 1 through 6, we can 
represent an infinite sub-sequence of the sequence by

...3, 2, 1, 3, 2, 1, ...

where
“3” means “this odd, positive integer is a multiple of 3 and therefore is not mapped to by any 

odd, positive integer”;
“2” means “this odd, positive integer is mapped to by all even exponents”;
“1”  means “this odd, positive integer is mapped to by all odd exponents”.

Each type “2” and type “1” odd, positive integer is mapped to by all  exponents of one parity.  
Thus it is mapped to by an infinite sequence of odd, positive integers.  We can represent an 
infinite sub-sequence of the sequence by

...3, 2, 1, 3, 2, 1, ...

where each integer has the same meaning as above.

Temporarily ignoring the case in which a buffer exponent is needed, it should now be clear 
that, for each range element y, and for each finite sequence of exponents B, we can find a finite 
path down through the infinitary tree we have just established, starting at the root y.  The path will 
end in an odd, positive integer x.  Let A denote the path B taken in reverse order.  Then we have 
our result for the non-buffer-exponent case.  The buffer-exponent case follows from the fact that 
the buffer exponent is one among an infinity of exponents of one parity.  Thus y is mapped to by 
an infinite sequence of odd, positive integers.  We then simply apply the above argument.. 
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Appendix B — On The 3x – 1 Test

There is no question but that what we have called the “3x – 1 Test” has helped us to recognize 
errors in our proposed proofs of the Conjecture.  (In this Test, we ask if our proof also proves the 
3x – 1 Conjecture.  If it does, then it is claimed that our proof is in error, because there are known 
counterexamples to the 3x – 1 Conjecture, the smallest of which is 5.)

However, we make the following counterargument to this claim, and hence to the validity of 
the 3x – 1  Test:

The question we ask those who use the 3x – 1 Test to claim a  proof of ours has an error, is: 
“Suppose you didn’t know about the 3x – 1 function, and hence about the 3x – 1 Test.  What 
would your criticism be then?”

A proof must stand or fall on its own terms. Mathematical logic, and, in particular, computer-
ized proof-checking, would face an insurmountable obstacle if each proof of a conjecture required 
that the author, or the proof-checker, find all and only the related conjectures (whatever “related” 
means) that are known to be false, and then prove that the proof in question did not also prove one 
of those conjectures.

Furthermore, even if our proof of the Conjecture proves none of the related conjectures, each 
of which is known to be false, that in no way confirms the validity of our proof!  There may be 
other infinite cycles in one or more of the 3x + 1 -like functions, and/or there may be computa-
tions that never yield 1, although they are not infinite cycles.

Our proofs in this paper apply to a function having the property that all consecutive odd, posi-
tive integers between 1 and 1018 – 1 are known, by computer test, to be non-counterexamples.  No 
counterexample is known.

The 3x – 1 function, on the other hand, has the property that only the first two consecutive 
odd, positive integers, starting at 1, are known, by computer test, to be non-counterexamples.  The 
first counterexample is 5.  (In passing, we remark that it might be significant that the first two 
consecutive odd, positive integers that are non-counterexamples, namely, 1 and 3, are both inte-
gers that map directly to 1: (3(1) – 1)/21 = 1, and (3(3) – 1)/23 = 1.  The counterexample 7 is the 
first  element of the tuple <7, 5>, which is the first tuple in the tuple-set TA, where A = {2}.)

It would be of considerable importance if it could be shown that a counterexample to the Con-
jecture for a 3x + 1-like function, must always be small, for example, an element of the first tuple 
in a one-exponent tuple-set.  That in itself would give us a proof of the 3x + 1 Conjecture.

 
So, it seems to us entirely possible that a proof can be valid when applied to the 3x + 1 func-

tion, and invalid when applied to the 3x – 1 function. 
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Appendix C — For Professional Mathematicians Only

Understandable Reluctance of Mathematicians to Read This Paper
There has been an understandable reluctance on the part of professional mathematicians to 

give serious attention to this paper, or its predecessors  It seems clear to us that the main reason is 
mathematicians’ difficulty in believing that such an extraordinarily difficult problem can have 
been solved by a non-mathematician (our degree is in computer science, and we have spent most 
of our working life doing research in the computer industry).  This skepticism is reinforced by the 
fact that there have been many false claims of solutions to the 3x + 1 Problem, the overwhelming 
majority of which having been made by non-mathematicians.  

But we must point out that the occasionally-heard remark, “Nothing of importance in mathe-
matics has ever come from outside the university”, is, in fact, false, considering that some of the 
best of the best worked entirely outside the university — Descartes, Pascal, Fermat, Leibniz, and 
Galois, to name only the most famous.

We must also not fail to mention another reason for mathematicians’ reluctance to read this 
paper, and that is the online presence of obsolete criticisms of the paper. For example, Stack Over-
flow has a website  containing criticisms of a proof in a 2015 version of the paper. Not only were 
the criticisms false, but the proof that was criticized has long since been removed from the paper. 
This website appears next to the website containing this paper, and thus unquestionably discour-
ages potential readers — especially mathematicians — from reading this paper.  Yet despite many 
pleas on our part, the managers of the website have refused to delete the criticisms or to add a note 
to the website stating that the criticisms do not apply to the current version of the paper.  Nor have 
they explained to us the reason for their refusals.  Apparently we have no recourse in this matter, 
except to encourage others to boycott the Stack Overflow websites, and to write to the organiza-
tion explaining the reason for the boycott.  The email address is team@stackoverflow.com, the  
item no. is 201708202111462820.

It appears that the managers of the above website have no experience of actually doing 
research.  They believe that if a paper is published online and contains an error, that means that 
the author is incapable of correcting the error, and that his underlying ideas do not deserve any 
attention.  But errors are almost inevitable in the course of attempting to solve very difficult  prob-
lems.  We remind the reader that Wiles’ first proposed proof of the Taniyama–Shimura–Weil Con-
jecture in the early 90s, which implied a proof of Fermat’s Last Theorem, contained an error that 
took Wiles, with the help of the mathematician Richard Taylor,  more than a year to repair.  The 
important question obviously was, Do the underlying ideas in this paper offer hope for correcting 
the error?  And the answer was yes. 

We have been struck by the eagerness with which readers of this paper look for anything they 
can regard as an error, and the indifference they display to understanding, and thinking about, the 
underlying ideas. 

If You Do Not Accept Our Proofs of the 3x + 1 Conjecture...
If you do not accept our proofs of the Conjecture, or any of the possible strategies for a proof 

that are set forth in the above appendices, we urge you to at least peruse our paper, “Are We Near 
a Solution to the 3x + 1 Conjecture?” on occampress.com.  This paper contains a wealth of results, 
insights, possible strategies for a proof, plus a section on what we have called “3x + 1-like func-
tions”.  We will welcome comments.
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We are confident that at least two publishable, significant papers can be produced from the 
material in our 3x + 1 papers, and that this is true even if the proof of the Conjecture in the present 
paper and all the possible strategies in the appendices, are faulty and cannot be repaired.  

We feel that the two structures we have discovered that underlie the 3x + 1 function, namely, 
tuple-sets and recursive “spiral”s, are of fundamental importance, and should be brought to the 
attention of the entire 3x + 1 research community.

Difficulty, So Far, In Getting This Paper Published
Not surprisingly, so far, no journal that we know of is willing to even consider this paper for 

possible publication.  The reason seems to be that editors cannot believe that such a difficult prob-
lem might have been solved by a non-mathematician.  

Incentives for Mathematicians to Take This Paper Seriously and to 
Spread the Word About It

Unquestionably, if this paper contains a solution to the 3x + 1 Problem, or can easily be modi-
fied to contain a solution, considerable prestige will be gained by the first mathematicians who 
promote the paper.  Of course, mathematicians who believe that the proof of the Conjecture is cor-
rect, and/or that at least one of the possible strategies in the appendices look promising, but do not 
want to risk their reputations by saying so, especially given that the author of the paper is not an 
academic mathematician, will not be recipients of that prestige.    We are offering three incentives:

(1) Any reasonable consulting fee;
(2) Generous mention in the Acknowledgments when the paper is published.  (But no name 

will be mentioned without the prior written approval of the mathematician concerned.)
(3) An offer of shared authorship to the first mathematician who makes a significant contribu-

tion to the paper prior to publication.

In any case, all communications we receive about this paper will be kept strictly confidential.
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