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Physics,
The Next Frontier

0 doubt about it: each year
games become graphically
more realistic. Everybody’s
doing (or at least showing
screenshots of) texture-
mapped 3D game worlds
these days, and, when the
hardware people finally get
their act together, every developer will
be able to draw zillions of perspectively
correct textured and shaded polygons per
second. Technically speaking, what will
be left to do for high-end games? Will
every developer with a copy of “Learn to
Use 3D Hardware in 21 Days” be able to
write an impressive game?

Not by a long shot. High-end
developers will continue to raise the bar
in many different technologies, like
graphical database complexity, artificial
intelligence, and networking. While
these are indeed important topics, we
can't really discuss any of them in depth
without going into game-specific
details. However, there is one generally
applicable technology I think will
become a key differentiating factor in
the near future: physics.

Here's an example: remember
those huge rotating gears in one of the
early shareware levels of Duke Nukem
3D? Imagine if a general physics engine
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was controlling them instead of an ani-
mation loop. Suddenly the gears
become more than just eye candy as one
comes off its axle and rolls down the
hall after you, Indiana-Jones style. Or
imagine shooting a gear with a missile,
causing it to roll down the hall and
crush your friend who was about to frag
you from behind! A real physics engine
makes situations like these possible.

The physics simulation is also
what makes a game world feel solid—it
puts the “there” there, if you know what
I mean. All the graphics wizardry in the
world won't help players immerse
themselves in your game if they inter-
penetrate each other or the walls of the
level, or if they don't feel like they have
any mass or momentum. The original
animators at Disney discovered that
this feeling of mass is a large part of
what set apart the believable animation
from the bad. According to the epic
book Disney Animation: The Illusion of
Life (Abbeville Press, 1981), by Frank
Thomas and Ollie Johnston, Disney
animators even hung a sign around the
studio to constantly remind themselves:
“Does your drawing have weight,
depth, and balance?”

But doesn’t almost every game
already have a physics engine? Sure, it
keeps your car from falling out of the
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debris might explode onto the track,
careening into the wall and other cars,
tires rolling into oncoming traffic.
Other often ignored physical pos-
sibilities include everything from simple
rotational effects induced by being hit
off center, to having the creatures in the
game be self-balancing and motivat-
ing—rather than based on static anima-
tions—so they can react to new physical
stimuli. 1 think most developers ignore
these possibilities because they don't
understand the math behind physics
and have been too busy writing perspec-
tive texture mappers to learn it. The
onslaught of 3D hardware will take care
of the latter issue, and the new series
I'm starting with this article will try to
take care of the former. By the time
we're done, you'll know enough to write
a physics engine that immerses players
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in your game, either through extreme
physical realism or through fanciful but
consistent surrealism.

A word of caution: physics is
math—you can’t separate the two and
still get interesting work done. Before
this scares people away, let me point out
that not only is the math behind physics
totally elegant and beautiful, it's also
applied. That is, it's not abstract math
for math’s sake. Each equation we use
has real physical meaning. We create the
equations from the physical model, and
in return the equations tell us how that
model behaves over time.

Mass-ive Undertaking

Physics is a vast field. We're actually
only interested in a small subset of it
called dynamics, and even more specifi-
cally, rigid body dynamics. Dynamics

T A 8 e
S A o R e e e e
e
e e
T A o o e e e e e e
i A e e e
i A e e
A R R R e e e e e e
e
e e
T A o o e e e e e e
A A A o i e e
i A e e
A R R R e e e e e e
e
e e
T A o o e e e e e e
A A A o i e e
i A e e
A R R R e e e e e e
e
e e
T A o o e e e e e e
A A A o i e e
i A e e
A R R R e e e e e e
e
e e
T A o o e e e e e e

S U U S S S RN S
N R R R R NS R S N
T T e e T T T T T e e T T T T e T T T T T T T T T e

e o o o i i i
o o 8 8 i o ot
o 8
o 8
T T T T L

e o i i i i i i e
e o o
0 0
0 0
T T

http://www.gdmag.com

Chris Hecker

We've been faking
physics in games for
awhile. Now,
technology Is
advancing to the point
where implementing a
real physics engine
Within a game Is
possible. Hecker's
NEW Series

explores how.
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can be defined most easily in terms of a
closely related field, kinematics—the
study of movement over time. Kinemat-
ics doesn’t concern itself with what'’s
causing movement or how things get
where they are in the first place, it just
deals with the actual movement itself.
Dynamics, on the other hand, is the
study of forces and masses that cause
the kinematic quantities to change as
time progresses. How far a baseball
travels in 10 seconds if it's traveling 50
kilometers per hour in a straight line is
a kinematics problem; how far a base-
ball travels in the earth’s gravitational
field if I smack it with a bat is a dynam-
ics problem.

The “rigid body” part of rigid body
dynamics refers to constraints we place
upon the objects we're simulating. A
rigid body’s shape does not change dur-
ing our simulation—it’s more like wood
or metal than jello. We can still create
articulated figures, such as a human
being, by building each section of the
figure from a rigid body and putting
joints between them, but we won't
account for the flexing of bones under
strain or similar effects. This will let us
simplify our equations while still allow-
ing for interesting dynamic behavior.

Even with our tight focus, rigid body
dynamics will take a series of articles to
explain. We're going to start our journey
by learning the basics of programming a
computer to move a 2D rigid body
around under the influence of forces. |
explicitly say, “program a computer,”
because in addition to the equations we'll
develop for the kinematics and dynamics,
we'll also learn how to solve these equa-
tions in our programs using floating-point
math, which is a vital subject all to itself. |
say, “a 2D rigid body,” because we're
going to stick with two dimensions for
the next article or so. The principles—
and in fact most of the equations—carry
across to 3D, but certain things are sim-
pler in 2D, so we'll get comfortable there
before moving up a dimension. In future
articles, we'll learn about handling rota-
tional effects, collision detection and
response, and of course how to do all this
in three dimensions. Enough about what
we're going to do, let's get started!
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Derivative Work

This may come as a surprise to you, but
you actually can’t directly move an
object by pushing on it. 1 know, you're
thinking about proving me wrong by
pushing this magazine into the trash for
printing such nonsense, but it’s true:
pushing on the magazine does not
directly affect its position. In fact, push-
ing doesn’t even directly affect its veloc-
ity. What pushing does directly affect,
however, is the magazine’s acceleration,
and this fact is one of the most impor-
tant findings in the history of science.

In order to use this amazing fact to
do anything interesting, we first need to
talk about the relationship between
position, velocity, and acceleration. It
turns out these quantities are very close-
ly related (as you probably know):
velocity is the rate of change of position
over time, and acceleration is the rate of
change of velocity. The primary tool for
studying these changes in time is calcu-
lus. While you might be able to pick it
up as we go along, I'll assume you know
some calculus. We're going to use only
simple scalar and vector calculus (deriv-
atives and integrals), but it won't hurt if
you're familiar with the subject as a
whole. For reference, my favorite calcu-
lus textbook is Calculus with Analytic
Geometry by Thomas and Finney
(Addison-Wesley, 1996).

Position, velocity, and acceleration
are the kinematic quantities we care
about in this article. The position of a
rigid body in 2D is obviously an X,Y pair
denoting the world coordinates of some
known point on the body. The derivative
of the position vector is the velocity vec-
tor for that point, and it tells us what
direction the point is moving (and the
body if we ignore rotation, which we are
for now) and how fast it's going. Vector
calculus is just scalar calculus on each
element of the vector, so the derivative
of the X element of the position is the X
element of the velocity, and so forth. We
denote the position vector with r and the
velocity vector with v or with the “dot-
ted” position vector (in general, a dot
means differentiated with respect to
time, a double dot means twice differen-
tiated, and so on):
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dr

—_ = (Eq.1)
dt

v=t

On the contrary, if we integrate the
velocity vector over time, it tells us how
the position vector changed over that
time.

Acceleration is handled similarly;
it's the derivative of velocity, or the sec-
ond derivative of position:

(Ea.2)

Integrating the acceleration over
time gives the velocity, and twice inte-
grating the acceleration gives the position.

These kinematic relationships tell us
that if we can find the acceleration on an
object, we can integrate it with respect to
time to get its velocity and position. As
we'll see, we perform this integration
numerically in our simulation code and
come out with a new position for our
rigid body each frame. Voila, animation!

Here’s a short 1D example we can
analytically integrate. Let's say we want
to find the change in our position over
the time period from the end of last
frame to the current time so we can draw
our current position. Let's further say we
know the acceleration on our rigid body
during this time was a constant 5
units/sec2. We'll use the time since the
end of last frame as the integrating vari-
able, t:

v(t) :Iadt :ISdt =5t+C

(Eq. 3)

The above equation shows us the
velocity as a function of the time since
the last frame. We discover the constant
of integration, C, is the initial velocity at
the beginning of this integration period
by plugging in t=0:
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v(0) =40 +C

Vo =C (Eq. )

v(t) =5 +v,

Now we'll integrate our velocity equation to find the posi-
tion (again solving for the constant of integration):

5
r(D) = [v(dt=[5t+vdt =5t +yt+p

(Eq. 5)

So, Eq. 5 says we can calculate the current position under
the given acceleration if we know the initial position and veloci-
ty (which we assume we have from the end of the last frame)
and the time elapsed. We plug in the time, and out pops the
current position. We'll also want to plug the time into Eq. 4 to
calculate the ending velocity so we can use it as an initial condi-
tion for the next frame.

May The Force Be With You

Now that we have an idea of how to integrate kinematic equa-
tions to get animation, we need to determine the right accelera-
tions to use in the first place. This is where dynamics comes in.
Remember how | said pushing on something only directly
affects its acceleration? Well, pushing is just a euphemism for
applying a force—one of the two key quantities in dynamics—
and we can turn to Newton to see how forces affect accelera-
tions. Newton’s laws relate force, F, to the derivative of the
mass—the second key dynamical quantity—times the velocity.
The mass times the velocity is called the linear momentum,
denoted by p:

_._dp _d(mv)
FEpP=gr =g ~vEm

(Eq. 6)

The mass is constant for the speeds we care about, so it
drops out of the derivative in Eq. 6, and we get the famous
F=ma (although | believe Newton originally stated the defini-
tion of force as the derivative of momentum).

If we were only dealing with single point masses, Eq. 6
would be all we'd need to do dynamics. For a given applied
force, we find the acceleration of the point by dividing the force
by the mass. This gives us the acceleration to use in our integra-
tion, and so we can solve for the movement as in our example
above. However, we're dealing with rigid bodies with mass dis-
tributed over their area (and volume when we go to 3D), so we
need to do a bit more work.

First, let's picture our rigid body as a set of point masses.
We define the total momentum, p', of the rigid body as the
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sum of all the momentums of all the points that make up the
body (I'm using superscripts to denote which quantities belong

to which points):
pT — Z miv/
I

We can greatly simplify the dynamic analysis of rigid bod-
ies by introducing a point called the center of mass (CM). The
vector to the center of mass is the linear combination of the vec-
tors to all the points in the rigid body weighted by their masses,
divided by the total mass of the body, M:

M

(Eq. 7)

(Ea. 8)
ey

Using this definition of the center of mass, we can simplify
Eq. 7 by multiplying both sides of Eq. 8 by M, differentiating
both sides, and then substituting the result into the Eq. 7:

d(Mr M) d(mr')

ranbb e

(Ea.9)

The right hand side of Eq. 9 is just the total momentum by
definition in the Eq. 7. Now look at the left hand side: it is the
velocity of the center of mass times the mass of the whole body,
so bringing the right hand side across gives us:

pT - d( Mr CM) = MVCM

pm (Eq. 10)

Eq. 10 says the total linear momentum is equal to the
total mass times the velocity of the center of mass, meaning
there’s no need to do the summation in Eq. 7 to find the
momentum as long as we know the total mass and the location
and velocity of the center of mass. For continuous rigid bodies
all the finite summations above turn into integrals over the
body, but the center of mass still exists and simplifies the total
momentum equation down to Eq. 10, so we don't have to
care—for the purposes of finding the linear momentum we can
treat all bodies as a single point mass and velocity.

Similarly, the total force is the derivative of the total
momentum, so the concept of the center of mass can be used to
simplify the force equation in the same way:

FT = pT =MyM = Ma M (Eq. 11)

In short, Eq. 11 tells us we can treat all the forces acting on
our rigid body as if their vector sum is acting on a point at the
center of mass with the mass of the entire body. We divide a force
(say, gravity) by M to find the acceleration of the center of mass,
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and then we integrate that acceleration
over time to get the velocity and position
of our body. Since we're ignoring rota-
tional effects until the next article, we
now have all the equations we need to do
rigid body dynamics. Note that Eq. 11
doesn’t contain any information about
where the forces were applied to the
body. That information drops out when
dealing with linear momentum and the
center of mass, and we just apply all forces
to the CM to find its acceleration. When
we calculate rotation under forces in the
next article, we'll see how the force appli-
cation position is used.

Ode to Joy

At this point, we could run through
another analytical integration example
using Eq. 11 to calculate the acceleration
of our center of mass instead of arbitrarily
picking the value 5. However, for non-toy
problems, analytical integration usually
isn't an option because the integrand is
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too complex, so we end up doing what’s
called numerical integration of ordinary dif-
ferential equations (ODEs). Wow, now
that sounds like real math! Once you've
learned this stuff, it's time to ask for a
raise. Luckily, numerical integration of
ODEs isn't quite as complicated as it
sounds. To figure out what it means, let's
take the phrase apart from the inside out.
First, a differential equation is an
equation where derivatives of the depen-
dent variable appear in the equation in
addition to the dependent variable itself
and the independent variable. That's a
mouthful, but here are some examples: if
we have an equation for a time varying
1D force like f = 2t, f is the dependent
variable and t is the independent vari-
able; f's value depends on t's value. How-
ever, what if the equation for the force
on our body depends on the velocity of
our body? Air friction is a force like
this—the faster the plane goes, the more
air friction it encounters. Again in a 1D
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example, what if f = -v, meaning the fric-
tion force decelerates our body at a rate
proportional to our velocity? Now we
have a problem, because if we solve for
the acceleration by writing f = ma = -v
and then divide through by m, we get
(remember the acceleration is the deriva-
tive of the velocity):

dv \Y;

dt m
(Eq. 12)

This is a differential equation
because the equation for the velocity has
the derivative of the velocity in it. Eq. 12
is called an ordinary differential equation
because it contains only ordinary deriva-
tives of the dependent variable (as
opposed to partial derivatives, which cre-
ate PDEs, which we won't talk about).

Now for the next part of our phrase:
integration. How do we integrate dv/dt
to find v in terms of t when the equation

a



for dv/dt has v in it already? It sounds
impossible, but actually almost every
equation in physics is a differential equa-
tion, so ODEs have been studied a lot.
Differential equations pop up in physics
so much because very often the rate of
change of a quantity depends on the
value of the quantity. For example, we
already said that the deceleration (the
rate of change of velocity) induced by the
force of air friction is dependent on the
velocity. Other physical examples
include cooling (the rate of heat loss
depends on the current temperature) and
radioactive decay (the rate of decay
depends on how much radioactive mate-
rial is present).

The final word in our phrase,
numerical, is our savior. | say this
because the theory of analytically inte-
grating differential equations, even ordi-
nary ones, is huge and pretty complicat-
ed. However, by a strange twist of fate,
integrating ODEs numerically on a

computer is actually relatively easy to
understand. In the space | have left I'm
going to describe the simplest numerical
integrator, Euler’s method, and leave
improving it to a later article.

Almost all numerical integrators,
but none so blatantly as Euler's method,
are based on the plain old calculus defin-
ition of the first derivative as a slope:
dy/dx defines the slope of y with respect
to x. For example, if we have the linear
equation y = 5x, then dy/dx = 5, meaning
the slope is a constant 5 for all values of
X, as you'd expect for a line. A slightly
more complex example is the parabola y
= %% In this case, dy/dx = 2x, which is a
function defining a new slope at each x
coordinate. I've graphed y = x* in Figure
1. In addition, I've also overlayed the
vector field of the slopes in Figure 1, by
drawing the solution to the slope equa-
tion, dy/dx = 2x, as a short vector at each
coordinate on the grid. Notice how the
vector field is tangent to the parabola at
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all points—this is the definition of satis-
fying the equation dy/dx = 2x. You
should also notice that there are a lot of
different parabolas that would satisfy the
vector field tangency, each one translated
on the y axis a bit. Each of these parabo-
las is generated by using a different value
for the constant of integration you get
when you integrate dy/dx = 2x. The
parabola I drew corresponds to a 0 con-
stant of integration, since y = x2. If |
chose 1 for the constant, I'd get y = x* +
1, which is an identical parabola translat-
ed up by 1 unitiny.

Now think about what would hap-
pen if you didn’'t know the vector field in
Figure 1 defined a parabola, and you just
plopped yourself down somewhere on
the grid. Well, if you are going to satisfy
the slope equation, you have to follow
the vector field at each point, so along
you go, changing direction as the vector
field changes direction. Wouldn't you
know it—after a short bit you've traced
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out a parabola, or at least part of one,
depending on where you started. You
may not realize it, but you just integrated
the equation for the vector field. You
found a specific parabola (which one
depends on where you started, or your
initial condition) using only the equation
for the derivative (evaluating dy/dx is
how you followed the vector field).

Doing the same thing for a real
differential equation is just as easy. For
a differential equation of the type dy/dx
= f(x,y), the definition of the derivative
dy/dx as a slope means f(x,y) defines a
slope for each coordinate in the x,y
graph. If you graph the vector field
given by dy/dx = f(x,y) you can follow
it, just like you did for the parabola, by
sampling the derivative at each point
and going in that direction. Figure 2
shows the vector field for Equation 12,
our air friction equation, with velocity
as the vertical axis and time as the hori-
zontal axis (I arbitrarily picked m=1 for
this graph). It also shows one of many
possible solution curves. You can see
that if you pick an initial position in the
graph (which corresponds to an inital
velocity in the equation), as time passes
your velocity will decay down towards
zero as friction robs you of speed. You
can also see that the rate at which your
velocity is decaying depends on the cur-
rent value of your velocity: the faster
you're going, the faster it decays. This
makes sense, since we picked Equation
12 to give us exactly this result.

Doing these integrations numeri-
cally is quite similar to doing them on a
graph. Euler’s algorithm for numerical
integration simply follows the vector
field from an initial position by evaluat-
ing the derivative equation (-v/m for
our air friction example) to find the
slope at the current point, and then
stepping forward in time by a fixed
amount, h, on that tangent line. It then
evaluates the derivative at the new posi-
tion to get a new slope, and takes
another time step:

dy,
Yna = Ya +h dx
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Or, explicitly in terms of our air
friction equation:

n

Vn+1 = Vn + h

Obviously, Euler's method accumu-
lates a little error each time it steps, since
the real vector field (and therefore the
solution curve) is curving away at any
point and Euler’s algorithm is just step-
ping along the tangent line. But if the
stepsize, h, is small enough, Euler does
okay. We'll discuss this error more in the
future.

That's really all there is to numeri-
cally integrating with Euler’'s method.
However, you might be wondering how
we integrate the velocity to get the posi-
tion now that we're numerically integrat-
ing the acceleration to get the velocity.
We just use Euler's method again to inte-
grate dr/dt = v at the same time we inte-
grate dv/dt = a, alternating as we go. We
end up with two coupled ordinary differ-
ential equations (another good one for
that raise):

. I:n
Vn+1:Vn+hVn_Vn+hV

Moy =F, +0 =+

n

This gives us an iterative algorithm
for computing the position from some
arbitrarily wacky force on our object
(which could depend on the velocity as
we've seen, or time, or even on the posi-
tion of the body and other bodies, or all
at once!). Euler's method doesn't care
what the force looks like, as long as you
can compute it at each step. Euler treats
the value of the force over the mass as a
slope, and steps merrily along.

I’'m out of space, so | don't have
room to give references. Next time I'll list
some great books, and we'll get into how
to do rotations with rigid bodies. m

Although his body is not quite as rigid
as he'd like, Chris Hecker has a dynamic
personality. If forced, he’ll answer e-mail at

checker@bix.com. E
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