
Telegram Open Network Virtual Machine

Nikolai Durov

May 23, 2019

Abstract

The aim of this text is to provide a description of the Telegram
Open Network Virtual Machine (TON VM or TVM), used to execute
smart contracts in the TON Blockchain.

Introduction
The primary purpose of the Telegram Open Network Virtual Machine (TON
VM or TVM) is to execute smart-contract code in the TON Blockchain.
TVM must support all operations required to parse incoming messages and
persistent data, and to create new messages and modify persistent data.

Additionally, TVM must meet the following requirements:

• It must provide for possible future extensions and improvements while
retaining backward compatibility and interoperability, because the code
of a smart contract, once committed into the blockchain, must continue
working in a predictable manner regardless of any future modifications
to the VM.

• It must strive to attain high “(virtual) machine code” density, so that
the code of a typical smart contract occupies as little persistent block-
chain storage as possible.

• It must be completely deterministic. In other words, each run of the
same code with the same input data must produce the same result,

1

Introduction

regardless of specific software and hardware used.1

The design of TVM is guided by these requirements. While this document
describes a preliminary and experimental version of TVM,2 the backward
compatibility mechanisms built into the system allow us to be relatively
unconcerned with the efficiency of the operation encoding used for TVM
code in this preliminary version.

TVM is not intended to be implemented in hardware (e.g., in a specialized
microprocessor chip); rather, it should be implemented in software running
on conventional hardware. This consideration lets us incorporate some high-
level concepts and operations in TVM that would require convoluted mi-
crocode in a hardware implementation but pose no significant problems for a
software implementation. Such operations are useful for achieving high code
density and minimizing the byte (or storage cell) profile of smart-contract
code when deployed in the TON Blockchain.

1For example, there are no floating-point arithmetic operations (which could be effi-
ciently implemented using hardware-supported double type on most modern CPUs) present
in TVM, because the result of performing such operations is dependent on the specific un-
derlying hardware implementation and rounding mode settings. Instead, TVM supports
special integer arithmetic operations, which can be used to simulate fixed-point arithmetic
if needed.

2The production version will likely require some tweaks and modifications prior to
launch, which will become apparent only after using the experimental version in the test
environment for some time.

2

Introduction

Contents
1 Overview 5

1.0 Notation for bitstrings . 5
1.1 TVM is a stack machine . 6
1.2 Categories of TVM instructions 9
1.3 Control registers . 10
1.4 Total state of TVM (SCCCG) 11
1.5 Integer arithmetic . 12

2 The stack 15
2.1 Stack calling conventions . 15
2.2 Stack manipulation primitives 20
2.3 Efficiency of stack manipulation primitives 24

3 Cells, memory, and persistent storage 27
3.1 Generalities on cells . 27
3.2 Data manipulation instructions and cells 31
3.3 Hashmaps, or dictionaries . 36
3.4 Hashmaps with variable-length keys 46

4 Control flow, continuations, and exceptions 48
4.1 Continuations and subroutines 48
4.2 Control flow primitives: conditional and iterated execution . . 52
4.3 Operations with continuations 54
4.4 Continuations as objects . 56
4.5 Exception handling . 57
4.6 Functions, recursion, and dictionaries 60

5 Codepages and instruction encoding 66
5.1 Codepages and interoperability of different TVM versions . . . 66
5.2 Instruction encoding . 69
5.3 Instruction encoding in codepage zero 72

A Instructions and opcodes 76
A.1 Gas prices . 76
A.2 Stack manipulation primitives 77
A.3 Constant, or literal primitives 80
A.4 Arithmetic primitives . 82

3

Introduction

A.5 Comparison primitives . 86
A.6 Cell primitives . 89
A.7 Continuation and control flow primitives 99
A.8 Exception generating and handling primitives 106
A.9 Dictionary manipulation primitives 108
A.10 Application-specific primitives 118
A.11 Debug primitives . 121
A.12 Codepage primitives . 123

B Formal properties and specifications of TVM 125
B.1 Serialization of the TVM state 125
B.2 Step function of TVM . 127

C Code density of stack and register machines 130
C.1 Sample leaf function . 130
C.2 Comparison of machine code for sample leaf function 137
C.3 Sample non-leaf function . 143
C.4 Comparison of machine code for sample non-leaf function . . . 153

4

1.0. Notation for bitstrings

1 Overview
This chapter provides an overview of the main features and design principles
of TVM. More detail on each topic is provided in subsequent chapters.

1.0 Notation for bitstrings

The following notation is used for bit strings (or bitstrings)—i.e., finite strings
consisting of binary digits (bits), 0 and 1—throughout this document.

1.0.1. Hexadecimal notation for bitstrings. When the length of a bit-
string is a multiple of four, we subdivide it into groups of four bits and
represent each group by one of sixteen hexadecimal digits 0–9, A–F in the
usual manner: 016 ↔ 0000, 116 ↔ 0001, . . . , F16 ↔ 1111. The resulting
hexadecimal string is our equivalent representation for the original binary
string.

1.0.2. Bitstrings of lengths not divisible by four. If the length of a
binary string is not divisible by four, we augment it by one 1 and several
(maybe zero) 0s at the end, so that its length becomes divisible by four, and
then transform it into a string of hexadecimal digits as described above. To
indicate that such a transformation has taken place, a special “completion
tag” _ is added to the end of the hexadecimal string. The reverse transforma-
tion (applied if the completion tag is present) consists in first replacing each
hexadecimal digit by four corresponding bits, and then removing all trailing
zeroes (if any) and the last 1 immediately preceding them (if the resulting
bitstring is non-empty at this point).

Notice that there are several admissible hexadecimal representations for
the same bitstring. Among them, the shortest one is “canonical”. It can be
deterministically obtained by the above procedure.

For example, 8A corresponds to binary string 10001010, while 8A_ and
8A0_ both correspond to 100010. An empty bitstring may be represented by
either ‘’, ‘8_’, ‘0_’, ‘_’, or ‘00_’.

1.0.3. Emphasizing that a string is a hexadecimal representation of
a bitstring. Sometimes we need to emphasize that a string of hexadecimal
digits (with or without a _ at the end) is the hexadecimal representation of
a bitstring. In such cases, we either prepend x to the resulting string (e.g.,
x8A), or prepend x{ and append } (e.g., x{2D9_}, which is 00101101100).

5

1.1. TVM is a stack machine

This should not be confused with hexadecimal numbers, usually prepended
by 0x (e.g., 0x2D9 or 0x2d9, which is the integer 729).

1.0.4. Serializing a bitstring into a sequence of octets. When a bit-
string needs to be represented as a sequence of 8-bit bytes (octets), which
take values in integers 0 . . . 255, this is achieved essentially in the same fash-
ion as above: we split the bitstring into groups of eight bits and interpret
each group as the binary representation of an integer 0 . . . 255. If the length
of the bitstring is not a multiple of eight, the bitstring is augmented by a
binary 1 and up to seven binary 0s before being split into groups. The fact
that such a completion has been applied is usually reflected by a “completion
tag” bit.

For instance, 00101101100 corresponds to the sequence of two octets
(0x2d, 0x90) (hexadecimal), or (45, 144) (decimal), along with a completion
tag bit equal to 1 (meaning that the completion has been applied), which
must be stored separately.

In some cases, it is more convenient to assume the completion is enabled
by default rather than store an additional completion tag bit separately.
Under such conventions, 8n-bit strings are represented by n+ 1 octets, with
the last octet always equal to 0x80 = 128.

1.1 TVM is a stack machine

First of all, TVM is a stack machine. This means that, instead of keeping
values in some “variables” or “general-purpose registers”, they are kept in a
(LIFO) stack, at least from the “low-level” (TVM) perspective.3

Most operations and user-defined functions take their arguments from the
top of the stack, and replace them with their result. For example, the inte-
ger addition primitive (built-in operation) ADD does not take any arguments
describing which registers or immediate values should be added together and
where the result should be stored. Instead, the two top values are taken from
the stack, they are added together, and their sum is pushed into the stack in
their place.

3A high-level smart-contract language might create a visibility of variables for the
ease of programming; however, the high-level source code working with variables will be
translated into TVM machine code keeping all the values of these variables in the TVM
stack.

6

1.1. TVM is a stack machine

1.1.1. TVM values. The entities that can be stored in the TVM stack
will be called TVM values, or simply values for brevity. They belong to
one of several predefined value types. Each value belongs to exactly one
value type. The values are always kept on the stack along with tags uniquely
determining their types, and all built-in TVM operations (or primitives) only
accept values of predefined types.

For example, the integer addition primitive ADD accepts only two integer
values, and returns one integer value as a result. One cannot supply ADD with
two strings instead of two integers expecting it to concatenate these strings
or to implicitly transform the strings into their decimal integer values; any
attempt to do so will result in a run-time type-checking exception.

1.1.2. Static typing, dynamic typing, and run-time type checking.
In some respects TVM performs a kind of dynamic typing using run-time type
checking. However, this does not make the TVM code a “dynamically typed
language” like PHP or Javascript, because all primitives accept values and
return results of predefined (value) types, each value belongs to strictly one
type, and values are never implicitly converted from one type to another.
If, on the other hand, one compares the TVM code to the conventional
microprocessor machine code, one sees that the TVM mechanism of value
tagging prevents, for example, using the address of a string as a number—
or, potentially even more disastrously, using a number as the address of
a string—thus eliminating the possibility of all sorts of bugs and security
vulnerabilities related to invalid memory accesses, usually leading to memory
corruption and segmentation faults. This property is highly desirable for
a VM used to execute smart contracts in a blockchain. In this respect,
TVM’s insistence on tagging all values with their appropriate types, instead
of reinterpreting the bit sequence in a register depending on the needs of the
operation it is used in, is just an additional run-time type-safety mechanism.

An alternative would be to somehow analyze the smart-contract code for
type correctness and type safety before allowing its execution in the VM,
or even before allowing it to be uploaded into the blockchain as the code
of a smart contract. Such a static analysis of code for a Turing-complete
machine appears to be a time-consuming and non-trivial problem (likely to
be equivalent to the stopping problem for Turing machines), something we
would rather avoid in a blockchain smart-contract context.

One should bear in mind that one always can implement compilers from
statically typed high-level smart-contract languages into the TVM code (and

7

1.1. TVM is a stack machine

we do expect that most smart contracts for TON will be written in such lan-
guages), just as one can compile statically typed languages into conventional
machine code (e.g., x86 architecture). If the compiler works correctly, the
resulting machine code will never generate any run-time type-checking ex-
ceptions. All type tags attached to values processed by TVM will always
have expected values and may be safely ignored during the analysis of the
resulting TVM code, apart from the fact that the run-time generation and
verification of these type tags by TVM will slightly slow down the execution
of the TVM code.

1.1.3. Preliminary list of value types. A preliminary list of value types
supported by TVM is as follows:

• Integer — Signed 257-bit integers, representing integer numbers in the
range −2256 . . . 2256 − 1, as well as a special “not-a-number” value NaN.

• Cell — A TVM cell consists of at most 1023 bits of data, and of at
most four references to other cells. All persistent data (including TVM
code) in the TON Blockchain is represented as a collection of TVM
cells (cf. [1, 2.5.14]).

• Slice — A TVM cell slice, or slice for short, is a contiguous “sub-cell”
of an existing cell, containing some of its bits of data and some of its
references. Essentially, a slice is a read-only view for a subcell of a cell.
Slices are used for unpacking data previously stored (or serialized) in a
cell or a tree of cells.

• Builder — A TVM cell builder, or builder for short, is an “incomplete”
cell that supports fast operations of appending bitstrings and cell ref-
erences at its end. Builders are used for packing (or serializing) data
from the top of the stack into new cells (e.g., before transferring them
to persistent storage).

• Continuation — Represents an “execution token” for TVM, which may
be invoked (executed) later. As such, it generalizes function addresses
(i.e., function pointers and references), subroutine return addresses,
instruction pointer addresses, exception handler addresses, closures,
partial applications, anonymous functions, and so on.

This list of value types is incomplete and may be extended in future revisions
of TVM without breaking the old TVM code, due mostly to the fact that

8

1.2. Categories of TVM instructions

all originally defined primitives accept only values of types known to them
and will fail (generate a type-checking exception) if invoked on values of new
types. Furthermore, existing value types themselves can also be extended in
the future: for example, 257-bit Integer might become 513-bit LongInteger ,
with originally defined arithmetic primitives failing if either of the arguments
or the result does not fit into the original subtype Integer. Backward com-
patibility with respect to the introduction of new value types and extension
of existing value types will be discussed in more detail later (cf. 5.1.4).

1.2 Categories of TVM instructions

TVM instructions, also called primitives and sometimes (built-in) operations,
are the smallest operations atomically performed by TVM that can be present
in the TVM code. They fall into several categories, depending on the types
of values (cf. 1.1.3) they work on. The most important of these categories
are:

• Stack (manipulation) primitives — Rearrange data in the TVM stack,
so that the other primitives and user-defined functions can later be
called with correct arguments. Unlike all other primitives, they work
with values of arbitrary types.

• Constant or literal primitives — Push into the stack some “constant”
or “literal” values embedded into the TVM code itself, thus providing
arguments to the other primitives. They are somewhat similar to stack
primitives, but are less generic because they work with values of specific
types.

• Arithmetic primitives — Perform the usual integer arithmetic opera-
tions on values of type Integer.

• Cell (manipulation) primitives — Create new cells and store data in
them (cell creation primitives) or read data from previously created
cells (cell parsing primitives). Because all memory and persistent stor-
age of TVM consists of cells, these cell manipulation primitives actually
correspond to “memory access instructions” of other architectures. Cell
creation primitives usually work with values of type Builder, while cell
parsing primitives work with Slices.

9

1.3. Control registers

• Continuation and control flow primitives — Create and modify Con-
tinuations, as well as execute existing Continuations in different ways,
including conditional and repeated execution.

• Custom or application-specific primitives — Efficiently perform spe-
cific high-level actions required by the application (in our case, the
TON Blockchain), such as computing hash functions, performing ellip-
tic curve cryptography, sending new blockchain messages, creating new
smart contracts, and so on. These primitives correspond to standard
library functions rather than microprocessor instructions.

1.3 Control registers

While TVM is a stack machine, some rarely changed values needed in almost
all functions are better passed in certain special registers, and not near the top
of the stack. Otherwise, a prohibitive number of stack reordering operations
would be required to manage all these values.

To this end, the TVM model includes, apart from the stack, up to 16
special control registers, denoted by c0 to c15, or c(0) to c(15). The original
version of TVM makes use of only some of these registers; the rest may be
supported later.

1.3.1. Values kept in control registers. The values kept in control regis-
ters are of the same types as those kept on the stack. However, some control
registers accept only values of specific types, and any attempt to load a value
of a different type will lead to an exception.

1.3.2. List of control registers. The original version of TVM defines and
uses the following control registers:

• c0 — Contains the next continuation or return continuation (similar
to the subroutine return address in conventional designs). This value
must be a Continuation.

• c1 — Contains the alternative (return) continuation; this value must
be a Continuation. It is used in some (experimental) control flow
primitives, allowing TVM to define and call “subroutines with two exit
points”.

• c2 — Contains the exception handler. This value is a Continuation,
invoked whenever an exception is triggered.

10

1.4. Total state of TVM (SCCCG)

• c3—Contains the current dictionary, essentially a hashmap containing
the code of all functions used in the program. For reasons explained
later in 4.6, this value is also a Continuation, not a Cell as one might
expect.

• c4 — Contains the root of persistent data, or simply the data. This
value is a Cell. When the code of a smart contract is invoked, c4
points to the root cell of its persistent data kept in the blockchain
state. If the smart contract needs to modify this data, it changes c4
before returning.

• c5 — Contains the root of temporary data. It is a Cell, initialized by
a reference to an empty cell before invoking the smart contract and
discarded after its termination.4

• c6 — Contains the output actions. It is also a Cell initialized by a
reference to an empty cell, but its final value is considered one of the
smart contract outputs. For instance, the SENDMSG primitive, specific
for the TON Blockchain, simply inserts the message into a list stored
in the output actions.

More control registers may be defined in the future for specific TON Block-
chain or high-level programming language purposes, if necessary.

1.4 Total state of TVM (SCCCG)

The total state of TVM consists of the following components:

• Stack (cf. 1.1) — Contains zero or more values (cf. 1.1.1), each be-
longing to one of value types listed in 1.1.3.

• Control registers c0–c15 — Contain some specific values as described
in 1.3.2. (Only seven control registers are used in the current version.)

• Current continuation cc — Contains the current continuation (i.e., the
code that would be normally executed after the current primitive is
completed). This component is similar to the instruction pointer reg-
ister (ip) in other architectures.

4In the TON Blockchain context, c5 is initialized with a cell containing no data and a
reference to a cell containing blockchain-specific data. The smart contract is free to modify
c5 to keep its temporary data provided the first reference of this cell remains intact.

11

1.5. Integer arithmetic

• Current codepage cp—A special signed 16-bit integer value that selects
the way the next TVM opcode will be decoded. For example, future
versions of TVM might use different codepages to add new opcodes
while preserving backward compatibility.

• Gas limits gas — Contains four signed 64-bit integers: the current gas
limit gl, the maximal gas limit gm, the remaining gas gr, and the gas
credit gc. Always 0 ≤ gl ≤ gm, gc ≥ 0, and gr ≤ gl + gc; gc is usually
initialized by zero, gr is initialized by gl + gc and gradually decreases
as the TVM runs. When gr becomes negative or if the final value of gr
is less than gc, an out of gas exception is triggered.

Notice that there is no “return stack” containing the return addresses of all
previously called but unfinished functions. Instead, only control register c0
is used. The reason for this will be explained later in 4.1.9.

Also notice that there are no general-purpose registers, because TVM
is a stack machine (cf. 1.1). So the above list, which can be summarized
as “stack, control, continuation, codepage, and gas” (SCCCG), similarly to
the classical SECD machine state (“stack, environment, control, dump”), is
indeed the total state of TVM.5

1.5 Integer arithmetic

All arithmetic primitives of TVM operate on several arguments of type In-
teger, taken from the top of the stack, and return their results, of the same
type, into the stack. Recall that Integer represents all integer values in the
range −2256 ≤ x < 2256, and additionally contains a special value NaN (“not-
a-number”).

If one of the results does not fit into the supported range of integers—
or if one of the arguments is a NaN—then this result or all of the results
are replaced by a NaN, and (by default) an integer overflow exception is
generated. However, special “quiet” versions of arithmetic operations will
simply produce NaNs and keep going. If these NaNs end up being used in a
“non-quiet” arithmetic operation, or in a non-arithmetic operation, an integer
overflow exception will occur.

5Strictly speaking, there is also the current library context, which consists of a dictionary
with 256-bit keys and cell values, used to load library reference cells of 3.1.7.

12

1.5. Integer arithmetic

1.5.1. Absence of automatic conversion of integers. Notice that TVM
Integers are “mathematical” integers, and not 257-bit strings interpreted dif-
ferently depending on the primitive used, as is common for other machine
code designs. For example, TVM has only one multiplication primitive MUL,
rather than two (MUL for unsigned multiplication and IMUL for signed multi-
plication) as occurs, for example, in the popular x86 architecture.

1.5.2. Automatic overflow checks. Notice that all TVM arithmetic prim-
itives perform overflow checks of the results. If a result does not fit into the
Integer type, it is replaced by a NaN, and (usually) an exception occurs. In
particular, the result is not automatically reduced modulo 2256 or 2257, as is
common for most hardware machine code architectures.

1.5.3. Custom overflow checks. In addition to automatic overflow checks,
TVM includes custom overflow checks, performed by primitives FITS n and
UFITS n, where 1 ≤ n ≤ 256. These primitives check whether the value on
(the top of) the stack is an integer x in the range −2n−1 ≤ x < 2n−1 or
0 ≤ x < 2n, respectively, and replace the value with a NaN and (optionally)
generate an integer overflow exception if this is not the case. This greatly
simplifies the implementation of arbitrary n-bit integer types, signed or un-
signed: the programmer or the compiler must insert appropriate FITS or
UFITS primitives either after each arithmetic operation (which is more rea-
sonable, but requires more checks) or before storing computed values and
returning them from functions. This is important for smart contracts, where
unexpected integer overflows happen to be among the most common source
of bugs.

1.5.4. Reduction modulo 2n. TVM also has a primitive MODPOW2 n, which
reduces the integer at the top of the stack modulo 2n, with the result ranging
from 0 to 2n − 1.

1.5.5. Integer is 257-bit, not 256-bit. One can understand now why
TVM’s Integer is (signed) 257-bit, not 256-bit. The reason is that it is the
smallest integer type containing both signed 256-bit integers and unsigned
256-bit integers, which does not require automatic reinterpreting of the same
256-bit string depending on the operation used (cf. 1.5.1).

1.5.6. Division and rounding. The most important division primitives
are DIV, MOD, and DIVMOD. All of them take two numbers from the stack, x
and y (y is taken from the top of the stack, and x is originally under it),

13

1.5. Integer arithmetic

compute the quotient q and remainder r of the division of x by y (i.e., two
integers such that x = yq + r and |r| < |y|), and return either q, r, or both
of them. If y is zero, then all of the expected results are replaced by NaNs,
and (usually) an integer overflow exception is generated.

The implementation of division in TVM somewhat differs from most
other implementations with regards to rounding. By default, these prim-
itives round to −∞, meaning that q = bx/yc, and r has the same sign
as y. (Most conventional implementations of division use “rounding to zero”
instead, meaning that r has the same sign as x.) Apart from this “floor
rounding”, two other rounding modes are available, called “ceiling rounding”
(with q = dx/ye, and r and y having opposite signs) and “nearest round-
ing” (with q = bx/y + 1/2c and |r| ≤ |y|/2). These rounding modes are
selected by using other division primitives, with letters C and R appended
to their mnemonics. For example, DIVMODR computes both the quotient and
the remainder using rounding to the nearest integer.

1.5.7. Combined multiply-divide, multiply-shift, and shift-divide
operations. To simplify implementation of fixed-point arithmetic, TVM
supports combined multiply-divide, multiply-shift, and shift-divide opera-
tions with double-length (i.e., 514-bit) intermediate product. For example,
MULDIVMODR takes three integer arguments from the stack, a, b, and c, first
computes ab using a 514-bit intermediate result, and then divides ab by c
using rounding to the nearest integer. If c is zero or if the quotient does not
fit into Integer, either two NaNs are returned, or an integer overflow exception
is generated, depending on whether a quiet version of the operation has been
used. Otherwise, both the quotient and the remainder are pushed into the
stack.

14

2.1. Stack calling conventions

2 The stack
This chapter contains a general discussion and comparison of register and
stack machines, expanded further in Appendix C, and describes the two
main classes of stack manipulation primitives employed by TVM: the basic
and the compound stack manipulation primitives. An informal explanation of
their sufficiency for all stack reordering required for correctly invoking other
primitives and user-defined functions is also provided. Finally, the problem
of efficiently implementing TVM stack manipulation primitives is discussed
in 2.3.

2.1 Stack calling conventions

A stack machine, such as TVM, uses the stack—and especially the values
near the top of the stack—to pass arguments to called functions and primi-
tives (such as built-in arithmetic operations) and receive their results. This
section discusses the TVM stack calling conventions, introduces some no-
tation, and compares TVM stack calling conventions with those of certain
register machines.

2.1.1. Notation for “stack registers”. Recall that a stack machine, as
opposed to a more conventional register machine, lacks general-purpose reg-
isters. However, one can treat the values near the top of the stack as a kind
of “stack registers”.

We denote by s0 or s(0) the value at the top of the stack, by s1 or s(1)
the value immediately under it, and so on. The total number of values in the
stack is called its depth. If the depth of the stack is n, then s(0), s(1), . . . ,
s(n − 1) are well-defined, while s(n) and all subsequent s(i) with i > n are
not. Any attempt to use s(i) with i ≥ n should produce a stack underflow
exception.

A compiler, or a human programmer in “TVM code”, would use these
“stack registers” to hold all declared variables and intermediate values, simi-
larly to the way general-purpose registers are used on a register machine.

2.1.2. Pushing and popping values. When a value x is pushed into a
stack of depth n, it becomes the new s0; at the same time, the old s0 becomes
the new s1, the old s1—the new s2, and so on. The depth of the resulting
stack is n+ 1.

15

2.1. Stack calling conventions

Similarly, when a value x is popped from a stack of depth n ≥ 1, it is the
old value of s0 (i.e., the old value at the top of the stack). After this, it is
removed from the stack, and the old s1 becomes the new s0 (the new value
at the top of the stack), the old s2 becomes the new s1, and so on. The
depth of the resulting stack is n− 1.

If originally n = 0, then the stack is empty, and a value cannot be popped
from it. If a primitive attempts to pop a value from an empty stack, a stack
underflow exception occurs.

2.1.3. Notation for hypothetical general-purpose registers. In order
to compare stack machines with sufficiently general register machines, we will
denote the general-purpose registers of a register machine by r0, r1, and so
on, or by r(0), r(1), . . . , r(n− 1), where n is the total number of registers.
When we need a specific value of n, we will use n = 16, corresponding to the
very popular x86-64 architecture.

2.1.4. The top-of-stack register s0 vs. the accumulator register r0.
Some register machine architectures require one of the arguments for most
arithmetic and logical operations to reside in a special register called the
accumulator. In our comparison, we will assume that the accumulator is
the general-purpose register r0; otherwise we could simply renumber the
registers. In this respect, the accumulator is somewhat similar to the top-of-
stack “register” s0 of a stack machine, because virtually all operations of a
stack machine both use s0 as one of their arguments and return their result
as s0.

2.1.5. Register calling conventions. When compiled for a register ma-
chine, high-level language functions usually receive their arguments in certain
registers in a predefined order. If there are too many arguments, these func-
tions take the remainder from the stack (yes, a register machine usually has
a stack, too!). Some register calling conventions pass no arguments in regis-
ters at all, however, and only use the stack (for example, the original calling
conventions used in implementations of Pascal and C, although modern im-
plementations of C use some registers as well).

For simplicity, we will assume that up to m ≤ n function arguments are
passed in registers, and that these registers are r0, r1, . . . , r(m− 1), in that
order (if some other registers are used, we can simply renumber them).6

6Our inclusion of r0 here creates a minor conflict with our assumption that the ac-

16

2.1. Stack calling conventions

2.1.6. Order of function arguments. If a function or primitive requires
m arguments x1, . . . , xm, they are pushed by the caller into the stack in the
same order, starting from x1. Therefore, when the function or primitive is
invoked, its first argument x1 is in s(m − 1), its second argument x2 is in
s(m − 2), and so on. The last argument xm is in s0 (i.e., at the top of the
stack). It is the called function or primitive’s responsibility to remove its
arguments from the stack.

In this respect the TVM stack calling conventions—obeyed, at least, by
TMV primitives—match those of Pascal and Forth, and are the opposite of
those of C (in which the arguments are pushed into the stack in the reverse
order, and are removed by the caller after it regains control, not the callee).

Of course, an implementation of a high-level language for TVM might
choose some other calling conventions for its functions, different from the
default ones. This might be useful for certain functions—for instance, if the
total number of arguments depends on the value of the first argument, as
happens for “variadic functions” such as scanf and printf. In such cases,
the first one or several arguments are better passed near the top of the stack,
not somewhere at some unknown location deep in the stack.

2.1.7. Arguments to arithmetic primitives on register machines.
On a stack machine, built-in arithmetic primitives (such as ADD or DIVMOD)
follow the same calling conventions as user-defined functions. In this respect,
user-defined functions (for example, a function computing the square root of
a number) might be considered as “extensions” or “custom upgrades” of the
stack machine. This is one of the clearest advantages of stack machines
(and of stack programming languages such as Forth) compared to register
machines.

In contrast, arithmetic instructions (built-in operations) on register ma-
chines usually get their parameters from general-purpose registers encoded
in the full opcode. A binary operation, such as SUB, thus requires two argu-
ments, r(i) and r(j), with i and j specified by the instruction. A register
r(k) for storing the result also must be specified. Arithmetic operations can
take several possible forms, depending on whether i, j, and k are allowed to
take arbitrary values:

• Three-address form — Allows the programmer to arbitrarily choose
not only the two source registers r(i) and r(j), but also a separate

cumulator register, if present, is also r0; for simplicity, we will resolve this problem by
assuming that the first argument to a function is passed in the accumulator.

17

2.1. Stack calling conventions

destination register r(k). This form is common for most RISC proces-
sors, and for the XMM and AVX SIMD instruction sets in the x86-64
architecture.

• Two-address form — Uses one of the two operand registers (usually
r(i)) to store the result of an operation, so that k = i is never indicated
explicitly. Only i and j are encoded inside the instruction. This is the
most common form of arithmetic operations on register machines, and
is quite popular on microprocessors (including the x86 family).

• One-address form — Always takes one of the arguments from the ac-
cumulator r0, and stores the result in r0 as well; then i = k = 0, and
only j needs to be specified by the instruction. This form is used by
some simpler microprocessors (such as Intel 8080).

Note that this flexibility is available only for built-in operations, but not
for user-defined functions. In this respect, register machines are not as easily
“upgradable” as stack machines.7

2.1.8. Return values of functions. In stack machines such as TVM,
when a function or primitive needs to return a result value, it simply pushes
it into the stack (from which all arguments to the function have already been
removed). Therefore, the caller will be able to access the result value through
the top-of-stack “register” s0.

This is in complete accordance with Forth calling conventions, but dif-
fers slightly from Pascal and C calling conventions, where the accumulator
register r0 is normally used for the return value.

2.1.9. Returning several values. Some functions might want to return
several values y1, . . . , yk, with k not necessarily equal to one. In these cases,
the k return values are pushed into the stack in their natural order, starting
from y1.

For example, the “divide with remainder” primitive DIVMOD needs to re-
turn two values, the quotient q and the remainder r. Therefore, DIVMOD
pushes q and r into the stack, in that order, so that the quotient is available

7For instance, if one writes a function for extracting square roots, this function will
always accept its argument and return its result in the same registers, in contrast with
a hypothetical built-in square root instruction, which could allow the programmer to
arbitrarily choose the source and destination registers. Therefore, a user-defined function
is tremendously less flexible than a built-in instruction on a register machine.

18

2.1. Stack calling conventions

thereafter at s1 and the remainder at s0. The net effect of DIVMOD is to
divide the original value of s1 by the original value of s0, and return the
quotient in s1 and the remainder in s0. In this particular case the depth
of the stack and the values of all other “stack registers” remain unchanged,
because DIVMOD takes two arguments and returns two results. In general, the
values of other “stack registers” that lie in the stack below the arguments
passed and the values returned are shifted according to the change of the
depth of the stack.

In principle, some primitives and user-defined functions might return a
variable number of result values. In this respect, the remarks above about
variadic functions (cf. 2.1.6) apply: the total number of result values and
their types should be determined by the values near the top of the stack.
(For example, one might push the return values y1, . . . , yk, and then push
their total number k as an integer. The caller would then determine the total
number of returned values by inspecting s0.)

In this respect TVM, again, faithfully observes Forth calling conventions.

2.1.10. Stack notation. When a stack of depth n contains values z1, . . . ,
zn, in that order, with z1 the deepest element and zn the top of the stack,
the contents of the stack are often represented by a list z1 z2 . . . zn, in that
order. When a primitive transforms the original stack state S ′ into a new
state S ′′, this is often written as S ′ – S ′′; this is the so-called stack notation.
For example, the action of the division primitive DIV can be described by S
x y – S bx/yc, where S is any list of values. This is usually abbreviated as x
y – bx/yc, tacitly assuming that all other values deeper in the stack remain
intact.

Alternatively, one can describe DIV as a primitive that runs on a stack S ′
of depth n ≥ 2, divides s1 by s0, and returns the floor-rounded quotient as
s0 of the new stack S ′′ of depth n− 1. The new value of s(i) equals the old
value of s(i + 1) for 1 ≤ i < n − 1. These descriptions are equivalent, but
saying that DIV transforms x y into bx/yc, or . . .x y into . . . bx/yc, is more
concise.

The stack notation is extensively used throughout Appendix A, where all
currently defined TVM primitives are listed.

2.1.11. Explicitly defining the number of arguments to a function.
Stack machines usually pass the current stack in its entirety to the invoked
primitive or function. That primitive or function accesses only the several
values near the top of the stack that represent its arguments, and pushes the

19

2.2. Stack manipulation primitives

return values in their place, by convention leaving all deeper values intact.
Then the resulting stack, again in its entirety, is returned to the caller.

Most TVM primitives behave in this way, and we expect most user-defined
functions to be implemented under such conventions. However, TVM pro-
vides mechanisms to specify how many arguments must be passed to a called
function (cf. 4.1.10). When these mechanisms are employed, the specified
number of values are moved from the caller’s stack into the (usually initially
empty) stack of the called function, while deeper values remain in the caller’s
stack and are inaccessible to the callee. The caller can also specify how many
return values it expects from the called function.

Such argument-checking mechanisms might be useful, for example, for a
library function that calls user-provided functions passed as arguments to it.

2.2 Stack manipulation primitives

A stack machine, such as TVM, employs a lot of stack manipulation primi-
tives to rearrange arguments to other primitives and user-defined functions,
so that they become located near the top of the stack in correct order. This
section discusses which stack manipulation primitives are necessary and suf-
ficient for achieving this goal, and which of them are used by TVM. Some
examples of code using these primitives can be found in Appendix C.

2.2.1. Basic stack manipulation primitives. The most important stack
manipulation primitives used by TVM are the following:

• Top-of-stack exchange operation: XCHG s0,s(i) or XCHG s(i) — Ex-
changes values of s0 and s(i). When i = 1, operation XCHG s1 is
traditionally denoted by SWAP. When i = 0, this is a NOP (an operation
that does nothing, at least if the stack is non-empty).

• Arbitrary exchange operation: XCHG s(i),s(j) — Exchanges values of
s(i) and s(j). Notice that this operation is not strictly necessary, be-
cause it can be simulated by three top-of-stack exchanges: XCHG s(i);
XCHG s(j); XCHG s(i). However, it is useful to have arbitrary exchanges
as primitives, because they are required quite often.

• Push operation: PUSH s(i) — Pushes a copy of the (old) value of s(i)
into the stack. Traditionally, PUSH s0 is also denoted by DUP (it dupli-
cates the value at the top of the stack), and PUSH s1 by OVER.

20

2.2. Stack manipulation primitives

• Pop operation: POP s(i) — Removes the top-of-stack value and puts it
into the (new) s(i − 1), or the old s(i). Traditionally, POP s0 is also
denoted by DROP (it simply drops the top-of-stack value), and POP s1
by NIP.

Some other “unsystematic” stack manipulation operations might be also
defined (e.g., ROT, with stack notation a b c – b c a). While such opera-
tions are defined in stack languages like Forth (where DUP, DROP, OVER, NIP
and SWAP are also present), they are not strictly necessary because the basic
stack manipulation primitives listed above suffice to rearrange stack registers
to allow any arithmetic primitives and user-defined functions to be invoked
correctly.

2.2.2. Basic stack manipulation primitives suffice. A compiler or a
human TVM-code programmer might use the basic stack primitives as fol-
lows.

Suppose that the function or primitive to be invoked is to be passed, say,
three arguments x, y, and z, currently located in stack registers s(i), s(j),
and s(k). In this circumstance, the compiler (or programmer) might issue
operation PUSH s(i) (if a copy of x is needed after the call to this primitive)
or XCHG s(i) (if it will not be needed afterwards) to put the first argument
x into the top of the stack. Then, the compiler (or programmer) could use
either PUSH s(j′) or XCHG s(j′), where j′ = j or j + 1, to put y into the new
top of the stack.8

Proceeding in this manner, we see that we can put the original values of
x, y, and z—or their copies, if needed—into locations s2, s1, and s0, using
a sequence of push and exchange operations (cf. 2.2.4 and 2.2.5 for a more
detailed explanation). In order to generate this sequence, the compiler will
need to know only the three values i, j and k, describing the old locations of
variables or temporary values in question, and some flags describing whether
each value will be needed thereafter or is needed only for this primitive or
function call. The locations of other variables and temporary values will be
affected in the process, but a compiler (or a human programmer) can easily
track their new locations.

8Of course, if the second option is used, this will destroy the original arrangement of
x in the top of the stack. In this case, one should either issue a SWAP before XCHG s(j′),
or replace the previous operation XCHG s(i) with XCHG s1, s(i), so that x is exchanged
with s1 from the beginning.

21

2.2. Stack manipulation primitives

Similarly, if the results returned from a function need to be discarded
or moved to other stack registers, a suitable sequence of exchange and pop
operations will do the job. In the typical case of one return value in s0,
this is achieved either by an XCHG s(i) or a POP s(i) (in most cases, a DROP)
operation.9

Rearranging the result value or values before returning from a function is
essentially the same problem as arranging arguments for a function call, and
is achieved similarly.

2.2.3. Compound stack manipulation primitives. In order to improve
the density of the TVM code and simplify development of compilers, com-
pound stack manipulation primitives may be defined, each combining up to
four exchange and push or exchange and pop basic primitives. Such com-
pound stack operations might include, for example:

• XCHG2 s(i),s(j) — Equivalent to XCHG s1,s(i); XCHG s(j).

• PUSH2 s(i),s(j) — Equivalent to PUSH s(i); PUSH s(j + 1).

• XCPU s(i),s(j) — Equivalent to XCHG s(i); PUSH s(j).

• PUXC s(i),s(j) — Equivalent to PUSH s(i); SWAP; XCHG s(j+1). When
j 6= i and j 6= 0, it is also equivalent to XCHG s(j); PUSH s(i); SWAP.

• XCHG3 s(i),s(j),s(k) — Equivalent to XCHG s2,s(i); XCHG s1,s(j);
XCHG s(k).

• PUSH3 s(i),s(j),s(k) — Equivalent to PUSH s(i); PUSH s(j+1); PUSH
s(k + 2).

Of course, such operations make sense only if they admit a more compact
encoding than the equivalent sequence of basic operations. For example,
if all top-of-stack exchanges, XCHG s1,s(i) exchanges, and push and pop
operations admit one-byte encodings, the only compound stack operations
suggested above that might merit inclusion in the set of stack manipulation
primitives are PUXC, XCHG3, and PUSH3.

9Notice that the most common XCHG s(i) operation is not really required here if we
do not insist on keeping the same temporary value or variable always in the same stack
location, but rather keep track of its subsequent locations. We will move it to some other
location while preparing the arguments to the next primitive or function call.

22

2.2. Stack manipulation primitives

These compound stack operations essentially augment other primitives
(instructions) in the code with the “true” locations of their operands, some-
what similarly to what happens with two-address or three-address register
machine code. However, instead of encoding these locations inside the op-
code of the arithmetic or another instruction, as is customary for register
machines, we indicate these locations in a preceding compound stack ma-
nipulation operation. As already described in 2.1.7, the advantage of such
an approach is that user-defined functions (or rarely used specific primitives
added in a future version of TVM) can benefit from it as well (cf. C.3 for a
more detailed discussion with examples).

2.2.4. Mnemonics of compound stack operations. The mnemonics
of compound stack operations, some examples of which have been provided
in 2.2.3, are created as follows.

The γ ≥ 2 formal arguments s(i1), . . . , s(iγ) to such an operation O
represent the values in the original stack that will end up in s(γ − 1), . . . ,
s0 after the execution of this compound operation, at least if all iν , 1 ≤
ν ≤ γ, are distinct and at least γ. The mnemonic itself of the operation
O is a sequence of γ two-letter strings PU and XC, with PU meaning that
the corresponding argument is to be PUshed (i.e., a copy is to be created),
and XC meaning that the value is to be eXChanged (i.e., no other copy of
the original value is created). Sequences of several PU or XC strings may be
abbreviated to one PU or XC followed by the number of copies. (For instance,
we write PUXC2PU instead of PUXCXCPU.)

As an exception, if a mnemonic would consist of only PU or only XC strings,
so that the compound operation is equivalent to a sequence of m PUSHes or
eXCHanGes, the notation PUSHm or XCHGm is used instead of PUm or XCm.

2.2.5. Semantics of compound stack operations. Each compound γ-
ary operation O s(i1),. . . ,s(iγ) is translated into an equivalent sequence of
basic stack operations by induction in γ as follows:

• As a base of induction, if γ = 0, the only nullary compound stack
operation corresponds to an empty sequence of basic stack operations.

• Equivalently, we might begin the induction from γ = 1. Then PU s(i)
corresponds to the sequence consisting of one basic operation PUSH
s(i), and XC s(i) corresponds to the one-element sequence consisting
of XCHG s(i).

23

2.3. Efficiency of stack manipulation primitives

• For γ ≥ 1 (or for γ ≥ 2, if we use γ = 1 as induction base), there are
two subcases:

1. Os(i1), . . . , s(iγ), with O = XCO′, where O′ is a compound opera-
tion of arity γ−1 (i.e., the mnemonic of O′ consists of γ−1 strings
XC and PU). Let α be the total quantity of PUshes in O, and β be
that of eXChanges, so that α+β = γ. Then the original operation
is translated into XCHG s(β−1),s(i1), followed by the translation
of O′s(i2), . . . , s(iγ), defined by the induction hypothesis.

2. Os(i1), . . . , s(iγ), with O = PUO′, where O′ is a compound op-
eration of arity γ − 1. Then the original operation is trans-
lated into PUSH s(i1); XCHG s(β), followed by the translation of
O′s(i2 + 1), . . . , s(iγ + 1), defined by the induction hypothesis.10

2.2.6. Stack manipulation instructions are polymorphic. Notice that
the stack manipulation instructions are almost the only “polymorphic” prim-
itives in TVM—i.e., they work with values of arbitrary types (including the
value types that will appear only in future revisions of TVM). For exam-
ple, SWAP always interchanges the two top values of the stack, even if one of
them is an integer and the other is a cell. Almost all other instructions, es-
pecially the data processing instructions (including arithmetic instructions),
require each of their arguments to be of some fixed type (possibly different
for different arguments).

2.3 Efficiency of stack manipulation primitives

Stack manipulation primitives employed by a stack machine, such as TVM,
have to be implemented very efficiently, because they constitute more than
half of all the instructions used in a typical program. In fact, TVM performs
all these instructions in a (small) constant time, regardless of the values
involved (even if they represent very large integers or very large trees of
cells).

2.3.1. Implementation of stack manipulation primitives: using ref-
erences for operations instead of objects. The efficiency of TVM’s
implementation of stack manipulation primitives results from the fact that a

10An alternative, arguably better, translation of PUO′s(i1), . . . , s(iγ) consists of the
translation of O′s(i2), . . . , s(iγ), followed by PUSH s(i1 + α− 1); XCHG s(γ − 1).

24

2.3. Efficiency of stack manipulation primitives

typical TVM implementation keeps in the stack not the value objects them-
selves, but only the references (pointers) to such objects. Therefore, a SWAP
instruction only needs to interchange the references at s0 and s1, not the
actual objects they refer to.

2.3.2. Efficient implementation of DUP and PUSH instructions using
copy-on-write. Furthermore, a DUP (or, more generally, PUSH s(i)) instruc-
tion, which appears to make a copy of a potentially large object, also works
in small constant time, because it uses a copy-on-write technique of delayed
copying: it copies only the reference instead of the object itself, but increases
the “reference counter” inside the object, thus sharing the object between the
two references. If an attempt to modify an object with a reference counter
greater than one is detected, a separate copy of the object in question is made
first (incurring a certain “non-uniqueness penalty” or “copying penalty” for
the data manipulation instruction that triggered the creation of a new copy).

2.3.3. Garbage collecting and reference counting. When the refer-
ence counter of a TVM object becomes zero (for example, because the last
reference to such an object has been consumed by a DROP operation or an
arithmetic instruction), it is immediately freed. Because cyclic references
are impossible in TVM data structures, this method of reference counting
provides a fast and convenient way of freeing unused objects, replacing slow
and unpredictable garbage collectors.

2.3.4. Transparency of the implementation: Stack values are “val-
ues”, not “references”. Regardless of the implementation details just dis-
cussed, all stack values are really “values”, not “references”, from the perspec-
tive of the TVM programmer, similarly to the values of all types in functional
programming languages. Any attempt to modify an existing object referred
to from any other objects or stack locations will result in a transparent re-
placement of this object by its perfect copy before the modification is actually
performed.

In other words, the programmer should always act as if the objects them-
selves were directly manipulated by stack, arithmetic, and other data trans-
formation primitives, and treat the previous discussion only as an explanation
of the high efficiency of the stack manipulation primitives.

2.3.5. Absence of circular references. One might attempt to create a
circular reference between two cells, A and B, as follows: first create A and

25

2.3. Efficiency of stack manipulation primitives

write some data into it; then create B and write some data into it, along
with a reference to previously constructed cell A; finally, add a reference to
B into A. While it may seem that after this sequence of operations we obtain
a cell A, which refers to B, which in turn refers to A, this is not the case.
In fact, we obtain a new cell A′, which contains a copy of the data originally
stored into cell A along with a reference to cell B, which contains a reference
to (the original) cell A.

In this way the transparent copy-on-write mechanism and the “everything
is a value” paradigm enable us to create new cells using only previously
constructed cells, thus forbidding the appearance of circular references. This
property also applies to all other data structures: for instance, the absence
of circular references enables TVM to use reference counting to immediately
free unused memory instead of relying on garbage collectors. Similarly, this
property is crucial for storing data in the TON Blockchain.

26

3.1. Generalities on cells

3 Cells, memory, and persistent storage
This chapter briefly describes TVM cells, used to represent all data structures
inside the TVM memory and its persistent storage, and the basic operations
used to create cells, write (or serialize) data into them, and read (or deseri-
alize) data from them.

3.1 Generalities on cells

This section presents a classification and general descriptions of cell types.

3.1.1. TVM memory and persistent storage consist of cells. Recall
that the TVM memory and persistent storage consist of (TVM) cells. Each
cell contains up to 1023 bits of data and up to four references to other cells.11

Circular references are forbidden and cannot be created by means of TVM
(cf. 2.3.5). In this way, all cells kept in TVM memory and persistent storage
constitute a directed acyclic graph (DAG).

3.1.2. Ordinary and exotic cells. Apart from the data and references,
a cell has a cell type, encoded by an integer −1. . . 255. A cell of type −1
is called ordinary; such cells do not require any special processing. Cells of
other types are called exotic, and may be loaded—automatically replaced by
other cells when an attempt to deserialize them (i.e., to convert them into
a Slice by a CTOS instruction) is made. They may also exhibit a non-trivial
behavior when their hashes are computed.

The most common use for exotic cells is to represent some other cells—for
instance, cells present in an external library, or pruned from the original tree
of cells when a Merkle proof has been created.

The type of an exotic cell is stored as the first eight bits of its data. If an
exotic cell has less than eight data bits, it is invalid.

3.1.3. The level of a cell. Every cell c has another attribute Lvl(c) called
its (de Brujn) level, which currently takes integer values in the range 0. . . 3.

11From the perspective of low-level cell operations, these data bits and cell references
are not intermixed. In other words, an (ordinary) cell essentially is a couple consisting of
a list of up to 1023 bits and of a list of up to four cell references, without prescribing an
order in which the references and the data bits should be deserialized, even though TL-B
schemes appear to suggest such an order.

27

3.1. Generalities on cells

The level of an ordinary cell is always equal to the maximum of the levels of
all its children ci:

Lvl(c) = max
1≤i≤r

Lvl(ci) , (1)

for an ordinary cell c containing r references to cells c1, . . . , cr. If r = 0,
Lvl(c) = 0. Exotic cells may have different rules for setting their level.

A cell’s level affects the number of higher hashes it has. More precisely,
a level l cell has l higher hashes Hash1(c), . . . , Hashl(c) in addition to its
representation hash Hash(c) = Hash∞(c). Cells of non-zero level appear
inside Merkle proofs and Merkle updates, after some branches of the tree of
cells representing a value of an abstract data type are pruned.

3.1.4. Standard cell representation. When a cell needs to be transferred
by a network protocol or stored in a disk file, it must be serialized. The
standard representation CellRepr(c) = CellRepr∞(c) of a cell c as an
octet (byte) sequence is constructed as follows:

1. Two descriptor bytes d1 and d2 are serialized first. Byte d1 equals
r+8s+32l, where 0 ≤ r ≤ 4 is the quantity of cell references contained
in the cell, 0 ≤ l ≤ 3 is the level of the cell, and 0 ≤ s ≤ 1 is 1 for
exotic cells and 0 for ordinary cells. Byte d2 equals bb/8c+db/8e, where
0 ≤ b ≤ 1023 is the quantity of data bits in c.

2. Then the data bits are serialized as db/8e 8-bit octets (bytes). If b is not
a multiple of eight, a binary 1 and up to six binary 0s are appended to
the data bits. After that, the data is split into db/8e eight-bit groups,
and each group is interpreted as an unsigned big-endian integer 0 . . . 255
and stored into an octet.

3. Finally, each of the r cell references is represented by 32 bytes contain-
ing the 256-bit representation hash Hash(ci), explained below in 3.1.5,
of the cell ci referred to.

In this way, 2 + db/8e+ 32r bytes of CellRepr(c) are obtained.

3.1.5. The representation hash of a cell. The 256-bit representation
hash or simply hash Hash(c) of a cell c is recursively defined as the sha256
of the standard representation of the cell c:

Hash(c) := sha256
(
CellRepr(c)

)
(2)

28

3.1. Generalities on cells

Notice that cyclic cell references are not allowed and cannot be created by
means of the TVM (cf. 2.3.5), so this recursion always ends, and the repre-
sentation hash of any cell is well-defined.

3.1.6. The higher hashes of a cell. Recall that a cell c of level l has l
higher hashes Hashi(c), 1 ≤ i ≤ l, as well. Exotic cells have their own rules
for computing their higher hashes. Higher hashes Hashi(c) of an ordinary
cell c are computed similarly to its representation hash, but using the higher
hashes Hashi(cj) of its children cj instead of their representation hashes
Hash(cj). By convention, we set Hash∞(c) := Hash(c), and Hashi(c) :=
Hash∞(c) = Hash(c) for all i > l.12

3.1.7. Types of exotic cells. TVM currently supports the following cell
types:

• Type −1: Ordinary cell — Contains up to 1023 bits of data and up to
four cell references.

• Type 1: Pruned branch cell c — May have any level 1 ≤ l ≤ 3. It
contains exactly 8 + 256l data bits: first an 8-bit integer equal to 1
(representing the cell’s type), then its l higher hashes Hash1(c), . . . ,
Hashl(c). The level l of a pruned branch cell may be called its de
Brujn index, because it determines the outer Merkle proof or Merkle
update during the construction of which the branch has been pruned.
An attempt to load a pruned branch cell usually leads to an exception.

• Type 2: Library reference cell—Always has level 0, and contains 8+256
data bits, including its 8-bit type integer 2 and the representation hash
Hash(c′) of the library cell being referred to. When loaded, a library
reference cell may be transparently replaced by the cell it refers to, if
found in the current library context.

• Type 3: Merkle proof cell c — Has exactly one reference c1 and level
0 ≤ l ≤ 3, which must be one less than the level of its only child c1:

Lvl(c) = max(Lvl(c1)− 1, 0) (3)
12From a theoretical perspective, we might say that a cell c has an infinite sequence

of hashes
(
Hashi(c)

)
i≥1, which eventually stabilizes: Hashi(c) → Hash∞(c). Then the

level l is simply the largest index i, such that Hashi(c) 6= Hash∞(c).

29

3.1. Generalities on cells

The 8 + 256 data bits of a Merkle proof cell contain its 8-bit type
integer 3, followed by Hash1(c1) (assumed to be equal to Hash(c1) if
Lvl(c1) = 0). The higher hashes Hashi(c) of c are computed similarly
to the higher hashes of an ordinary cell, but with Hashi+1(c1) used
instead of Hashi(c1). When loaded, a Merkle proof cell is replaced by
c1.

• Type 4: Merkle update cell c — Has two children c1 and c2. Its level
0 ≤ l ≤ 3 is given by

Lvl(c) = max(Lvl(c1)− 1,Lvl(c2)− 1, 0) (4)

A Merkle update behaves like a Merkle proof for both c1 and c2, and
contains 8+ 256+256 data bits with Hash1(c1) and Hash1(c2). How-
ever, an extra requirement is that all pruned branch cells c′ that are
descendants of c2 and are bound by c must also be descendants of c1.13

When a Merkle update cell is loaded, it is replaced by c2.

3.1.8. All values of algebraic data types are trees of cells. Arbitrary
values of arbitrary algebraic data types (e.g., all types used in functional
programming languages) can be serialized into trees of cells (of level 0), and
such representations are used for representing such values within TVM. The
copy-on-write mechanism (cf. 2.3.2) allows TVM to identify cells containing
the same data and references, and to keep only one copy of such cells. This
actually transforms a tree of cells into a directed acyclic graph (with the
additional property that all its vertices be accessible from a marked vertex
called the “root”). However, this is a storage optimization rather than an
essential property of TVM. From the perspective of a TVM code programmer,
one should think of TVM data structures as trees of cells.

3.1.9. TVM code is a tree of cells. The TVM code itself is also rep-
resented by a tree of cells. Indeed, TVM code is simply a value of some
complex algebraic data type, and as such, it can be serialized into a tree of
cells.

The exact way in which the TVM code (e.g., TVM assembly code) is
transformed into a tree of cells is explained later (cf. 4.1.4 and 5.2), in sec-
tions discussing control flow instructions, continuations, and TVM instruc-
tion encoding.

13A pruned branch cell c′ of level l is bound by a Merkle (proof or update) cell c if there
are exactly l Merkle cells on the path from c to its descendant c′, including c.

30

3.2. Data manipulation instructions and cells

3.1.10. “Everything is a bag of cells” paradigm. As described in [1,
2.5.14], all the data used by the TON Blockchain, including the blocks them-
selves and the blockchain state, can be represented—and are represented—as
collections, or “bags”, of cells. We see that TVM’s structure of data (cf. 3.1.8)
and code (cf. 3.1.9) nicely fits into this “everything is a bag of cells” paradigm.
In this way, TVM can naturally be used to execute smart contracts in the
TON Blockchain, and the TON Blockchain can be used to store the code
and persistent data of these smart contracts between invocations of TVM.
(Of course, both TVM and the TON Blockchain have been designed so that
this would become possible.)

3.2 Data manipulation instructions and cells

The next large group of TVM instructions consists of data manipulation
instructions, also known as cell manipulation instructions or simply cell in-
structions. They correspond to memory access instructions of other archi-
tectures.

3.2.1. Classes of cell manipulation instructions. The TVM cell in-
structions are naturally subdivided into two principal classes:

• Cell creation instructions or serialization instructions, used to con-
struct new cells from values previously kept in the stack and previously
constructed cells.

• Cell parsing instructions or deserialization instructions, used to extract
data previously stored into cells by cell creation instructions.

Additionally, there are exotic cell instructions used to create and inspect
exotic cells (cf. 3.1.2), which in particular are used to represent pruned
branches of Merkle proofs and Merkle proofs themselves.

3.2.2. Builder and Slice values. Cell creation instructions usually work
with Builder values, which can be kept only in the stack (cf. 1.1.3). Such
values represent partially constructed cells, for which fast operations for ap-
pending bitstrings, integers, other cells, and references to other cells can be
defined. Similarly, cell parsing instructions make heavy use of Slice values,
which represent either the remainder of a partially parsed cell, or a value
(subcell) residing inside such a cell and extracted from it by a parsing in-
struction.

31

3.2. Data manipulation instructions and cells

3.2.3. Builder and Slice values exist only as stack values. Notice that
Builder and Slice objects appear only as values in a TVM stack. They cannot
be stored in “memory” (i.e., trees of cells) or “persistent storage” (which is
also a bag of cells). In this sense, there are far more Cell objects than Builder
or Slice objects in a TVM environment, but, somewhat paradoxically, a TVM
program sees Builder and Slice objects in its stack more often than Cells. In
fact, a TVM program does not have much use for Cell values, because they
are immutable and opaque; all cell manipulation primitives require that a
Cell value be transformed into either a Builder or a Slice first, before it can
be modified or inspected.

3.2.4. TVM has no separate Bitstring value type. Notice that TVM
offers no separate bitstring value type. Instead, bitstrings are represented by
Slices that happen to have no references at all, but can still contain up to
1023 data bits.

3.2.5. Cells and cell primitives are bit-oriented, not byte-oriented.
An important point is that TVM regards data kept in cells as sequences
(strings, streams) of (up to 1023) bits, not of bytes. In other words, TVM
is a bit-oriented machine, not a byte-oriented machine. If necessary, an ap-
plication is free to use, say, 21-bit integer fields inside records serialized into
TVM cells, thus using fewer persistent storage bytes to represent the same
data.

3.2.6. Taxonomy of cell creation (serialization) primitives. Cell cre-
ation primitives usually accept a Builder argument and an argument rep-
resenting the value to be serialized. Additional arguments controlling some
aspects of the serialization process (e.g., how many bits should be used for
serialization) can be also provided, either in the stack or as an immediate
value inside the instruction. The result of a cell creation primitive is usually
another Builder, representing the concatenation of the original builder and
the serialization of the value provided.

Therefore, one can suggest a classification of cell serialization primitives
according to the answers to the following questions:

• Which is the type of values being serialized?

• How many bits are used for serialization? If this is a variable number,
does it come from the stack, or from the instruction itself?

32

3.2. Data manipulation instructions and cells

• What happens if the value does not fit into the prescribed number of
bits? Is an exception generated, or is a success flag equal to zero silently
returned in the top of stack?

• What happens if there is insufficient space left in the Builder? Is an
exception generated, or is a zero success flag returned along with the
unmodified original Builder?

The mnemonics of cell serialization primitives usually begin with ST. Subse-
quent letters describe the following attributes:

• The type of values being serialized and the serialization format (e.g., I
for signed integers, U for unsigned integers).

• The source of the field width in bits to be used (e.g., X for integer
serialization instructions means that the bit width n is supplied in
the stack; otherwise it has to be embedded into the instruction as an
immediate value).

• The action to be performed if the operation cannot be completed (by
default, an exception is generated; “quiet” versions of serialization in-
structions are marked by a Q letter in their mnemonics).

This classification scheme is used to create a more complete taxonomy of cell
serialization primitives, which can be found in A.6.1.

3.2.7. Integer serialization primitives. Integer serialization primitives
can be classified according to the above taxonomy as well. For example:

• There are signed and unsigned (big-endian) integer serialization prim-
itives.

• The size n of the bit field to be used (1 ≤ n ≤ 257 for signed integers,
0 ≤ n ≤ 256 for unsigned integers) can either come from the top of
stack or be embedded into the instruction itself.

• If the integer x to be serialized is not in the range −2n−1 ≤ x < 2n−1

(for signed integer serialization) or 0 ≤ x < 2n (for unsigned integer
serialization), a range check exception is usually generated, and if n bits
cannot be stored into the provided Builder, a cell overflow exception is
generated.

33

3.2. Data manipulation instructions and cells

• Quiet versions of serialization instructions do not throw exceptions;
instead, they push -1 on top of the resulting Builder upon success, or
return the original Builder with 0 on top of it to indicate failure.

Integer serialization instructions have mnemonics like STU 20 (“store an
unsigned 20-bit integer value”) or STIXQ (“quietly store an integer value of
variable length provided in the stack”). The full list of these instructions—
including their mnemonics, descriptions, and opcodes—is provided in A.6.1.

3.2.8. Integers in cells are big-endian by default. Notice that the
default order of bits in Integers serialized into Cells is big-endian, not little-
endian.14 In this respect TVM is a big-endian machine. However, this affects
only the serialization of integers inside cells. The internal representation of
the Integer value type is implementation-dependent and irrelevant for the
operation of TVM. Besides, there are some special primitives such as STULE
for (de)serializing little-endian integers, which must be stored into an integral
number of bytes (otherwise “little-endianness” does not make sense, unless
one is also willing to revert the order of bits inside octets). Such primitives are
useful for interfacing with the little-endian world—for instance, for parsing
custom-format messages arriving to a TON Blockchain smart contract from
the outside world.

3.2.9. Other serialization primitives. Other cell creation primitives seri-
alize bitstrings (i.e., cell slices without references), either taken from the stack
or supplied as literal arguments; cell slices (which are concatenated to the
cell builder in an obvious way); other Builders (which are also concatenated);
and cell references (STREF).

3.2.10. Other cell creation primitives. In addition to the cell serial-
ization primitives for certain built-in value types described above, there are
simple primitives that create a new empty Builder and push it into the stack
(NEWC), or transform a Builder into a Cell (ENDC), thus finishing the cell
creation process. An ENDC can be combined with a STREF into a single in-
struction ENDCST, which finishes the creation of a cell and immediately stores
a reference to it in an “outer” Builder. There are also primitives that obtain
the quantity of data bits or references already stored in a Builder, and check
how many data bits or references can be stored.

14Negative numbers are represented using two’s complement. For instance, integer −17
is serialized by instruction STI 8 into bitstring xEF.

34

3.2. Data manipulation instructions and cells

3.2.11. Taxonomy of cell deserialisation primitives. Cell parsing, or
deserialization, primitives can be classified as described in 3.2.6, with the
following modifications:

• They work with Slices (representing the remainder of the cell being
parsed) instead of Builders.

• They return deserialized values instead of accepting them as arguments.

• They may come in two flavors, depending on whether they remove the
deserialized portion from the Slice supplied (“fetch operations”) or leave
it unmodified (“prefetch operations”).

• Their mnemonics usually begin with LD (or PLD for prefetch operations)
instead of ST.

For example, an unsigned big-endian 20-bit integer previously serialized into
a cell by a STU 20 instruction is likely to be deserialized later by a matching
LDU 20 instruction.

Again, more detailed information about these instructions is provided
in A.6.2.

3.2.12. Other cell slice primitives. In addition to the cell deserialisation
primitives outlined above, TVM provides some obvious primitives for initial-
izing and completing the cell deserialization process. For instance, one can
convert a Cell into a Slice (CTOS), so that its deserialisation might begin;
or check whether a Slice is empty, and generate an exception if it is not
(ENDS); or deserialize a cell reference and immediately convert it into a Slice
(LDREFTOS, equivalent to two instructions LDREF and CTOS).

3.2.13. Modifying a serialized value in a cell. The reader might wonder
how the values serialized inside a cell may be modified. Suppose a cell con-
tains three serialized 29-bit integers, (x, y, z), representing the coordinates of
a point in space, and we want to replace y with y′ = y+1, leaving the other
coordinates intact. How would we achieve this?

TVM does not offer any ways to modify existing values (cf. 2.3.4 and
2.3.5), so our example can only be accomplished with a series of operations
as follows:

1. Deserialize the original cell into three Integers x, y, z in the stack (e.g.,
by CTOS; LDI 29; LDI 29; LDI 29; ENDS).

35

3.3. Hashmaps, or dictionaries

2. Increase y by one (e.g., by SWAP; INC; SWAP).

3. Finally, serialize the resulting Integers into a new cell (e.g., by XCHG
s2; NEWC; STI 29; STI 29; STI 29; ENDC).

3.2.14. Modifying the persistent storage of a smart contract. If the
TVM code wants to modify its persistent storage, represented by the tree of
cells rooted at c4, it simply needs to rewrite control register c4 by the root
of the tree of cells containing the new value of its persistent storage. (If only
part of the persistent storage needs to be modified, cf. 3.2.13.)

3.3 Hashmaps, or dictionaries

Hashmaps , or dictionaries, are a specific data structure represented by a tree
of cells. Essentially, a hashmap represents a map from keys, which are bit-
strings of either fixed or variable length, into values of an arbitrary type X,
in such a way that fast lookups and modifications be possible. While any
such structure might be inspected or modified with the aid of generic cell se-
rialization and deserialization primitives, TVM introduces special primitives
to facilitate working with these hashmaps.

3.3.1. Basic hashmap types. The two most basic hashmap types pre-
defined in TVM are HashmapE n X or HashmapE(n,X), which represents
a partially defined map from n-bit strings (called keys) for some fixed 0 ≤
n ≤ 1023 into values of some type X, and Hashmap(n,X), which is similar
to HashmapE(n,X) but is not allowed to be empty (i.e., it must contain at
least one key-value pair).

Other hashmap types are also available—for example, one with keys of
arbitrary length up to some predefined bound (up to 1023 bits).

3.3.2. Hashmaps as Patricia trees. The abstract representation of a
hashmap in TVM is a Patricia tree, or a compact binary trie. It is a binary
tree with edges labelled by bitstrings, such that the concatenation of all edge
labels on a path from the root to a leaf equals a key of the hashmap. The
corresponding value is kept in this leaf (for hashmaps with keys of fixed
length), or optionally in the intermediate vertices as well (for hashmaps with
keys of variable length). Furthermore, any intermediate vertex must have
two children, and the label of the left child must begin with a binary zero,
while the label of the right child must begin with a binary one. This enables
us not to store the first bit of the edge labels explicitly.

36

3.3. Hashmaps, or dictionaries

It is easy to see that any collection of key-value pairs (with distinct keys)
is represented by a unique Patricia tree.

3.3.3. Serialization of hashmaps. The serialization of a hashmap into a
tree of cells (or, more generally, into a Slice) is defined by the following TL-B
scheme:15

bit#_ _:(## 1) = Bit;

hm_edge#_ {n:#} {X:Type} {l:#} {m:#} label:(HmLabel ~l n)
{n = (~m) + l} node:(HashmapNode m X) = Hashmap n X;

hmn_leaf#_ {X:Type} value:X = HashmapNode 0 X;
hmn_fork#_ {n:#} {X:Type} left:^(Hashmap n X)

right:^(Hashmap n X) = HashmapNode (n + 1) X;

hml_short$0 {m:#} {n:#} len:(Unary ~n)
s:(n * Bit) = HmLabel ~n m;

hml_long$10 {m:#} n:(#<= m) s:(n * Bit) = HmLabel ~n m;
hml_same$11 {m:#} v:Bit n:(#<= m) = HmLabel ~n m;

unary_zero$0 = Unary ~0;
unary_succ$1 {n:#} x:(Unary ~n) = Unary ~(n + 1);

hme_empty$0 {n:#} {X:Type} = HashmapE n X;
hme_root$1 {n:#} {X:Type} root:^(Hashmap n X) = HashmapE n X;

true#_ = True;
_ {n:#} _:(Hashmap n True) = BitstringSet n;

3.3.4. Brief explanation of TL-B schemes. A TL-B scheme, like the
one above, includes the following components.

The right-hand side of each “equation” is a type, either simple (such as
Bit or True) or parametrized (such as Hashmap n X). The parameters of a
type must be either natural numbers (i.e., non-negative integers, which are
required to fit into 32 bits in practice), such as n in Hashmap n X, or other
types, such as X in Hashmap n X.

15A description of an older version of TL may be found at https://core.telegram.
org/mtproto/TL.

37

https://core.telegram.org/mtproto/TL
https://core.telegram.org/mtproto/TL

3.3. Hashmaps, or dictionaries

The left-hand side of each equation describes a way to define, or even to
serialize, a value of the type indicated in the right-hand side. Such a descrip-
tion begins with the name of a constructor, such as hm_edge or hml_long,
immediately followed by an optional constructor tag, such as #_ or $10, which
describes the bitstring used to encode (serialize) the constructor in question.
Such tags may be given in either binary (after a dollar sign) or hexadecimal
notation (after a hash sign), using the conventions described in 1.0. If a tag
is not explicitly provided, TL-B computes a default 32-bit constructor tag
by hashing the text of the “equation” defining this constructor in a certain
fashion. Therefore, empty tags must be explicitly provided by #_ or $_. All
constructor names must be distinct, and constructor tags for the same type
must constitute a prefix code (otherwise the deserialization would not be
unique).

The constructor and its optional tag are followed by field definitions. Each
field definition is of the form ident : type-expr, where ident is an identifier
with the name of the field16 (replaced by an underscore for anonymous fields),
and type-expr is the field’s type. The type provided here is a type expression,
which may include simple types or parametrized types with suitable parame-
ters. Variables—i.e., the (identifiers of the) previously defined fields of types
(natural numbers) or Type (type of types)—may be used as parameters
for the parametrized types. The serialization process recursively serializes
each field according to its type, and the serialization of a value ultimately
consists of the concatenation of bitstrings representing the constructor (i.e.,
the constructor tag) and the field values.

Some fields may be implicit. Their definitions are surrounded by curly
braces, which indicate that the field is not actually present in the serialization,
but that its value must be deduced from other data (usually the parameters
of the type being serialized).

Some occurrences of “variables” (i.e., already-defined fields) are prefixed
by a tilde. This indicates that the variable’s occurrence is used in the op-
posite way of the default behavior: in the left-hand side of the equation, it
means that the variable will be deduced (computed) based on this occurrence,
instead of substituting its previously computed value; in the right-hand side,
conversely, it means that the variable will not be deduced from the type being
serialized, but rather that it will be computed during the deserialization pro-

16The field’s name is useful for representing values of the type being defined in human-
readable form, but it does not affect the binary serialization.

38

3.3. Hashmaps, or dictionaries

cess. In other words, a tilde transforms an “input argument” into an “output
argument”, and vice versa.17

Finally, some equalities may be included in curly brackets as well. These
are certain “equations”, which must be satisfied by the “variables” included in
them. If one of the variables is prefixed by a tilde, its value will be uniquely
determined by the values of all other variables participating in the equation
(which must be known at this point) when the definition is processed from
the left to the right.

A caret (ˆ) preceding a type X means that instead of serializing a value
of type X as a bitstring inside the current cell, we place this value into a
separate cell, and add a reference to it into the current cell. Therefore ˆX
means “the type of references to cells containing values of type X”.

Parametrized type #<= p with p : # (this notation means “p of type #”,
i.e., a natural number) denotes the subtype of the natural numbers type
#, consisting of integers 0 . . . p; it is serialized into dlog2(p + 1)e bits as an
unsigned big-endian integer. Type # by itself is serialized as an unsigned
32-bit integer. Parametrized type ## b with b : #<=31 is equivalent to #<=
2b − 1 (i.e., it is an unsigned b-bit integer).

3.3.5. Application to the serialization of hashmaps. Let us explain
the net result of applying the general rules described in 3.3.4 to the TL-B
scheme presented in 3.3.3.

Suppose we wish to serialize a value of type HashmapE n X for some
integer 0 ≤ n ≤ 1023 and some type X (i.e., a dictionary with n-bit keys
and values of type X, admitting an abstract representation as a Patricia tree
(cf. 3.3.2)).

First of all, if our dictionary is empty, it is serialized into a single binary 0,
which is the tag of nullary constructor hme_empty. Otherwise, its serialization
consists of a binary 1 (the tag of hme_root), along with a reference to a cell
containing the serialization of a value of type Hashmap n X (i.e., a necessarily
non-empty dictionary).

The only way to serialize a value of type Hashmap n X is given by the
hm_edge constructor, which instructs us to serialize first the label label of
the edge leading to the root of the subtree under consideration (i.e., the com-
mon prefix of all keys in our (sub)dictionary). This label is of type HmLabel
l⊥ n, which means that it is a bitstring of length at most n, serialized in such
a way that the true length l of the label, 0 ≤ l ≤ n, becomes known from

17This is the “linear negation” operation (−)⊥ of linear logic, hence our notation ˜.

39

3.3. Hashmaps, or dictionaries

the serialization of the label. (This special serialization method is described
separately in 3.3.6.)

The label must be followed by the serialization of a node of type Hashmap-
Node m X, where m = n− l. It corresponds to a vertex of the Patricia tree,
representing a non-empty subdictionary of the original dictionary with m-bit
keys, obtained by removing from all the keys of the original subdictionary
their common prefix of length l.

If m = 0, a value of type HashmapNode 0 X is given by the hmn_leaf
constructor, which describes a leaf of the Patricia tree—or, equivalently, a
subdictionary with 0-bit keys. A leaf simply consists of the corresponding
value of type X and is serialized accordingly.

On the other hand, if m > 0, a value of type HashmapNode m X cor-
responds to a fork (i.e., an intermediate node) in the Patricia tree, and is
given by the hmn_fork constructor. Its serialization consists of left and
right, two references to cells containing values of type Hashmap m − 1 X,
which correspond to the left and the right child of the intermediate node in
question—or, equivalently, to the two subdictionaries of the original dictio-
nary consisting of key-value pairs with keys beginning with a binary 0 or
a binary 1, respectively. Because the first bit of all keys in each of these
subdictionaries is known and fixed, it is removed, and the resulting (neces-
sarily non-empty) subdictionaries are recursively serialized as values of type
Hashmap m− 1 X.

3.3.6. Serialization of labels. There are several ways to serialize a label
of length at most n, if its exact length is l ≤ n (recall that the exact length
must be deducible from the serialization of the label itself, while the upper
bound n is known before the label is serialized or deserialized). These ways
are described by the three constructors hml_short, hml_long, and hml_same
of type HmLabel l⊥ n:

• hml_short—Describes a way to serialize “short” labels, of small length
l ≤ n. Such a serialization consists of a binary 0 (the constructor tag
of hml_short), followed by l binary 1s and one binary 0 (the unary
representation of the length l), followed by l bits comprising the label
itself.

• hml_long — Describes a way to serialize “long” labels, of arbitrary
length l ≤ n. Such a serialization consists of a binary 10 (the construc-
tor tag of hml_long), followed by the big-endian binary representation

40

3.3. Hashmaps, or dictionaries

of the length 0 ≤ l ≤ n in dlog2(n + 1)e bits, followed by l bits com-
prising the label itself.

• hml_same — Describes a way to serialize “long” labels, consisting of l
repetitions of the same bit v. Such a serialization consists of 11 (the
constructor tag of hml_same), followed by the bit v, followed by the
length l stored in dlog2(n+ 1)e bits as before.

Each label can always be serialized in at least two different fashions, using
hml_short or hml_long constructors. Usually the shortest serialization (and
in the case of a tie—the lexicographically smallest among the shortest) is
preferred and is generated by TVM hashmap primitives, while the other
variants are still considered valid.

This label encoding scheme has been designed to be efficient for dictio-
naries with “random” keys (e.g., hashes of some data), as well as for dic-
tionaries with “regular” keys (e.g., big-endian representations of integers in
some range).

3.3.7. An example of dictionary serialization. Consider a dictionary
with three 16-bit keys 13, 17, and 239 (considered as big-endian integers)
and corresponding 16-bit values 169, 289, and 57121.

In binary form:

0000000000001101 => 0000000010101001
0000000000010001 => 0000000100100001
0000000011101111 => 1101111100100001

The corresponding Patricia tree consists of a root A, two intermediate
nodes B and C, and three leaf nodes D, E, and F , corresponding to 13, 17,
and 239, respectively. The root A has only one child, B; the label on the
edge AB is 00000000 = 08. The node B has two children: its left child is
an intermediate node C with the edge BC labelled by (0)00, while its right
child is the leaf F with BF labelled by (1)1101111. Finally, C has two leaf
children D and E, with CD labelled by (0)1101 and CE—by (1)0001.

The corresponding value of type HashmapE 16 (## 16) may be written
in human-readable form as:

(hme_root$1
root:^(hm_edge label:(hml_same$11 v:0 n:8) node:(hm_fork
left:^(hm_edge label:(hml_short$0 len:$110 s:$00)

41

3.3. Hashmaps, or dictionaries

node:(hm_fork
left:^(hm_edge label:(hml_long$10 n:4 s:$1101)
node:(hm_leaf value:169))

right:^(hm_edge label:(hml_long$10 n:4 s:$0001)
node:(hm_leaf value:289))))

right:^(hm_edge label:(hml_long$10 n:7 s:$1101111)
node:(hm_leaf value:57121)))))

The serialization of this data structure into a tree of cells consists of six
cells with the following binary data contained in them:

A := 1
A.0 := 11 0 01000
A.0.0 := 0 110 00
A.0.0.0 := 10 100 1101 0000000010101001
A.0.0.1 := 10 100 0001 0000000100100001
A.0.1 := 10 111 1101111 1101111100100001

Here A is the root cell, A.0 is the cell at the first reference of A, A.1 is
the cell at the second reference of A, and so on. This tree of cells can be
represented more compactly using the hexadecimal notation described in 1.0,
using indentation to reflect the tree-of-cells structure:

C_
C8
62_
A68054C_
A08090C_

BEFDF21

A total of 93 data bits and 5 references in 6 cells have been used to serialize
this dictionary. Notice that a straightforward representation of three 16-
bit keys and their corresponding 16-bit values would already require 96 bits
(albeit without any references), so this particular serialization turns out to
be quite efficient.

3.3.8. Ways to describe the serialization of type X. Notice that the
built-in TVM primitives for dictionary manipulation need to know something
about the serialization of type X; otherwise, they would not be able to work
correctly with Hashmap n X, because values of type X are immediately

42

3.3. Hashmaps, or dictionaries

contained in the Patricia tree leaf cells. There are several options available
to describe the serialization of type X:

• The simplest case is when X = ˆY for some other type Y . In this case
the serialization of X itself always consists of one reference to a cell,
which in fact must contain a value of type Y , something that is not
relevant for dictionary manipulation primitives.

• Another simple case is when the serialization of any value of type X
always consists of 0 ≤ b ≤ 1023 data bits and 0 ≤ r ≤ 4 references. In-
tegers b and r can then be passed to a dictionary manipulation primitive
as a simple description ofX. (Notice that the previous case corresponds
to b = 0, r = 1.)

• A more sophisticated case can be described by four integers 1 ≤ b0, b1 ≤
1023, 0 ≤ r0, r1 ≤ 4, with bi and ri used when the first bit of the
serialization equals i. When b0 = b1 and r0 = r1, this case reduces to
the previous one.

• Finally, the most general description of the serialization of a type X
is given by a splitting function splitX for X, which accepts one Slice
parameter s, and returns two Slices, s′ and s′′, where s′ is the only
prefix of s that is the serialization of a value of type X, and s′′ is
the remainder of s. If no such prefix exists, the splitting function is
expected to throw an exception. Notice that a compiler for a high-level
language, which supports some or all algebraic TL-B types, is likely to
automatically generate splitting functions for all types defined in the
program.

3.3.9. A simplifying assumption on the serialization of X. One
may notice that values of type X always occupy the remaining part of an
hm_edge/hme_leaf cell inside the serialization of a HashmapE n X. There-
fore, if we do not insist on strict validation of all dictionaries accessed, we
may assume that everything left unparsed in an hm_edge/hme_leaf cell af-
ter deserializing its label is a value of type X. This greatly simplifies the
creation of dictionary manipulation primitives, because in most cases they
turn out not to need any information about X at all.

3.3.10. Basic dictionary operations. Let us present a classification of
basic operations with dictionaries (i.e., values D of type HashmapE n X):

43

3.3. Hashmaps, or dictionaries

• Get(D, k) — Given D : HashmapE(n,X) and a key k : n ·bit, returns
the corresponding value D[k] : X? kept in D.

• Set(D, k, x) — Given D : HashmapE(n,X), a key k : n · bit, and a
value x : X, sets D′[k] to x in a copy D′ of D, and returns the resulting
dictionary D′ (cf. 2.3.4).

• Add(D, k, x) — Similar to Set, but adds the key-value pair (k, x) to
D only if key k is absent in D.

• Replace(D, k, x) — Similar to Set, but changes D′[k] to x only if key
k is already present in D.

• GetSet, GetAdd, GetReplace — Similar to Set, Add, and Re-
place, respectively, but returns the old value of D[k] as well.

• Delete(D, k) — Deletes key k from dictionary D, and returns the
resulting dictionary D′.

• GetMin(D), GetMax(D) — Gets the minimal or maximal key k
from dictionary D, along with the associated value x : X.

• RemoveMin(D), RemoveMax(D) — Similar to GetMin and Get-
Max, but also removes the key in question from dictionary D, and
returns the modified dictionary D′. May be used to iterate over all
elements of D, effectively using (a copy of) D itself as an iterator.

• GetNext(D, k) — Computes the minimal key k′ > k (or k′ ≥ k in a
variant) and returns it along with the corresponding value x′ : X. May
be used to iterate over all elements of D.

• GetPrev(D, k) — Computes the maximal key k′ < k (or k′ ≤ k in a
variant) and returns it along with the corresponding value x′ : X.

• Empty(n) — Creates an empty dictionary D : HashmapE(n,X).

• IsEmpty(D) — Checks whether a dictionary is empty.

• Create(n, {(ki, xi)})—Given n, creates a dictionary from a list (ki, xi)
of key-value pairs passed in stack.

44

3.3. Hashmaps, or dictionaries

• GetSubdict(D, l, k0) — Given D : HashmapE(n,X) and some l-bit
string k0 : l · bit for 0 ≤ l ≤ n, returns subdictionary D′ = D/k0 of D,
consisting of keys beginning with k0. The result D′ may be of either
type HashmapE(n,X) or type HashmapE(n− l, X).

• ReplaceSubdict(D, l, k0, D′) — Given D : HashmapE(n,X), 0 ≤
l ≤ n, k0 : l · bit, and D′ : HashmapE(n − l, X), replaces with D′

the subdictionary D/k0 of D consisting of keys beginning with k0, and
returns the resulting dictionary D′′ : HashmapE(n,X). Some variants
of ReplaceSubdict may also return the old value of the subdictionary
D/k0 in question.

• DeleteSubdict(D, l, k0)—Equivalent to ReplaceSubdict withD′
being an empty dictionary.

• Split(D) — Given D : HashmapE(n,X), returns D0 := D/0 and
D1 := D/1 : HashmapE(n − 1, X), the two subdictionaries of D con-
sisting of all keys beginning with 0 and 1, respectively.

• Merge(D0, D1) — Given D0 and D1 : HashmapE(n−1, X), computes
D : HashmapE(n,X), such that D/0 = D0 and D/1 = D1.

• Foreach(D, f) — Executes a function f with two arguments k and
x, with (k, x) running over all key-value pairs of a dictionary D in
lexicographical order.18

• ForeachRev(D, f) — Similar to Foreach, but processes all key-
value pairs in reverse order.

• TreeReduce(D, o, f, g) — Given D : HashmapE(n,X), a value o : X,
and two functions f : X → Y and g : Y × Y → Y , performs a “tree
reduction” of D by first applying f to all the leaves, and then using g
to compute the value corresponding to a fork starting from the values
assigned to its children.19

18In fact, f may receive m extra arguments and return m modified values, which are
passed to the next invocation of f . This may be used to implement “map” and “reduce”
operations with dictionaries.

19Versions of this operation may be introduced where f and g receive an additional
bitstring argument, equal to the key (for leaves) or to the common prefix of all keys (for
forks) in the corresponding subtree.

45

3.4. Hashmaps with variable-length keys

3.3.11. Taxonomy of dictionary primitives. The dictionary primitives,
described in detail in A.9, can be classified according to the following cate-
gories:

• Which dictionary operation (cf. 3.3.10) do they perform?

• Are they specialized for the case X = ˆY ? If so, do they represent val-
ues of type Y by Cells or by Slices? (Generic versions always represent
values of type X as Slices.)

• Are the dictionaries themselves passed and returned as Cells or as
Slices? (Most primitives represent dictionaries as Slices.)

• Is the key length n fixed inside the primitive, or is it passed in the
stack?

• Are the keys represented by Slices, or by signed or unsigned Integers?

In addition, TVM includes special serialization/deserialization primitives,
such as STDICT, LDDICT, and PLDDICT. They can be used to extract a dictio-
nary from a serialization of an encompassing object, or to insert a dictionary
into such a serialization.

3.4 Hashmaps with variable-length keys

TVM provides some support for dictionaries, or hashmaps, with variable-
length keys, in addition to its support for dictionaries with fixed-length keys
(as described in 3.3 above).

3.4.1. Serialization of dictionaries with variable-length keys. The
serialization of a VarHashmap into a tree of cells (or, more generally, into a
Slice) is defined by a TL-B scheme, similar to that described in 3.3.3:

vhm_edge#_ {n:#} {X:Type} {l:#} {m:#} label:(HmLabel ~l n)
{n = (~m) + l} node:(VarHashmapNode m X)
= VarHashmap n X;

vhmn_leaf$00 {n:#} {X:Type} value:X = VarHashmapNode n X;
vhmn_fork$01 {n:#} {X:Type} left:^(VarHashmap n X)

right:^(VarHashmap n X) value:(Maybe X)
= VarHashmapNode (n + 1) X;

vhmn_cont$1 {n:#} {X:Type} branch:bit child:^(VarHashmap n X)

46

3.4. Hashmaps with variable-length keys

value:X = VarHashmapNode (n + 1) X;

nothing$0 {X:Type} = Maybe X;
just$1 {X:Type} value:X = Maybe X;

vhme_empty$0 {n:#} {X:Type} = VarHashmapE n X;
vhme_root$1 {n:#} {X:Type} root:^(VarHashmap n X)

= VarHashmapE n X;

3.4.2. Serialization of prefix codes. One special case of a dictionary with
variable-length keys is that of a prefix code, where the keys cannot be prefixes
of each other. Values in such dictionaries may occur only in the leaves of a
Patricia tree.

The serialization of a prefix code is defined by the following TL-B scheme:

phm_edge#_ {n:#} {X:Type} {l:#} {m:#} label:(HmLabel ~l n)
{n = (~m) + l} node:(PfxHashmapNode m X)
= PfxHashmap n X;

phmn_leaf$0 {n:#} {X:Type} value:X = PfxHashmapNode n X;
phmn_fork$1 {n:#} {X:Type} left:^(PfxHashmap n X)

right:^(PfxHashmap n X) = PfxHashmapNode (n + 1) X;

phme_empty$0 {n:#} {X:Type} = PfxHashmapE n X;
phme_root$1 {n:#} {X:Type} root:^(PfxHashmap n X)

= PfxHashmapE n X;

47

4.1. Continuations and subroutines

4 Control flow, continuations, and exceptions
This chapter describes continuations, which may represent execution tokens
and exception handlers in TVM. Continuations are deeply involved with the
control flow of a TVM program; in particular, subroutine calls and condi-
tional and iterated execution are implemented in TVM using special primi-
tives that accept one or more continuations as their arguments.

We conclude this chapter with a discussion of the problem of recursion
and of families of mutually recursive functions, exacerbated by the fact that
cyclic references are not allowed in TVM data structures (including TVM
code).

4.1 Continuations and subroutines

Recall (cf.1.1.3) that Continuation values represent “execution tokens” that
can be executed later—for example, by EXECUTE=CALLX (“execute” or “call
indirect”) or JMPX (“jump indirect”) primitives. As such, the continuations
are responsible for the execution of the program, and are heavily used by
control flow primitives, enabling subroutine calls, conditional expressions,
loops, and so on.

4.1.1. Ordinary continuations. The most common kind of continuations
are the ordinary continuations, containing the following data:

• A Slice code (cf. 1.1.3 and 3.2.2), containing (the remainder of) the
TVM code to be executed.

• A (possibly empty) Stack stack, containing the original contents of
the stack for the code to be executed.

• A (possibly empty) list save of pairs (c(i), vi) (also called “savelist”),
containing the values of control registers to be restored before the ex-
ecution of the code.

• A 16-bit integer value cp, selecting the TVM codepage used to interpret
the TVM code from code.

• An optional non-negative integer nargs, indicating the number of ar-
guments expected by the continuation.

48

4.1. Continuations and subroutines

4.1.2. Simple ordinary continuations. In most cases, the ordinary con-
tinuations are the simplest ones, having empty stack and save. They consist
essentially of a reference code to (the remainder of) the code to be executed,
and of the codepage cp to be used while decoding the instructions from this
code.

4.1.3. Current continuation cc. The “current continuation” cc is an im-
portant part of the total state of TVM, representing the code being executed
right now (cf. 1.1). In particular, what we call “the current stack” (or simply
“the stack”) when discussing all other primitives is in fact the stack of the
current continuation. All other components of the total state of TVM may
be also thought of as parts of the current continuation cc; however, they
may be extracted from the current continuation and kept separately as part
of the total state for performance reasons. This is why we describe the stack,
the control registers, and the codepage as separate parts of the TVM state
in 1.4.

4.1.4. Normal work of TVM, or the main loop. TVM usually performs
the following operations:

If the current continuation cc is an ordinary one, it decodes the first
instruction from the Slice code, similarly to the way other cells are deseri-
alized by TVM LD* primitives (cf. 3.2 and 3.2.11): it decodes the opcode
first, and then the parameters of the instruction (e.g., 4-bit fields indicating
“stack registers” involved for stack manipulation primitives, or constant val-
ues for “push constant” or “literal” primitives). The remainder of the Slice
is then put into the code of the new cc, and the decoded operation is exe-
cuted on the current stack. This entire process is repeated until there are no
operations left in cc.code.

If the code is empty (i.e., contains no bits of data and no references), or if
a (rarely needed) explicit subroutine return (RET) instruction is encountered,
the current continuation is discarded, and the “return continuation” from
control register c0 is loaded into cc instead (this process is discussed in
more detail starting in 4.1.6).20 Then the execution continues by parsing
operations from the new current continuation.

4.1.5. Extraordinary continuations. In addition to the ordinary continu-
ations considered so far (cf. 4.1.1), TVM includes some extraordinary contin-

20If there are no bits of data left in code, but there is still exactly one reference, an
implicit JMP to the cell at that reference is performed instead of an implicit RET.

49

4.1. Continuations and subroutines

uations, representing certain less common states. Examples of extraordinary
continuations include:

• The continuation ec_quit with its parameter set to zero, which rep-
resents the end of the work of TVM. This continuation is the original
value of c0 when TVM begins executing the code of a smart contract.

• The continuation ec_until, which contains references to two other
continuations (ordinary or not) representing the body of the loop being
executed and the code to be executed after the loop.

Execution of an extraordinary continuation by TVM depends on its specific
class, and differs from the operations for ordinary continuations described in
4.1.4.21

4.1.6. Switching to another continuation: JMP and RET. The process of
switching to another continuation c may be performed by such instructions
as JMPX (which takes c from the stack) or RET (which uses c0 as c). This
process is slightly more complex than simply setting the value of cc to c:
before doing this, either all values or the top n values in the current stack
are moved to the stack of the continuation c, and only then is the remainder
of the current stack discarded.

If all values need to be moved (the most common case), and if the con-
tinuation c has an empty stack (also the most common case; notice that
extraordinary continuations are assumed to have an empty stack), then the
new stack of c equals the stack of the current continuation, so we can simply
transfer the current stack in its entirety to c. (If we keep the current stack
as a separate part of the total state of TVM, we have to do nothing at all.)

4.1.7. Determining the number n of arguments passed to the next
continuation c. By default, n equals the depth of the current stack. How-
ever, if c has an explicit value of nargs (number of arguments to be provided),
then n is computed as n′, equal to c.nargs minus the current depth of c’s
stack.

Furthermore, there are special forms of JMPX and RET that provide an
explicit value n′′, the number of parameters from the current stack to be
passed to continuation c. If n′′ is provided, it must be less than or equal to

21Technically, TVM may simply invoke a virtual method run() of the continuation
currently in cc.

50

4.1. Continuations and subroutines

the depth of the current stack, or else a stack underflow exception occurs. If
both n′ and n′′ are provided, we must have n′ ≤ n′′, in which case n = n′ is
used. If n′′ is provided and n′ is not, then n = n′′ is used.

One could also imagine that the default value of n′′ equals the depth of
the original stack, and that n′′ values are always removed from the top of
the original stack even if only n′ of them are actually moved to the stack of
the next continuation c. Even though the remainder of the current stack is
discarded afterwards, this description will become useful later.

4.1.8. Restoring control registers from the new continuation c. After
the new stack is computed, the values of control registers present in c.save
are restored accordingly, and the current codepage cp is also set to c.cp.
Only then does TVM set cc equal to the new c and begin its execution.22

4.1.9. Subroutine calls: CALLX or EXECUTE primitives. The execution
of continuations as subroutines is slightly more complicated than switching
to continuations.

Consider the CALLX or EXECUTE primitive, which takes a continuation c
from the (current) stack and executes it as a subroutine.

Apart from doing the stack manipulations described in 4.1.6 and 4.1.7
and setting the new control registers and codepage as described in 4.1.8,
these primitives perform several additional steps:

1. After the top n′′ values are removed from the current stack (cf. 4.1.7),
the (usually empty) remainder is not discarded, but instead is stored
in the (old) current continuation cc.

2. The old value of the special register c0 is saved into the (previously
empty) savelist cc.save.

3. The continuation cc thus modified is not discarded, but instead is set
as the new c0, which performs the role of “next continuation” or “return
continuation” for the subroutine being called.

4. After that, the switching to c continues as before. In particular, some
control registers are restored from c.save, potentially overwriting the
value of c0 set in the previous step. (Therefore, a good optimization
would be to check that c0 is present in c.save from the very beginning,
and skip the three previous steps as useless in this case.)

22The already used savelist cc.save of the new cc is emptied before the execution starts.

51

4.2. Control flow primitives: conditional and iterated execution

In this way, the called subroutine can return control to the caller by
switching the current continuation to the return continuation saved in c0.
Nested subroutine calls work correctly because the previous value of c0 ends
up saved into the new c0’s control register savelist c0.save, from which it is
restored later.

4.1.10. Determining the number of arguments passed to and/or
return values accepted from a subroutine. Similarly to JMPX and RET,
CALLX also has special (rarely used) forms, which allow us to explicitly specify
the number n′′ of arguments passed from the current stack to the called
subroutine (by default, n′′ equals the depth of the current stack, i.e., it is
passed in its entirety). Furthermore, a second number n′′′ can be specified,
used to set nargs of the modified cc continuation before storing it into the
new c0; the new nargs equals the depth of the old stack minus n′′ plus n′′′.
This means that the caller is willing to pass exactly n′′ arguments to the
called subroutine, and is willing to accept exactly n′′′ results in their stead.

Such forms of CALLX and RET are mostly intended for library functions
that accept functional arguments and want to invoke them safely. Another
application is related to the “virtualization support” of TVM, which enables
TVM code to run other TVM code inside a “virtual TVM machine”. Such
virtualization techniques might be useful for implementing sophisticated pay-
ment channels in the TON Blockchain (cf. [1, 5]).

4.1.11. CALLCC: call with current continuation. Notice that TVM sup-
ports a form of the “call with current continuation” primitive. Namely, prim-
itive CALLCC is similar to CALLX or JMPX in that it takes a continuation c from
the stack and switches to it; however, CALLCC does not discard the previous
current continuation c′ (as JMPX does) and does not write c′ to c0 (as CALLX
does), but rather pushes c′ into the (new) stack as an extra argument to c.
The primitive JMPXDATA does a similar thing, but pushes only the (remainder
of the) code of the previous current continuation as a Slice.

4.2 Control flow primitives: conditional and iterated
execution

4.2.1. Conditional execution: IF, IFNOT, IFELSE. An important modifi-
cation of EXECUTE (or CALLX) consists in its conditional forms. For example,
IF accepts an integer x and a continuation c, and executes c (in the same

52

4.2. Control flow primitives: conditional and iterated execution

way as EXECUTE would do it) only if x is non-zero; otherwise both values
are simply discarded from the stack. Similarly, IFNOT accepts x and c, but
executes c only if x = 0. Finally, IFELSE accepts x, c, and c′, removes these
values from the stack, and executes c if x 6= 0 or c′ if x = 0.

4.2.2. Iterated execution and loops. More sophisticated modifications
of EXECUTE include:

• REPEAT — Takes an integer n and a continuation c, and executes c n
times.23

• WHILE — Takes c′ and c′′, executes c′, and then takes the top value x
from the stack. If x is non-zero, it executes c′′ and then begins a new
loop by executing c′ again; if x is zero, it stops.

• UNTIL — Takes c, executes it, and then takes the top integer x from
the stack. If x is zero, a new iteration begins; if x is non-zero, the
previously executed code is resumed.

4.2.3. Constant, or literal, continuations. We see that we can create
arbitrarily complex conditional expressions and loops in the TVM code, pro-
vided we have a means to push constant continuations into the stack. In fact,
TVM includes special versions of “literal” or “constant” primitives that cut
the next n bytes or bits from the remainder of the current code cc.code into
a cell slice, and then push it into the stack not as a Slice (as a PUSHSLICE
does) but as a simple ordinary Continuation (which has only code and cp).

The simplest of these primitives is PUSHCONT, which has an immediate
argument n describing the number of subsequent bytes (in a byte-oriented
version of TVM) or bits to be converted into a simple continuation. Another
primitive is PUSHREFCONT, which removes the first cell reference from the
current continuation cc.code, converts the cell referred to into a cell slice,
and finally converts the cell slice into a simple continuation.

4.2.4. Constant continuations combined with conditional or iter-
ated execution primitives. Because constant continuations are very often
used as arguments to conditional or iterated execution primitives, combined

23The implementation of REPEAT involves an extraordinary continuation that remembers
the remaining number of iterations, the body of the loop c, and the return continuation
c′. (The latter term represents the remainder of the body of the function that invoked
REPEAT, which would be normally stored in c0 of the new cc.)

53

4.3. Operations with continuations

versions of these primitives (e.g., IFCONT or UNTILREFCONT) may be defined
in a future revision of TVM, which combine a PUSHCONT or PUSHREFCONT
with another primitive. If one inspects the resulting code, IFCONT looks very
much like the more customary “conditional-branch-forward” instruction.

4.3 Operations with continuations

4.3.1. Continuations are opaque. Notice that all continuations are opaque,
at least in the current version of TVM, meaning that there is no way to
modify a continuation or inspect its internal data. Almost the only use of a
continuation is to supply it to a control flow primitive.

While there are some arguments in favor of including support for non-
opaque continuations in TVM (along with opaque continuations, which are
required for virtualization), the current revision offers no such support.

4.3.2. Allowed operations with continuations. However, some opera-
tions with opaque continuations are still possible, mostly because they are
equivalent to operations of the kind “create a new continuation, which will
do something special, and then invoke the original continuation”. Allowed
operations with continuations include:

• Push one or several values into the stack of a continuation c (thus
creating a partial application of a function, or a closure).

• Set the saved value of a control register c(i) inside the savelist c.save
of a continuation c. If there is already a value for the control register
in question, this operation silently does nothing.

4.3.3. Example: operations with control registers. TVM has some
primitives to set and inspect the values of control registers. The most impor-
tant of them are PUSH c(i) (pushes the current value of c(i) into the stack)
and POP c(i) (sets the value of c(i) from the stack, if the supplied value is
of the correct type). However, there is also a modified version of the latter
instruction, called POPSAVE c(i), which saves the old value of c(i) (for i > 0)
into the continuation at c0 as described in 4.3.2 before setting the new value.

4.3.4. Example: setting the number of arguments to a function in
its code. The primitive LEAVEARGS n demonstrates another application of
continuations in an operation: it leaves only the top n values of the cur-
rent stack, and moves the remainder to the stack of the continuation in c0.

54

4.3. Operations with continuations

This primitive enables a called function to “return” unneeded arguments to
its caller’s stack, which is useful in some situations (e.g., those related to
exception handling).

4.3.5. Boolean circuits. A continuation c may be thought of as a piece
of code with two optional exit points kept in the savelist of c: the principal
exit point given by c.c0 := c.save(c0), and the auxiliary exit point given
by c.c1 := c.save(c1). If executed, a continuation performs whatever action
it was created for, and then (usually) transfers control to the principal exit
point, or, on some occasions, to the auxiliary exit point. We sometimes say
that a continuation c with both exit points c.c0 and c.c1 defined is a two-exit
continuation, or a boolean circuit, especially if the choice of the exit point
depends on some internally-checked condition.

4.3.6. Composition of continuations. One can compose two continu-
ations c and c′ simply by setting c.c0 or c.c1 to c′. This creates a new
continuation denoted by c ◦0 c′ or c ◦1 c′, which differs from c in its savelist.
(Recall that if the savelist of c already has an entry corresponding to the con-
trol register in question, such an operation silently does nothing as explained
in 4.3.2).

By composing continuations, one can build chains or other graphs, pos-
sibly with loops, representing the control flow. In fact, the resulting graph
resembles a flow chart, with the boolean circuits corresponding to the “con-
dition nodes” (containing code that will transfer control either to c0 or to c1
depending on some condition), and the one-exit continuations corresponding
to the “action nodes”.

4.3.7. Basic continuation composition primitives. Two basic primi-
tives for composing continuations are COMPOS (also known as SETCONT c0 and
BOOLAND) and COMPOSALT (also known as SETCONT c1 and BOOLOR), which
take c and c′ from the stack, set c.c0 or c.c1 to c′, and return the result-
ing continuation c′′ = c ◦0 c′ or c ◦1 c′. All other continuation composition
operations can be expressed in terms of these two primitives.

4.3.8. Advanced continuation composition primitives. However, TVM
can compose continuations not only taken from stack, but also taken from
c0 or c1, or from the current continuation cc; likewise, the result may be
pushed into the stack, stored into either c0 or c1, or used as the new current
continuation (i.e., the control may be transferred to it). Furthermore, TVM

55

4.4. Continuations as objects

can define conditional composition primitives, performing some of the above
actions only if an integer value taken from the stack is non-zero.

For instance, EXECUTE can be described as cc← c◦0cc, with continuation
c taken from the original stack. Similarly, JMPX is cc ← c, and RET (also
known as RETTRUE in a boolean circuit context) is cc← c0. Other interesting
primitives include THENRET (c′ ← c ◦0 c0) and ATEXIT (c0← c ◦0 c0).

Finally, some “experimental” primitives also involve c1 and ◦1. For ex-
ample:

• RETALT or RETFALSE does cc← c1.

• Conditional versions of RET and RETALT may also be useful: RETBOOL
takes an integer x from the stack, and performs RETTRUE if x 6= 0,
RETFALSE otherwise.

• INVERT does c0↔ c1; if the two continuations in c0 and c1 represent
the two branches we should select depending on some boolean expres-
sion, INVERT negates this expression on the outer level.

• INVERTCONT does c.c0↔ c.c1 to a continuation c taken from the stack.

• Variants of ATEXIT include ATEXITALT (c1← c ◦1 c1) and SETEXITALT
(c1← (c ◦0 c0) ◦1 c1).

• BOOLEVAL takes a continuation c from the stack and does cc ←
(
(c ◦0

(PUSH− 1)) ◦1 (PUSH0)
)
◦0 cc. If c represents a boolean circuit, the net

effect is to evaluate it and push either −1 or 0 into the stack before
continuing.

4.4 Continuations as objects

4.4.1. Representing objects using continuations. Object-oriented pro-
gramming in Smalltalk (or Objective C) style may be implemented with the
aid of continuations. For this, an object is represented by a special continu-
ation o. If it has any data fields, they can be kept in the stack of o, making
o a partial application (i.e., a continuation with a non-empty stack).

When somebody wants to invoke a method m of o with arguments x1, x2,
. . . , xn, she pushes the arguments into the stack, then pushes a magic number
corresponding to the method m, and then executes o passing n+1 arguments
(cf. 4.1.10). Then o uses the top-of-stack integer m to select the branch with

56

4.5. Exception handling

the required method, and executes it. If o needs to modify its state, it simply
computes a new continuation o′ of the same sort (perhaps with the same code
as o, but with a different initial stack). The new continuation o′ is returned
to the caller along with whatever other return values need to be returned.

4.4.2. Serializable objects. Another way of representing Smalltalk-style
objects as continuations, or even as trees of cells, consists in using the
JMPREFDATA primitive (a variant of JMPXDATA, cf. 4.1.11), which takes the
first cell reference from the code of the current continuation, transforms the
cell referred to into a simple ordinary continuation, and transfers control to
it, first pushing the remainder of the current continuation as a Slice into the
stack. In this way, an object might be represented by a cell õ that contains
JMPREFDATA at the beginning of its data, and the actual code of the object
in the first reference (one might say that the first reference of cell õ is the
class of object õ). Remaining data and references of this cell will be used for
storing the fields of the object.

Such objects have the advantage of being trees of cells, and not just
continuations, meaning that they can be stored into the persistent storage of
a TON smart contract.

4.4.3. Unique continuations and capabilities. It might make sense (in
a future revision of TVM) to mark some continuations as unique, meaning
that they cannot be copied, even in a delayed manner, by increasing their
reference counter to a value greater than one. If an opaque continuation is
unique, it essentially becomes a capability, which can either be used by its
owner exactly once or be transferred to somebody else.

For example, imagine a continuation that represents the output stream to
a printer (this is an example of a continuation used as an object, cf. 4.4.1).
When invoked with one integer argument n, this continuation outputs the
character with code n to the printer, and returns a new continuation of
the same kind reflecting the new state of the stream. Obviously, copying
such a continuation and using the two copies in parallel would lead to some
unintended side effects; marking it as unique would prohibit such adverse
usage.

4.5 Exception handling

TVM’s exception handling is quite simple and consists in a transfer of control
to the continuation kept in control register c2.

57

4.5. Exception handling

4.5.1. Two arguments of the exception handler: exception param-
eter and exception number. Every exception is characterized by two
arguments: the exception number (an Integer) and the exception parameter
(any value, most often a zero Integer). Exception numbers 0–31 are reserved
for TVM, while all other exception numbers are available for user-defined
exceptions.

4.5.2. Primitives for throwing an exception. There are several spe-
cial primitives used for throwing an exception. The most general of them,
THROWANY, takes two arguments, v and 0 ≤ n < 216, from the stack, and
throws the exception with number n and value v. There are variants of
this primitive that assume v to be a zero integer, store n as a literal value,
and/or are conditional on an integer value taken from the stack. User-defined
exceptions may use arbitrary values as v (e.g., trees of cells) if needed.

4.5.3. Exceptions generated by TVM. Of course, some exceptions are
generated by normal primitives. For example, an arithmetic overflow excep-
tion is generated whenever the result of an arithmetic operation does not fit
into a signed 257-bit integer. In such cases, the arguments of the exception,
v and n, are determined by TVM itself.

4.5.4. Exception handling. The exception handling itself consists in a
control transfer to the exception handler—i.e., the continuation specified in
control register c2, with v and n supplied as the two arguments to this
continuation, as if a JMP to c2 had been requested with n′′ = 2 arguments
(cf. 4.1.7 and 4.1.6). As a consequence, v and n end up in the top of the
stack of the exception handler. The remainder of the old stack is discarded.

Notice that if the continuation in c2 has a value for c2 in its savelist, it
will be used to set up the new value of c2 before executing the exception
handler. In particular, if the exception handler invokes THROWANY, it will re-
throw the original exception with the restored value of c2. This trick enables
the exception handler to handle only some exceptions, and pass the rest to
an outer exception handler.

4.5.5. Default exception handler. When an instance of TVM is created,
c2 contains a reference to the “default exception handler continuation”, which
is an ec_fatal extraordinary continuation (cf. 4.1.5). Its execution leads
to the termination of the execution of TVM, with the arguments v and n
of the exception returned to the outside caller. In the context of the TON
Blockchain, n will be stored as a part of the transaction’s result.

58

4.5. Exception handling

4.5.6. TRY primitive. A TRY primitive can be used to implement C++-like
exception handling. This primitive accepts two continuations, c and c′. It
stores the old value of c2 into the savelist of c′, sets c2 to c′, and executes c
just as EXECUTE would, but additionally saving the old value of c2 into the
savelist of the new c0 as well. Usually a version of the TRY primitive with an
explicit number of arguments n′′ passed to the continuation c is used.

The net result is roughly equivalent to C++’s try { c } catch(...)
{ c′ } operator.

4.5.7. List of predefined exceptions. Predefined exceptions of TVM
correspond to exception numbers n in the range 0–31. They include:

• Normal termination (n = 0) — Should never be generated, but it is
useful for some tricks.

• Alternative termination (n = 1) — Again, should never be generated.

• Stack underflow (n = 2) — Not enough arguments in the stack for a
primitive.

• Stack overflow (n = 3) — More values have been stored on a stack than
allowed by this version of TVM.

• Integer overflow (n = 4) — Integer does not fit into −2256 ≤ x < 2256,
or a division by zero has occurred.

• Range check error (n = 5) — Integer out of expected range.

• Invalid opcode (n = 6) — Instruction or its immediate arguments can-
not be decoded.

• Type check error (n = 7) — An argument to a primitive is of incorrect
value type.

• Cell overflow (n = 8) — Error in one of the serialization primitives.

• Cell underflow (n = 9) — Deserialization error.

• Dictionary error (n = 10) — Error while deserializing a dictionary
object.

• Unknown error (n = 11) — Unknown error, may be thrown by user
programs.

59

4.6. Functions, recursion, and dictionaries

• Fatal error (n = 12) — Thrown by TVM in situations deemed impos-
sible.

• Out of gas (n = 13) — Thrown by TVM when the remaining gas (gr)
becomes negative. This exception usually cannot be caught and leads
to an immediate termination of TVM.

Most of these exceptions have no parameter (i.e., use a zero integer instead).
The order in which these exceptions are checked is outlined below in 4.5.8.

4.5.8. Order of stack underflow, type check, and range check ex-
ceptions. All TVM primitives first check whether the stack contains the
required number of arguments, generating a stack underflow exception if this
is not the case. Only then are the type tags of the arguments and their ranges
(e.g., if a primitive expects an argument not only to be an Integer, but also
to be in the range from 0 to 256) checked, starting from the value in the top
of the stack (the last argument) and proceeding deeper into the stack. If an
argument’s type is incorrect, a type-checking exception is generated; if the
type is correct, but the value does not fall into the expected range, a range
check exception is generated.

Some primitives accept a variable number of arguments, depending on the
values of some small fixed subset of arguments located near the top of the
stack. In this case, the above procedure is first run for all arguments from
this small subset. Then it is repeated for the remaining arguments, once
their number and types have been determined from the arguments already
processed.

4.6 Functions, recursion, and dictionaries

4.6.1. The problem of recursion. The conditional and iterated execution
primitives described in 4.2—along with the unconditional branch, call, and
return primitives described in 4.1— enable one to implement more or less
arbitrary code with nested loops and conditional expressions, with one no-
table exception: one can only create new constant continuations from parts
of the current continuation. (In particular, one cannot invoke a subroutine
from itself in this way.) Therefore, the code being executed—i.e., the current
continuation—gradually becomes smaller and smaller.24

24An important point here is that the tree of cells representing a TVM program cannot
have cyclic references, so using CALLREF along with a reference to a cell higher up the tree

60

4.6. Functions, recursion, and dictionaries

4.6.2. Y -combinator solution: pass a continuation as an argument
to itself. One way of dealing with the problem of recursion is by passing
a copy of the continuation representing the body of a recursive function as
an extra argument to itself. Consider, for example, the following code for a
factorial function:

71 PUSHINT 1
9C PUSHCONT {
22 PUSH s2
72 PUSHINT 2
B9 LESS
DC IFRET
59 ROTREV
21 PUSH s1
A8 MUL
01 SWAP
A5 DEC
02 XCHG s2
20 DUP
D9 JMPX

}
20 DUP
D8 EXECUTE
30 DROP
31 NIP

This roughly corresponds to defining an auxiliary function body with three
arguments n, x, and f , such that body(n, x, f) equals x if n < 2 and f(n −
1, nx, f) otherwise, then invoking body(n, 1, body) to compute the factorial
of n. The recursion is then implemented with the aid of the DUP; EXECUTE
construction, or DUP; JMPX in the case of tail recursion. This trick is equivalent
to applying Y -combinator to a function body.

4.6.3. A variant of Y -combinator solution. Another way of recursively
computing the factorial, more closely following the classical recursive defini-
tion

fact(n) :=

{
1 if n < 2,

n · fact(n− 1) otherwise
(5)

would not work.

61

4.6. Functions, recursion, and dictionaries

is as follows:

9D PUSHCONT {
21 OVER
C102 LESSINT 2
92 PUSHCONT {
5B 2DROP
71 PUSHINT 1

}
E0 IFJMP
21 OVER
A5 DEC
01 SWAP
20 DUP
D8 EXECUTE
A8 MUL

}
20 DUP
D9 JMPX

This definition of the factorial function is two bytes shorter than the previous
one, but it uses general recursion instead of tail recursion, so it cannot be
easily transformed into a loop.

4.6.4. Comparison: non-recursive definition of the factorial func-
tion. Incidentally, a non-recursive definition of the factorial with the aid of
a REPEAT loop is also possible, and it is much shorter than both recursive
definitions:

71 PUSHINT 1
01 SWAP
20 DUP
94 PUSHCONT {
66 TUCK
A8 MUL
01 SWAP
A5 DEC

}
E4 REPEAT
30 DROP

62

4.6. Functions, recursion, and dictionaries

4.6.5. Several mutually recursive functions. If one has a collection
f1, . . . , fn of mutually recursive functions, one can use the same trick by
passing the whole collection of continuations {fi} in the stack as an extra
n arguments to each of these functions. However, as n grows, this becomes
more and more cumbersome, since one has to reorder these extra arguments
in the stack to work with the “true” arguments, and then push their copies
into the top of the stack before any recursive call.

4.6.6. Combining several functions into one tuple. One might also
combine a collection of continuations representing functions f1, . . . , fn into
a “tuple” f := (f1, . . . , fn), and pass this tuple as one stack element f . For
instance, when n ≤ 4, each function can be represented by a cell f̃i (along
with the tree of cells rooted in this cell), and the tuple may be represented by
a cell f̃ , which has references to its component cells f̃i. However, this would
lead to the necessity of “unpacking” the needed component from this tuple
before each recursive call.

4.6.7. Combining several functions into a selector function. Another
approach is to combine several functions f1, . . . , fn into one “selector func-
tion” f , which takes an extra argument i, 1 ≤ i ≤ n, from the top of the
stack, and invokes the appropriate function fi. Stack machines such as TVM
are well-suited to this approach, because they do not require the functions fi
to have the same number and types of arguments. Using this approach, one
would need to pass only one extra argument, f , to each of these functions,
and push into the stack an extra argument i before each recursive call to f
to select the correct function to be called.

4.6.8. Using a dedicated register to keep the selector function. How-
ever, even if we use one of the two previous approaches to combine all func-
tions into one extra argument, passing this argument to all mutually recursive
functions is still quite cumbersome and requires a lot of additional stack ma-
nipulation operations. Because this argument changes very rarely, one might
use a dedicated register to keep it and transparently pass it to all functions
called. This is the approach used by TVM by default.

4.6.9. Special register c3 for the selector function. In fact, TVM uses
a dedicated register c3 to keep the continuation representing the current or
global “selector function”, which can be used to invoke any of a family of
mutually recursive functions. Special primitives CALL nn or CALLDICT nn

63

4.6. Functions, recursion, and dictionaries

(cf. A.7.7) are equivalent to PUSHINT nn; PUSH c3; EXECUTE, and similarly
JMP nn or JMPDICT nn are equivalent to PUSHINT nn; PUSH c3; JMPX. In
this way a TVM program, which ultimately is a large collection of mutually
recursive functions, may initialize c3 with the correct selector function rep-
resenting the family of all the functions in the program, and then use CALL
nn to invoke any of these functions by its index (sometimes also called the
selector of a function).

4.6.10. Initialization of c3. A TVM program might initialize c3 by means
of a POP c3 instruction. However, because this usually is the very first ac-
tion undertaken by a program (e.g., a smart contract), TVM makes some
provisions for the automatic initialization of c3. Namely, c3 is initialized by
the code (the initial value of cc) of the program itself, and an extra zero
(or, in some cases, some other predefined number s) is pushed into the stack
before the program’s execution. This is approximately equivalent to invok-
ing JMPDICT 0 (or JMPDICT s) at the very beginning of a program—i.e., the
function with index zero is effectively the main() function for the program.

4.6.11. Creating selector functions and switch statements. TVM
makes special provisions for simple and concise implementation of selector
functions (which usually constitute the top level of a TVM program) or, more
generally, arbitrary switch or case statements (which are also useful in TVM
programs). The most important primitives included for this purpose are
IFBITJMP, IFNBITJMP, IFBITJMPREF, and IFNBITJMPREF (cf. A.7.2). They
effectively enable one to combine subroutines, kept either in separate cells or
as subslices of certain cells, into a binary decision tree with decisions made
according to the indicated bits of the integer passed in the top of the stack.

Another instruction, useful for the implementation of sum-product types,
is PLDUZ (cf. A.6.2). This instruction preloads the first several bits of a Slice
into an Integer, which can later be inspected by IFBITJMP and other similar
instructions.

4.6.12. Alternative: using a hashmap to select the correct function.
Yet another alternative is to use a Hashmap (cf. 3.3) to hold the “collection”
or “dictionary” of the code of all functions in a program, and use the hashmap
lookup primitives (cf. A.9) to select the code of the required function, which
can then be BLESSed into a continuation (cf. A.7.5) and executed. Special
combined “lookup, bless, and execute” primitives, such as DICTIGETJMP and
DICTIGETEXEC, are also available (cf. A.9.10). This approach may be more

64

4.6. Functions, recursion, and dictionaries

efficient for larger programs and switch statements.

65

5.1. Codepages and interoperability of different TVM versions

5 Codepages and instruction encoding
This chapter describes the codepage mechanism, which allows TVM to be
flexible and extendable while preserving backward compatibility with respect
to previously generated code.

We also discuss some general considerations about instruction encodings
(applicable to arbitrary machine code, not just TVM), as well as the implica-
tions of these considerations for TVM and the choices made while designing
TVM’s (experimental) codepage zero. The instruction encodings themselves
are presented later in Appendix A.

5.1 Codepages and interoperability of different TVM
versions

The codepages are an essential mechanism of backward compatibility and
of future extensions to TVM. They enable transparent execution of code
written for different revisions of TVM, with transparent interaction between
instances of such code. The mechanism of the codepages, however, is general
and powerful enough to enable some other originally unintended applications.

5.1.1. Codepages in continuations. Every ordinary continuation contains
a 16-bit codepage field cp (cf. 4.1.1), which determines the codepage that
will be used to execute its code. If a continuation is created by a PUSHCONT
(cf. 4.2.3) or similar primitive, it usually inherits the current codepage (i.e.,
the codepage of cc).25

5.1.2. Current codepage. The current codepage cp (cf. 1.4) is the code-
page of the current continuation cc. It determines the way the next in-
struction will be decoded from cc.code, the remainder of the current con-
tinuation’s code. Once the instruction has been decoded and executed, it
determines the next value of the current codepage. In most cases, the cur-
rent codepage is left unchanged.

On the other hand, all primitives that switch the current continuation
load the new value of cp from the new current continuation. In this way, all
code in continuations is always interpreted exactly as it was intended to be.

25This is not exactly true. A more precise statement is that usually the codepage of the
newly-created continuation is a known function of the current codepage.

66

5.1. Codepages and interoperability of different TVM versions

5.1.3. Different versions of TVM may use different codepages. Dif-
ferent versions of TVM may use different codepages for their code. For
example, the original version of TVM might use codepage zero. A newer
version might use codepage one, which contains all the previously defined
opcodes, along with some newly defined ones, using some of the previously
unused opcode space. A subsequent version might use yet another codepage,
and so on.

However, a newer version of TVM will execute old code for codepage zero
exactly as before. If the old code contained an opcode used for some new
operations that were undefined in the original version of TVM, it will still
generate an invalid opcode exception, because the new operations are absent
in codepage zero.

5.1.4. Changing the behavior of old operations. New codepages can
also change the effects of some operations present in the old codepages while
preserving their opcodes and mnemonics.

For example, imagine a future 513-bit upgrade of TVM (replacing the
current 257-bit design). It might use a 513-bit Integer type within the same
arithmetic primitives as before. However, while the opcodes and instructions
in the new codepage would look exactly like the old ones, they would work
differently, accepting 513-bit integer arguments and results. On the other
hand, during the execution of the same code in codepage zero, the new
machine would generate exceptions whenever the integers used in arithmetic
and other primitives do not fit into 257 bits.26 In this way, the upgrade would
not change the behavior of the old code.

5.1.5. Improving instruction encoding. Another application for code-
pages is to change instruction encodings, reflecting improved knowledge of
the actual frequencies of such instructions in the code base. In this case,
the new codepage will have exactly the same instructions as the old one, but
with different encodings, potentially of differing lengths. For example, one
might create an experimental version of the first version of TVM, using a

26This is another important mechanism of backward compatibility. All values of newly-
added types, as well as values belonging to extended original types that do not belong
to the original types (e.g., 513-bit integers that do not fit into 257 bits in the example
above), are treated by all instructions (except stack manipulation instructions, which are
naturally polymorphic, cf. 2.2.6) in the old codepages as “values of incorrect type”, and
generate type-checking exceptions accordingly.

67

5.1. Codepages and interoperability of different TVM versions

(prefix) bitcode instead of the original bytecode, aiming to achieve higher
code density.

5.1.6. Making instruction encoding context-dependent. Another way
of using codepages to improve code density is to use several codepages with
different subsets of the whole instruction set defined in each of them, or with
the whole instruction set defined, but with different length encodings for the
same instructions in different codepages.

Imagine, for instance, a “stack manipulation” codepage, where stack ma-
nipulation primitives have short encodings at the expense of all other op-
erations, and a “data processing” codepage, where all other operations are
shorter at the expense of stack manipulation operations. If stack manip-
ulation operations tend to come one after another, we can automatically
switch to “stack manipulation” codepage after executing any such instruc-
tion. When a data processing instruction occurs, we switch back to “data
processing” codepage. If conditional probabilities of the class of the next in-
struction depending on the class of the previous instruction are considerably
different from corresponding unconditional probabilities, this technique—
automatically switching into stack manipulation mode to rearrange the stack
with shorter instructions, then switching back—might considerably improve
the code density.

5.1.7. Using codepages for status and control flags. Another potential
application of multiple codepages inside the same revision of TVM consists in
switching between several codepages depending on the result of the execution
of some instructions.

For example, imagine a version of TVM that uses two new codepages, 2
and 3. Most operations do not change the current codepage. However, the
integer comparison operations will switch to codepage 2 if the condition is
false, and to codepage 3 if it is true. Furthermore, a new operation ?EXECUTE,
similar to EXECUTE, will indeed be equivalent to EXECUTE in codepage 3, but
will instead be a DROP in codepage 2. Such a trick effectively uses bit 0 of
the current codepage as a status flag.

Alternatively, one might create a couple of codepages—say, 4 and 5—
which differ only in their cell deserialisation primitives. For instance, in
codepage 4 they might work as before, while in codepage 5 they might de-
serialize data not from the beginning of a Slice, but from its end. Two new
instructions—say, CLD and STD—might be used for switching to codepage 4

68

5.2. Instruction encoding

or codepage 5. Clearly, we have now described a status flag, affecting the
execution of some instructions in a certain new manner.

5.1.8. Setting the codepage in the code itself. For convenience, we
reserve some opcode in all codepages—say, FF n—for the instruction SETCP
n, with n from 0 to 255 (cf. A.12). Then by inserting such an instruction
into the very beginning of (the main function of) a program (e.g., a TON
Blockchain smart contract) or a library function, we can ensure that the code
will always be executed in the intended codepage.

5.2 Instruction encoding

This section discusses the general principles of instruction encoding valid for
all codepages and all versions of TVM. Later, 5.3 discusses the choices made
for the experimental “codepage zero”.

5.2.1. Instructions are encoded by a binary prefix code. All com-
plete instructions (i.e., instructions along with all their parameters, such as
the names of stack registers s(i) or other embedded constants) of a TVM
codepage are encoded by a binary prefix code. This means that a (finite)
binary string (i.e., a bitstring) corresponds to each complete instruction, in
such a way that binary strings corresponding to different complete instruc-
tions do not coincide, and no binary string among the chosen subset is a
prefix of another binary string from this subset.

5.2.2. Determining the first instruction from a code stream. As a
consequence of this encoding method, any binary string admits at most one
prefix, which is an encoding of some complete instruction. In particular,
the code cc.code of the current continuation (which is a Slice, and thus a
bitstring along with some cell references) admits at most one such prefix,
which corresponds to the (uniquely determined) instruction that TVM will
execute first. After execution, this prefix is removed from the code of the
current continuation, and the next instruction can be decoded.

5.2.3. Invalid opcode. If no prefix of cc.code encodes a valid instruction
in the current codepage, an invalid opcode exception is generated (cf. 4.5.7).
However, the case of an empty cc.code is treated separately as explained
in 4.1.4 (the exact behavior may depend on the current codepage).

69

5.2. Instruction encoding

5.2.4. Special case: end-of-code padding. As an exception to the above
rule, some codepages may accept some values of cc.code that are too short
to be valid instruction encodings as additional variants of NOP, thus effectively
using the same procedure for them as for an empty cc.code. Such bitstrings
may be used for padding the code near its end.

For example, if binary string 00000000 (i.e., x00, cf. 1.0.3) is used in a
codepage to encode NOP, its proper prefixes cannot encode any instructions.
So this codepage may accept 0, 00, 000, . . . , 0000000 as variants of NOP if
this is all that is left in cc.code, instead of generating an invalid opcode
exception.

Such a padding may be useful, for example, if the PUSHCONT primitive
(cf. 4.2.3) creates only continuations with code consisting of an integral
number of bytes, but not all instructions are encoded by an integral number
of bytes.

5.2.5. TVM code is a bitcode, not a bytecode. Recall that TVM is
a bit-oriented machine in the sense that its Cells (and Slices) are naturally
considered as sequences of bits, not just of octets (bytes), cf. 3.2.5. Because
the TVM code is also kept in cells (cf. 3.1.9 and 4.1.4), there is no reason
to use only bitstrings of length divisible by eight as encodings of complete
instructions. In other words, generally speaking, the TVM code is a bitcode,
not a bytecode.

That said, some codepages (such as our experimental codepage zero) may
opt to use a bytecode (i.e., to use only encodings consisting of an integral
number of bytes)—either for simplicity, or for the ease of debugging and of
studying memory (i.e., cell) dumps.27

5.2.6. Opcode space used by a complete instruction. Recall from cod-
ing theory that the lengths of bitstrings li used in a binary prefix code satisfy
Kraft–McMillan inequality

∑
i 2
−li ≤ 1. This is applicable in particular to

the (complete) instruction encoding used by a TVM codepage. We say that
a particular complete instruction (or, more precisely, the encoding of a com-
plete instruction) utilizes the portion 2−l of the opcode space, if it is encoded
by an l-bit string. One can see that all complete instructions together utilize
at most 1 (i.e., “at most the whole opcode space”).

27If the cell dumps are hexadecimal, encodings consisting of an integral number of
hexadecimal digits (i.e., having length divisible by four bits) might be equally convenient.

70

5.2. Instruction encoding

5.2.7. Opcode space used by an instruction, or a class of instruc-
tions. The above terminology is extended to instructions (considered with
all admissible values of their parameters), or even classes of instructions (e.g.,
all arithmetic instructions). We say that an (incomplete) instruction, or a
class of instructions, occupies portion α of the opcode space, if α is the sum
of the portions of the opcode space occupied by all complete instructions
belonging to that class.

5.2.8. Opcode space for bytecodes. A useful approximation of the above
definitions is as follows: Consider all 256 possible values for the first byte of
an instruction encoding. Suppose that k of these values correspond to the
specific instruction or class of instructions we are considering. Then this
instruction or class of instructions occupies approximately the portion k/256
of the opcode space.

This approximation shows why all instructions cannot occupy together
more than the portion 256/256 = 1 of the opcode space, at least without
compromising the uniqueness of instruction decoding.

5.2.9. Almost optimal encodings. Coding theory tells us that in an op-
timally dense encoding, the portion of the opcode space used by a complete
instruction (2−l, if the complete instruction is encoded in l bits) should be
approximately equal to the probability or frequency of its occurrence in real
programs.28 The same should hold for (incomplete) instructions, or primi-
tives (i.e., generic instructions without specified values of parameters), and
for classes of instructions.

5.2.10. Example: stack manipulation primitives. For instance, if stack
manipulation instructions constitute approximately half of all instructions in
a typical TVM program, one should allocate approximately half of the opcode
space for encoding stack manipulation instructions. One might reserve the
first bytes (“opcodes”) 0x00–0x7f for such instructions. If a quarter of these
instructions are XCHG, it would make sense to reserve 0x00–0x1f for XCHGs.
Similarly, if half of all XCHGs involve the top of stack s0, it would make sense
to use 0x00–0x0f to encode XCHG s0,s(i).

5.2.11. Simple encodings of instructions. In most cases, simple encod-
ings of complete instructions are used. Simple encodings begin with a fixed

28Notice that it is the probability of occurrence in the code that counts, not the proba-
bility of being executed. An instruction occurring in the body of a loop executed a million
times is still counted only once.

71

5.3. Instruction encoding in codepage zero

bitstring called the opcode of the instruction, followed by, say, 4-bit fields
containing the indices i of stack registers s(i) specified in the instruction, fol-
lowed by all other constant (literal, immediate) parameters included in the
complete instruction. While simple encodings may not be exactly optimal,
they admit short descriptions, and their decoding and encoding can be easily
implemented.

If a (generic) instruction uses a simple encoding with an l-bit opcode, then
the instruction will utilize 2−l portion of the opcode space. This observation
might be useful for considerations described in 5.2.9 and 5.2.10.

5.2.12. Optimizing code density further: Huffman codes. One might
construct optimally dense binary code for the set of all complete instructions,
provided their probabilities or frequences in real code are known. This is the
well-known Huffman code (for the given probability distribution). However,
such code would be highly unsystematic and hard to decode.

5.2.13. Practical instruction encodings. In practice, instruction encod-
ings used in TVM and other virtual machines offer a compromise between
code density and ease of encoding and decoding. Such a compromise may
be achieved by selecting simple encodings (cf. 5.2.11) for all instructions
(maybe with separate simple encodings for some often used variants, such
as XCHG s0,s(i) among all XCHG s(i),s(j)), and allocating opcode space for
such simple encodings using the heuristics outlined in 5.2.9 and 5.2.10; this
is the approach currently used in TVM.

5.3 Instruction encoding in codepage zero

This section provides details about the experimental instruction encoding
for codepage zero, as described elsewhere in this document (cf. Appendix A)
and used in the preliminary test version of TVM.

5.3.1. Upgradability. First of all, even if this preliminary version some-
how gets into the production version of the TON Blockchain, the codepage
mechanism (cf. 5.1) enables us to introduce better versions later without
compromising backward compatibility.29 So in the meantime, we are free to
experiment.

29Notice that any modifications after launch cannot be done unilaterally; rather they
would require the support of at least two-thirds of validators.

72

5.3. Instruction encoding in codepage zero

5.3.2. Choice of instructions. We opted to include many “experimental”
and not strictly necessary instructions in codepage zero just to see how they
might be used in real code. For example, we have both the basic (cf. 2.2.1)
and the compound (cf. 2.2.3) stack manipulation primitives, as well as some
“unsystematic” ones such as ROT (mostly borrowed from Forth). If such
primitives are rarely used, their inclusion just wastes some part of the opcode
space and makes the encodings of other instructions slightly less effective,
something we can afford at this stage of TVM’s development.

5.3.3. Using experimental instructions. Some of these experimental
instructions have been assigned quite long opcodes, just to fit more of them
into the opcode space. One should not be afraid to use them just because
they are long; if these instructions turn out to be useful, they will receive
shorter opcodes in future revisions. Codepage zero is not meant to be fine-
tuned in this respect.

5.3.4. Choice of bytecode. We opted to use a bytecode (i.e., to use encod-
ings of complete instructions of lengths divisible by eight). While this may
not produce optimal code density, because such a length restriction makes
it more difficult to match portions of opcode space used for the encoding of
instructions with estimated frequencies of these instructions in TVM code
(cf. 5.2.11 and 5.2.9), such an approach has its advantages: it admits a
simpler instruction decoder and simplifies debugging (cf. 5.2.5).

After all, we do not have enough data on the relative frequencies of dif-
ferent instructions right now, so our code density optimizations are likely to
be very approximate at this stage. The ease of debugging and experimenting
and the simplicity of implementation are more important at this point.

5.3.5. Simple encodings for all instructions. For similar reasons, we
opted to use simple encodings for all instructions (cf. 5.2.11 and 5.2.13),
with separate simple encodings for some very frequently used subcases as
outlined in 5.2.13. That said, we tried to distribute opcode space using the
heuristics described in 5.2.9 and 5.2.10.

5.3.6. Lack of context-dependent encodings. This version of TVM also
does not use context-dependent encodings (cf. 5.1.6). They may be added
at a later stage, if deemed useful.

5.3.7. The list of all instructions. The list of all instructions available in

73

5.3. Instruction encoding in codepage zero

codepage zero, along with their encodings and (in some cases) short descrip-
tions, may be found in Appendix A.

74

References

References
[1] N. Durov, Telegram Open Network, 2017.

75

A.2. Stack manipulation primitives

A Instructions and opcodes
This appendix lists all instructions available in the (experimental) codepage
zero of TVM, as explained in 5.3.

We list the instructions in lexicographical opcode order. However, the
opcode space is distributed in such way as to make all instructions in each
category (e.g., arithmetic primitives) have neighboring opcodes. So we first
list a number of stack manipulation primitives, then constant primitives,
arithmetic primitives, comparison primitives, cell primitives, continuation
primitives, dictionary primitives, and finally application-specific primitives.

We use hexadecimal notation (cf. 1.0) for bitstrings. Stack registers s(i)
usually have 0 ≤ i ≤ 15, and i is encoded in a 4-bit field (or, on a few rare
occasions, in an 8-bit field). Other immediate parameters are usually 4-bit,
8-bit, or variable length.

The stack notation described in 2.1.10 is extensively used throughout
this appendix.

A.1 Gas prices

The gas price for most primitives equals the basic gas price, computed as
Pb := 10 + b + 5r, where b is the instruction length in bits and r is the
number of cell references included in the instruction. When the gas price
of an instruction differs from this basic price, it is indicated in parentheses
after its mnemonics, either as (x), meaning that the total gas price equals
x, or as (+x), meaning Pb + x. Apart from integer constants, the following
expressions may appear:

• Cr — The total price of “reading” cells (i.e., transforming cell references
into cell slices). Currently equal to 20 gas units per cell.

• L — The total price of loading cells. Depends on the loading action
required.

• Bw — The total price of creating new Builders. Currently equal to 100
gas units per builder.

• Cw — The total price of creating new Cells from Builders). Currently
equal to 100 gas units per cell.

76

A.2. Stack manipulation primitives

A.2 Stack manipulation primitives

This section includes both the basic (cf. 2.2.1) and the compound (cf. 2.2.3)
stack manipulation primitives, as well as some “unsystematic” ones. Some
compound stack manipulation primitives, such as XCPU or XCHG2, turn out
to have the same length as an equivalent sequence of simpler operations. We
have included these primitives regardless, so that they can easily be allocated
shorter opcodes in a future revision of TVM—or removed for good.

Some stack manipulation instructions have two mnemonics: one Forth-
style (e.g., -ROT), the other conforming to the usual rules for identifiers (e.g.,
ROTREV). Whenever a stack manipulation primitive (e.g., PICK) accepts an
integer parameter n from the stack, it must be within the range 0 . . . 255;
otherwise a range check exception happens before any further checks.

A.2.1. Basic stack manipulation primitives.

• 00 — NOP, does nothing.

• 01 — XCHG s1, also known as SWAP.

• 0i— XCHG s(i) or XCHG s0,s(i), interchanges the top of the stack with
s(i), 1 ≤ i ≤ 15.

• 10ij — XCHG s(i),s(j), 1 ≤ i < j ≤ 15, interchanges s(i) with s(j).

• 11ii — XCHG s0,s(ii), with 0 ≤ ii ≤ 255.

• 1i — XCHG s1,s(i), 2 ≤ i ≤ 15.

• 2i — PUSH s(i), 0 ≤ i ≤ 15, pushes a copy of the old s(i) into the
stack.

• 20 — PUSH s0, also known as DUP.

• 21 — PUSH s1, also known as OVER.

• 3i — POP s(i), 0 ≤ i ≤ 15, pops the old top-of-stack value into the old
s(i).

• 30 — POP s0, also known as DROP, discards the top-of-stack value.

• 31 — POP s1, also known as NIP.

77

A.2. Stack manipulation primitives

A.2.2. Compound stack manipulation primitives. Parameters i, j,
and k of the following primitives all are 4-bit integers in the range 0 . . . 15.

• 4ijk — XCHG3 s(i),s(j),s(k), equivalent to XCHG s2,s(i); XCHG s1,
s(j); XCHG s0,s(k), with 0 ≤ i, j, k ≤ 15.

• 50ij — XCHG2 s(i),s(j), equivalent to XCHG s1,s(i); XCHG s(j).

• 51ij — XCPU s(i),s(j), equivalent to XCHG s(i); PUSH s(j).

• 52ij — PUXC s(i),s(j − 1), equivalent to PUSH s(i); SWAP; XCHG s(j).

• 53ij — PUSH2 s(i),s(j), equivalent to PUSH s(i); PUSH s(j + 1).

• 540ijk — XCHG3 s(i),s(j),s(k) (long form).

• 541ijk — XC2PU s(i),s(j),s(k), equivalent to XCHG2 s(i),s(j); PUSH
s(k).

• 542ijk— XCPUXC s(i),s(j),s(k−1), equivalent to XCHG s1,s(i); PUXC
s(j),s(k − 1).

• 543ijk — XCPU2 s(i),s(j),s(k), equivalent to XCHG s(i); PUSH2 s(j),
s(k).

• 544ijk — PUXC2 s(i),s(j− 1),s(k− 1), equivalent to PUSH s(i); XCHG
s2; XCHG2 s(j),s(k).

• 545ijk — PUXCPU s(i),s(j−1),s(k−1), equivalent to PUXC s(i),s(j−
1); PUSH s(k).

• 546ijk — PU2XC s(i),s(j−1),s(k−2), equivalent to PUSH s(i); SWAP;
PUXC s(j),s(k − 1).

• 547ijk — PUSH3 s(i),s(j),s(k), equivalent to PUSH s(i); PUSH2 s(j+
1),s(k + 1).

• 54C_ — unused.

A.2.3. Exotic stack manipulation primitives.

• 55ij — BLKSWAP i+1,j+1, permutes two blocks s(j+i+1). . . s(j+1)
and s(j). . . s0, for 0 ≤ i, j ≤ 15. Equivalent to REVERSE i + 1,j + 1;
REVERSE j + 1,0; REVERSE i+ j + 2,0.

78

A.2. Stack manipulation primitives

• 56ii — PUSH s(ii) for 0 ≤ ii ≤ 255.

• 57ii — POP s(ii) for 0 ≤ ii ≤ 255.

• 58— ROT (a b c – b c a), equivalent to BLKSWAP 1,2 or to XCHG2 s2,s1.

• 59 — ROTREV or -ROT (a b c – c a b), equivalent to BLKSWAP 2,1 or to
XCHG2 s2,s2.

• 5A — SWAP2 or 2SWAP (a b c d – c d a b), equivalent to BLKSWAP 2,2 or
to XCHG2 s3,s2.

• 5B — DROP2 or 2DROP (a b –), equivalent to DROP; DROP.

• 5C — DUP2 or 2DUP (a b – a b a b), equivalent to PUSH2 s1,s0.

• 5D — OVER2 or 2OVER (a b c d – a b c d a b), equivalent to PUSH2 s3,s2.

• 5Eij — REVERSE i + 2,j, reverses the order of s(j + i + 1). . . s(j) for
0 ≤ i, j ≤ 15; equivalent to a sequence of bi/2c+ 1 XCHGs.

• 5F0i — BLKDROP i, equivalent to DROP performed i times.

• 5Fij — BLKPUSH i,j, equivalent to PUSH s(j) performed i times, 1 ≤
i ≤ 15, 0 ≤ j ≤ 15.

• 60 — PICK or PUSHX, pops integer i from the stack, then performs PUSH
s(i).

• 61 — ROLL, pops integer i from the stack, then performs BLKSWAP 1,i.

• 62 — -ROLL or ROLLREV, pops integer i from the stack, then performs
BLKSWAP i,1.

• 63 — BLKSWX, pops integers i,j from the stack, then performs BLKSWAP
i,j.

• 64 — REVX, pops integers i,j from the stack, then performs REVERSE
i,j.

• 65 — DROPX, pops integer i from the stack, then performs BLKDROP i.

• 66 — TUCK (ab− bab), equivalent to SWAP; OVER or to XCPU s1,s1.

79

A.3. Constant, or literal primitives

• 67 — XCHGX, pops integer i from the stack, then performs XCHG s(i).

• 68 — DEPTH, pushes the current depth of the stack.

• 69 — CHKDEPTH, pops integer i from the stack, then checks whether
there are at least i elements, generating a stack underflow exception
otherwise.

• 6A — ONLYTOPX, pops integer i from the stack, then removes all but
the top i elements.

• 6B — ONLYX, pops integer i from the stack, then leaves only the bottom
i elements. Approximately equivalent to DEPTH; SWAP; SUB; DROPX.

• 6C–6F — reserved for stack operations.

A.3 Constant, or literal primitives

The following primitives push into the stack one literal (or unnamed constant)
of some type and range, stored as a part (an immediate argument) of the
instruction. Therefore, if the immediate argument is absent or too short, an
“invalid or too short opcode” exception (code 6) is thrown.

A.3.1. Integer and boolean constants.

• 7i — PUSHINT x with −5 ≤ x ≤ 10, pushes integer x into the stack;
here i equals four lower-order bits of x (i.e., i = x mod 16).

• 70 — ZERO, FALSE, or PUSHINT 0, pushes a zero.

• 71 — ONE or PUSHINT 1.

• 72 — TWO or PUSHINT 2.

• 7A — TEN or PUSHINT 10.

• 7F — TRUE or PUSHINT -1.

• 80xx — PUSHINT xx with −128 ≤ xx ≤ 127.

• 81xxxx — PUSHINT xxxx with −215 ≤ xxxx < 215 a signed 16-bit
big-endian integer.

80

A.3. Constant, or literal primitives

• 81FC18 — PUSHINT −1000.

• 82lxxx — PUSHINT xxx, where 5-bit 0 ≤ l ≤ 30 determines the length
n = 8l + 19 of signed big-endian integer xxx. The total length of this
instruction is l + 4 bytes or n+ 13 = 8l + 32 bits.

• 821005F5E100 — PUSHINT 108.

• 83xx — PUSHPOW2 xx+ 1, (quietly) pushes 2xx+1 for 0 ≤ xx ≤ 255.

• 83FF — PUSHNAN, pushes a NaN.

• 84xx — PUSHPOW2DEC xx+ 1, pushes 2xx+1 − 1 for 0 ≤ xx ≤ 255.

• 85xx — PUSHNEGPOW2 xx+ 1, pushes −2xx+1 for 0 ≤ xx ≤ 255.

• 86, 87 — reserved for integer constants.

A.3.2. Constant slices, continuations, cells, and references. Most
of the instructions listed below push literal slices, continuations, cells, and
cell references, stored as immediate arguments to the instruction. Therefore,
if the immediate argument is absent or too short, an “invalid or too short
opcode” exception (code 6) is thrown.

• 88 — PUSHREF, pushes the first reference of cc.code into the stack as
a Cell (and removes this reference from the current continuation).

• 89 — PUSHREFSLICE, similar to PUSHREF, but converts the cell into a
Slice.

• 8A — PUSHREFCONT, similar to PUSHREFSLICE, but makes a simple or-
dinary Continuation out of the cell.

• 8Bxsss— PUSHSLICE sss, pushes the (prefix) subslice of cc.code con-
sisting of its first 8x + 4 bits and no references (i.e., essentially a bit-
string), where 0 ≤ x ≤ 15. A completion tag is assumed, meaning that
all trailing zeroes and the last binary one (if present) are removed from
this bitstring. If the original bitstring consists only of zeroes, an empty
slice will be pushed.

• 8B08 — PUSHSLICE x8_, pushes an empty slice (bitstring ‘’).

81

A.4. Arithmetic primitives

• 8B04 — PUSHSLICE x4_, pushes bitstring ‘0’.

• 8B0C — PUSHSLICE xC_, pushes bitstring ‘1’.

• 8Crxxssss— PUSHSLICE ssss, pushes the (prefix) subslice of cc.code
consisting of its first 1 ≤ r + 1 ≤ 4 references and up to first 8xx + 1
bits of data, with 0 ≤ xx ≤ 31. A completion tag is also assumed.

• 8C01 is equivalent to PUSHREFSLICE.

• 8Drxxsssss — PUSHSLICE sssss, pushes the subslice of cc.code con-
sisting of 0 ≤ r ≤ 4 references and up to 8xx + 6 bits of data, with
0 ≤ xx ≤ 127. A completion tag is assumed.

• 8DE_ — unused (reserved).

• 8F_rxxcccc — PUSHCONT cccc, where cccc is the simple ordinary con-
tinuation made from the first 0 ≤ r ≤ 3 references and the first
0 ≤ xx ≤ 127 bytes of cc.code.

• 9xccc— PUSHCONT ccc, pushes an x-byte continuation for 0 ≤ x ≤ 15.

A.4 Arithmetic primitives

A.4.1. Addition, subtraction, multiplication.

• A0 — ADD (x y – x+ y), adds together two integers.

• A1 — SUB (x y – x− y).

• A2 — SUBR (x y – y − x), equivalent to SWAP; SUB.

• A3 — NEGATE (x – −x), equivalent to MULCONST −1 or to ZERO; SUBR.
Notice that it triggers an integer overflow exception if x = −2256.

• A4 — INC (x – x+ 1), equivalent to ADDCONST 1.

• A5 — DEC (x – x− 1), equivalent to ADDCONST −1.

• A6cc — ADDCONST cc (x – x+ cc), −128 ≤ cc ≤ 127.

• A7cc — MULCONST cc (x – x · cc), −128 ≤ cc ≤ 127.

82

A.4. Arithmetic primitives

• A8 — MUL (x y – xy).

A.4.2. Division.
The general encoding of a DIV, DIVMOD, or MOD operation is A9mscdf , with

an optional pre-multiplication and an optional replacement of the division or
multiplication by a shift. Variable one- or two-bit fields m, s, c, d, and f are
as follows:

• 0 ≤ m ≤ 1 — Indicates whether there is pre-multiplication (MULDIV
operation and its variants), possibly replaced by a left shift.

• 0 ≤ s ≤ 2 — Indicates whether either the multiplication or the division
have been replaced by shifts: s = 0—no replacement, s = 1—division
replaced by a right shift, s = 2—multiplication replaced by a left shift
(possible only for m = 1).

• 0 ≤ c ≤ 1 — Indicates whether there is a constant one-byte argument
tt for the shift operator (if s 6= 0). For s = 0, c = 0. If c = 1, then
0 ≤ tt ≤ 255, and the shift is performed by tt+ 1 bits.

• 1 ≤ d ≤ 3 — Indicates which results of division are required: 1—only
the quotient, 2—only the remainder, 3—both.

• 0 ≤ f ≤ 2 — Rounding mode: 0—floor, 1—nearest integer, 2—ceiling
(cf. 1.5.6).

Examples:

• A904 — DIV (x y – q := bx/yc).

• A905 — DIVR (x y – q′ := bx/y + 1/2c).

• A906 — DIVC (x y – q′′ := dx/ye).

• A908 — MOD (x y – r), where q := bx/yc, r := x mod y := x− yq.

• A90C — DIVMOD (x y – q r), where q := bx/yc, r := x− yq.

• A90D — DIVMODR (x y – q′ r′), where q′ := bx/y + 1/2c, r′ := x− yq′.

• A90E — DIVMODC (x y – q′′ r′′), where q′′ := dx/ye, r′′ := x− yq′′.

• A924 — same as RSHIFT: (x y – bx · 2−yc) for 0 ≤ y ≤ 256.

83

A.4. Arithmetic primitives

• A934tt — same as RSHIFT tt+ 1: (x – bx · 2−tt−1c).

• A938tt — MODPOW2 tt+ 1: (x – x mod 2tt+1).

• A985 — MULDIVR (x y z – q′), where q′ = bxy/z + 1/2c.

• A98C — MULDIVMOD (x y z – q r), where q := bx · y/zc, r := x · y mod z
(same as */MOD in Forth).

The most useful of these operations are DIV, DIVMOD, MOD, DIVR, DIVC,
MODPOW2 t, and RSHIFTR t (for integer arithmetic); and MULDIVMOD, MULDIV,
MULDIVR, LSHIFTDIVR t, and MULRSHIFTR t (for fixed-point arithmetic).

A.4.3. Shifts, logical operations.

• AAcc — LSHIFT cc+ 1 (x – x · 2cc+1), 0 ≤ cc ≤ 255.

• AA00 — LSHIFT 1, equivalent to MULCONST 2 or to Forth’s 2*.

• ABcc — RSHIFT cc+ 1 (x – bx · 2−cc−1c), 0 ≤ cc ≤ 255.

• AC — LSHIFT (x y – x · 2y), 0 ≤ y ≤ 1023.

• AD — RSHIFT (x y – bx · 2−yc), 0 ≤ y ≤ 1023.

• AE — POW2 (y – 2y), 0 ≤ y ≤ 1023, equivalent to ONE; SWAP; LSHIFT.

• AF — reserved.

• B0 — AND (x y – x&y), bitwise “and” of two signed integers x and y,
sign-extended to infinity.

• B1 — OR (x y – x ∨ y), bitwise “or” of two integers.

• B2 — XOR (x y – x⊕ y), bitwise “xor” of two integers.

• B3 — NOT (x – x⊕−1 = −1− x), bitwise “not” of an integer.

• B4cc — FITS cc + 1 (x – x), checks whether x is a cc + 1-bit signed
integer for 0 ≤ cc ≤ 255 (i.e., whether −2cc ≤ x < 2cc). If not, either
triggers an integer overflow exception, or replaces x with a NaN (quiet
version).

84

A.4. Arithmetic primitives

• B400 — FITS 1 or CHKBOOL (x – x), checks whether x is a “boolean
value” (i.e., either 0 or -1).

• B5cc — UFITS cc+1 (x – x), checks whether x is a cc+1-bit unsigned
integer for 0 ≤ cc ≤ 255 (i.e., whether 0 ≤ x < 2cc+1).

• B500 — UFITS 1 or CHKBIT, checks whether x is a binary digit (i.e.,
zero or one).

• B600 — FITSX (x c – x), checks whether x is a c-bit signed integer for
0 ≤ c ≤ 1023.

• B601 — UFITSX (x c – x), checks whether x is a c-bit unsigned integer
for 0 ≤ c ≤ 1023.

• B602 — BITSIZE (x – c), computes smallest c ≥ 0 such that x fits into
a c-bit signed integer (−2c−1 ≤ c < 2c−1).

• B603 — UBITSIZE (x – c), computes smallest c ≥ 0 such that x fits
into a c-bit unsigned integer (0 ≤ x < 2c), or throws a range check
exception.

• B608 — MIN (x y – x or y), computes the minimum of two integers x
and y.

• B609 — MAX (x y – x or y), computes the maximum of two integers x
and y.

• B60A— MINMAX or INTSORT2 (x y – x y or y x), sorts two integers. Quiet
version of this operation returns two NaNs if any of the arguments are
NaNs.

• B60B — ABS (x – |x|), computes the absolute value of an integer x.

A.4.4. Quiet arithmetic primitives. We opted to make all arithmetic
operations “non-quiet” (signaling) by default, and create their quiet counter-
parts by means of a prefix. Such an encoding is definitely sub-optimal. It is
not yet clear whether it should be done in this way, or in the opposite way
by making all arithmetic operations quiet by default, or whether quiet and
non-quiet operations should be given opcodes of equal length; this can only
be settled by practice.

85

A.5. Comparison primitives

• B7xx — QUIET prefix, transforming any arithmetic operation into its
“quiet” variant, indicated by prefixing a Q to its mnemonic. Such op-
erations return NaNs instead of throwing integer overflow exceptions if
the results do not fit in Integers, or if one of their arguments is a NaN.
Notice that this does not extend to shift amounts and other parame-
ters that must be within a small range (e.g., 0–1023). Also notice that
this does not disable type-checking exceptions if a value of a type other
than Integer is supplied.

• B7A0 — QADD (x y – x + y), always works if x and y are Integers, but
returns a NaN if the addition cannot be performed.

• B7A904 — QDIV (x y – bx/yc), returns a NaN if y = 0, or if y = −1 and
x = −2256, or if either of x or y is a NaN.

• B7B0 — QAND (x y – x&y), bitwise “and” (similar to AND), but returns
a NaN if either x or y is a NaN instead of throwing an integer overflow
exception. However, if one of the arguments is zero, and the other is a
NaN, the result is zero.

• B7B1 — QOR (x y – x∨ y), bitwise “or”. If x = −1 or y = −1, the result
is always −1, even if the other argument is a NaN.

• B7B507 — QUFITS 8 (x – x′), checks whether x is an unsigned byte
(i.e., whether 0 ≤ x < 28), and replaces x with a NaN if this is not the
case; leaves x intact otherwise (i.e., if x is an unsigned byte).

A.5 Comparison primitives

A.5.1. Integer comparison. All integer comparison primitives return in-
teger −1 (“true”) or 0 (“false”) to indicate the result of the comparison. We
do not define their “boolean circuit” counterparts, which would transfer con-
trol to c0 or c1 depending on the result of the comparison. If needed, such
instructions can be simulated with the aid of RETBOOL.

Quiet versions of integer comparison primitives are also available, encoded
with the aid of the QUIET prefix (B7). If any of the integers being compared
are NaNs, the result of a quiet comparison will also be a NaN (“undefined”),
instead of a −1 (“yes”) or 0 (“no”), thus effectively supporting ternary logic.

86

A.5. Comparison primitives

• B8 — SGN (x – sgn(x)), computes the sign of an integer x: −1 if x < 0,
0 if x = 0, 1 if x > 0.

• B9 — LESS (x y – x < y), returns −1 if x < y, 0 otherwise.

• BA — EQUAL (x y – x = y), returns −1 if x = y, 0 otherwise.

• BB — LEQ (x y – x ≤ y).

• BC — GREATER (x y – x > y).

• BD — NEQ (x y – x 6= y), equivalent to EQUAL; NOT.

• BE — GEQ (x y – x ≥ y), equivalent to LESS; NOT.

• BF — CMP (x y – sgn(x− y)), computes the sign of x− y: −1 if x < y,
0 if x = y, 1 if x > y. No integer overflow can occur here unless x or y
is a NaN.

• C0yy — EQINT yy (x – x = yy) for −27 ≤ yy < 27.

• C000 — ISZERO, checks whether an integer is zero. Corresponds to
Forth’s 0=.

• C1yy — LESSINT yy (x – x < yy) for −27 ≤ yy < 27.

• C100 — ISNEG, checks whether an integer is negative. Corresponds to
Forth’s 0<.

• C101 — ISNPOS, checks whether an integer is non-positive.

• C2yy — GTINT yy (x – x > yy) for −27 ≤ yy < 27.

• C200 — ISPOS, checks whether an integer is positive. Corresponds to
Forth’s 0>.

• C2FF — ISNNEG, checks whether an integer is non-negative.

• C3yy — NEQINT yy (x – x 6= yy) for −27 ≤ yy < 27.

• C4 — ISNAN (x – x = NaN), checks whether x is a NaN.

• C5 — CHKNAN (x – x), throws an arithmetic overflow exception if x is a
NaN.

87

A.5. Comparison primitives

• C6 — reserved for integer comparison.

A.5.2. Other comparison.
Most of these “other comparison” primitives actually compare the data

portions of Slices as bitstrings.

• C700 — SEMPTY (s – s = ∅), checks whether a Slice s is empty (i.e.,
contains no bits of data and no cell references).

• C701 — SDEMPTY (s – s ≈ ∅), checks whether Slice s has no bits of
data.

• C702 — SREMPTY (s – r(s) = 0), checks whether Slice s has no refer-
ences.

• C703 — SDFIRST (s – s0 = 1), checks whether the first bit of Slice s is
a one.

• C704 — SDLEXCMP (s s′ – c), compares the data of s lexicographically
with the data of s′, returning −1, 0, or 1 depending on the result.

• C705 — SDEQ (s s′ – s ≈ s′), checks whether the data parts of s and s′
coincide, equivalent to SDLEXCMP; ISZERO.

• C708 — SDPFX (s s′ – ?), checks whether s is a prefix of s′.

• C709— SDPFXREV (s s′ – ?), checks whether s′ is a prefix of s, equivalent
to SWAP; SDPFX.

• C70A — SDPPFX (s s′ – ?), checks whether s is a proper prefix of s′ (i.e.,
a prefix distinct from s′).

• C70B — SDPPFXREV (s s′ – ?), checks whether s′ is a proper prefix of s.

• C70C — SDSFX (s s′ – ?), checks whether s is a suffix of s′.

• C70D — SDSFXREV (s s′ – ?), checks whether s′ is a suffix of s.

• C70E — SDPSFX (s s′ – ?), checks whether s is a proper suffix of s′.

• C70F — SDPSFXREV (s s′ – ?), checks whether s′ is a proper suffix of s.

88

A.6. Cell primitives

• C710 — SDCNTLEAD0 (s – n), returns the number of leading zeroes in
s.

• C711 — SDCNTLEAD1 (s – n), returns the number of leading ones in s.

• C712 — SDCNTTRAIL0 (s – n), returns the number of trailing zeroes in
s.

• C713 — SDCNTTRAIL1 (s – n), returns the number of trailing ones in s.

A.6 Cell primitives

The cell primitives are mostly either cell serialization primitives, which work
with Builders, or cell deserialization primitives, which work with Slices.

A.6.1. Cell serialization primitives. All these primitives first check
whether there is enough space in the Builder, and only then check the range
of the value being serialized.

• C8 — NEWC (– b), creates a new empty Builder.

• C9 — ENDC (b – c), converts a Builder into an ordinary Cell.

• CAcc — STI cc + 1 (x b – b′), stores a signed cc + 1-bit integer x into
Builder b for 0 ≤ cc ≤ 255, throws a range check exception if x does
not fit into cc+ 1 bits.

• CBcc — STU cc + 1 (x b – b′), stores an unsigned cc + 1-bit integer x
into Builder b. In all other respects it is similar to STI.

• CC — STREF (c b – b′), stores a reference to Cell c into Builder b.

• CD — STBREFR or ENDCST (b b′′ – b), equivalent to ENDC; SWAP; STREF.

• CE — STSLICE (s b – b′), stores Slice s into Builder b.

• CF00 — STIX (x b l – b′), stores a signed l-bit integer x into b for
0 ≤ l ≤ 257.

• CF01 — STUX (x b l – b′), stores an unsigned l-bit integer x into b for
0 ≤ l ≤ 256.

89

A.6. Cell primitives

• CF02 — STIXR (b x l – b′), similar to STIX, but with arguments in a
different order.

• CF03 — STUXR (b x l – b′), similar to STUX, but with arguments in a
different order.

• CF04 — STIXQ (x b l – x b f or b′ 0), a quiet version of STIX. If there
is no space in b, sets b′ = b and f = −1. If x does not fit into l bits,
sets b′ = b and f = 1. If the operation succeeds, b′ is the new Builder
and f = 0. However, 0 ≤ l ≤ 257, with a range check exception if this
is not so.

• CF05 — STUXQ (x b l – b′ f).

• CF06 — STIXRQ (b x l – b x f or b′ 0).

• CF07 — STUXRQ (b x l – b x f or b′ 0).

• CF08cc — a longer version of STI cc+ 1.

• CF09cc — a longer version of STU cc+ 1.

• CF0Acc — STIR cc+ 1 (b x – b′), equivalent to SWAP; STI cc+ 1.

• CF0Bcc — STUR cc+ 1 (b x – b′), equivalent to SWAP; STU cc+ 1.

• CF0Ccc — STIQ cc+ 1 (x b – x b f or b′ 0).

• CF0Dcc — STUQ cc+ 1 (x b – x b f or b′ 0).

• CF0Ecc — STIRQ cc+ 1 (b x – b x f or b′ 0).

• CF0Fcc — STURQ cc+ 1 (b x – b x f or b′ 0).

• CF10 — a longer version of STREF (c b – b′).

• CF11 — STBREF (b′ b – b′′), equivalent to SWAP; STBREFREV.

• CF12 — a longer version of STSLICE (s b – b′).

• CF13 — STB (b′ b – b′′), appends all data from Builder b′ to Builder b.

• CF14 — STREFR (b c – b′).

90

A.6. Cell primitives

• CF15 — STBREFR (b b′ – b′′), a longer encoding of STBREFR.

• CF16 — STSLICER (b s – b′).

• CF17 — STBR (b b′ – b′′), concatenates two Builders, equivalent to SWAP;
STB.

• CF18 — STREFQ (c b – c b −1 or b′ 0).

• CF19 — STBREFQ (b′ b – b′ b −1 or b′′ 0).

• CF1A — STSLICEQ (s b – s b −1 or b′ 0).

• CF1B — STBQ (b′ b – b′ b −1 or b′′ 0).

• CF1C — STREFRQ (b c – b c −1 or b′ 0).

• CF1D — STBREFRQ (b b′ – b b′ −1 or b′′ 0).

• CF1E — STSLICERQ (b s – b s −1 or b′′ 0).

• CF1F — STBRQ (b b′ – b b′ −1 or b′′ 0).

• CF20 — STREFCONST, equivalent to PUSHREF; STREFR.

• CF21 — STREF2CONST, equivalent to STREFCONST; STREFCONST.

• CF23 — ENDXC (b x – c), if x 6= 0, creates a special or exotic cell
(cf. 3.1.2) from Builder b. The type of the exotic cell must be stored
in the first 8 bits of b. If x = 0, it is equivalent to ENDC. Otherwise
some validity checks on the data and references of b are performed
before creating the exotic cell.

• CF28 — STILE4 (x b – b′), stores a little-endian signed 32-bit integer.

• CF29 — STULE4 (x b – b′), stores a little-endian unsigned 32-bit integer.

• CF2A — STILE8 (x b – b′), stores a little-endian signed 64-bit integer.

• CF2B — STULE8 (x b – b′), stores a little-endian unsigned 64-bit integer.

• CF31 — BBITS (b – x), returns the number of data bits already stored
in Builder b.

91

A.6. Cell primitives

• CF32 — BREFS (b – y), returns the number of cell references already
stored in b.

• CF33 — BBITREFS (b – x y), returns the numbers of both data bits and
cell references in b.

• CF35 — BREMBITS (b – x′), returns the number of data bits that can
still be stored in b.

• CF36 — BREMREFS (b – y′).

• CF37 — BREMBITREFS (b – x′ y′).

• CF38cc — BCHKBITS cc + 1 (b –), checks whether cc + 1 bits can be
stored into b, where 0 ≤ cc ≤ 255.

• CF39 — BCHKBITS (b x –), checks whether x bits can be stored into b,
0 ≤ x ≤ 1023. If there is no space for x more bits in b, or if x is not
within the range 0 . . . 1023, throws an exception.

• CF3A — BCHKREFS (b y –), checks whether y references can be stored
into b, 0 ≤ y ≤ 7.

• CF3B — BCHKBITREFS (b x y –), checks whether x bits and y references
can be stored into b, 0 ≤ x ≤ 1023, 0 ≤ y ≤ 7.

• CF3Ccc — BCHKBITSQ cc+ 1 (b – ?), checks whether cc+ 1 bits can be
stored into b, where 0 ≤ cc ≤ 255.

• CF3D — BCHKBITSQ (b x – ?), checks whether x bits can be stored into
b, 0 ≤ x ≤ 1023.

• CF3E — BCHKREFSQ (b y – ?), checks whether y references can be stored
into b, 0 ≤ y ≤ 7.

• CF3F — BCHKBITREFSQ (b x y – ?), checks whether x bits and y refer-
ences can be stored into b, 0 ≤ x ≤ 1023, 0 ≤ y ≤ 7.

• CF40 — STZEROES (b n – b′), stores n binary zeroes into Builder b.

• CF41 — STONES (b n – b′), stores n binary ones into Builder b.

92

A.6. Cell primitives

• CF42 — STSAME (b n x – b′), stores n binary xes (0 ≤ x ≤ 1) into
Builder b.

• CFC0_xysss — STSLICECONST sss (b – b′), stores a constant subslice
sss consisting of 0 ≤ x ≤ 3 references and up to 8y + 1 data bits, with
0 ≤ y ≤ 7. Completion bit is assumed.

• CF81 — STSLICECONST ‘0’ (b – b′), stores one binary zero.

• CF83 — STSLICECONST ‘1’ (b – b′), stores one binary one.

• CFA2 — equivalent to STREFCONST.

• CFA3 — almost equivalent to STSLICECONST ‘1’; STREFCONST.

• CFC2 — equivalent to STREF2CONST.

• CFE2 — STREF3CONST.

A.6.2. Cell deserialization primitives.

• D0 — CTOS (c – s), converts a Cell into a Slice. Notice that c must
be either an ordinary cell, or an exotic cell (cf. 3.1.2) which is au-
tomatically loaded to yield an ordinary cell c′, converted into a Slice
afterwards.

• D1 — ENDS (s –), removes a Slice s from the stack, and throws an
exception if it is not empty.

• D2cc — LDI cc + 1 (s – x s′), loads (i.e., parses) a signed cc + 1-bit
integer x from Slice s, and returns the remainder of s as s′.

• D3cc — LDU cc + 1 (s – x s′), loads an unsigned cc + 1-bit integer x
from Slice s.

• D4 — LDREF (s – c s′), loads a cell reference c from s.

• D5 — LDREFRTOS (s – s′ s′′), equivalent to LDREF; SWAP; CTOS.

• D6cc — LDSLICE cc+1 (s – s′′ s′), cuts the next cc+1 bits of s into a
separate Slice s′′.

93

A.6. Cell primitives

• D700 — LDIX (s l – x s′), loads a signed l-bit (0 ≤ l ≤ 257) integer x
from Slice s, and returns the remainder of s as s′.

• D701 — LDUX (s l – x s′), loads an unsigned l-bit integer x from (the
first l bits of) s, with 0 ≤ l ≤ 256.

• D702 — PLDIX (s l – x), preloads a signed l-bit integer from Slice s,
for 0 ≤ l ≤ 257.

• D703 — PLDUX (s l – x), preloads an unsigned l-bit integer from s, for
0 ≤ l ≤ 256.

• D704 — LDIXQ (s l – x s′ −1 or s 0), quiet version of LDIX: loads a
signed l-bit integer from s similarly to LDIX, but returns a success flag,
equal to −1 on success or to 0 on failure (if s does not have l bits),
instead of throwing a cell underflow exception.

• D705 — LDUXQ (s l – x s′ −1 or s 0), quiet version of LDUX.

• D706 — PLDIXQ (s l – x −1 or 0), quiet version of PLDIX.

• D707 — PLDUXQ (s l – x −1 or 0), quiet version of PLDUX.

• D708cc — LDI cc+ 1 (s – x s′), a longer encoding for LDI.

• D709cc — LDU cc+ 1 (s – x s′), a longer encoding for LDU.

• D70Acc — PLDI cc+1 (s – x), preloads a signed cc+1-bit integer from
Slice s.

• D70Bcc — PLDU cc+ 1 (s – x), preloads an unsigned cc+ 1-bit integer
from s.

• D70Ccc — LDIQ cc+ 1 (s – x s′ −1 or s 0), a quiet version of LDI.

• D70Dcc — LDUQ cc+ 1 (s – x s′ −1 or s 0), a quiet version of LDU.

• D70Ecc — PLDIQ cc+ 1 (s – x −1 or 0), a quiet version of PLDI.

• D70Fcc — PLDUQ cc+ 1 (s – x −1 or 0), a quiet version of PLDU.

94

A.6. Cell primitives

• D714_c — PLDUZ 32(c + 1) (s – s x), preloads the first 32(c + 1) bits
of Slice s into an unsigned integer x, for 0 ≤ c ≤ 7. If s is shorter
than necessary, missing bits are assumed to be zero. This operation is
intended to be used along with IFBITJMP and similar instructions.

• D718 — LDSLICEX (s l – s′′ s′), loads the first 0 ≤ l ≤ 1023 bits from
Slice s into a separate Slice s′′, returning the remainder of s as s′.

• D719 — PLDSLICEX (s l – s′′), returns the first 0 ≤ l ≤ 1023 bits of s
as s′′.

• D71A — LDSLICEXQ (s l – s′′ s′ −1 or s 0), a quiet version of LDSLICEX.

• D71B — PLDSLICEXQ (s l – s′ −1 or 0), a quiet version of LDSLICEXQ.

• D71Ccc — LDSLICE cc+ 1 (s – s′′ s′), a longer encoding for LDSLICE.

• D71Dcc — PLDSLICE cc+ 1 (s – s′′), returns the first 0 < cc+ 1 ≤ 256
bits of s as s′′.

• D71Ecc — LDSLICEQ cc + 1 (s – s′′ s′ −1 or s 0), a quiet version of
LDSLICE.

• D71Fcc — PLDSLICEQ cc + 1 (s – s′′ −1 or 0), a quiet version of
PLDSLICE.

• D720 — SDCUTFIRST (s l – s′), returns the first 0 ≤ l ≤ 1023 bits of s.
It is equivalent to PLDSLICEX.

• D721 — SDSKIPFIRST (s l – s′), returns all but the first 0 ≤ l ≤ 1023
bits of s. It is equivalent to LDSLICEX; NIP.

• D722 — SDCUTLAST (s l – s′), returns the last 0 ≤ l ≤ 1023 bits of s.

• D723 — SDSKIPLAST (s l – s′), returns all but the last 0 ≤ l ≤ 1023
bits of s.

• D724 — SDSUBSTR (s l l′ – s′), returns 0 ≤ l′ ≤ 1023 bits of s starting
from offset 0 ≤ l ≤ 1023, thus extracting a bit substring out of the
data of s.

95

A.6. Cell primitives

• D726 — SDBEGINSX (s s′ – s′′), checks whether s begins with (the data
bits of) s′, and removes s′ from s on success. On failure throws a
cell deserialization exception. Primitive SDPFXREV can be considered a
quiet version of SDBEGINSX.

• D727 — SDBEGINSXQ (s s′ – s′′ −1 or s 0), a quiet version of SDBEGINSX.

• D72A_xsss— SDBEGINS (s – s′′), checks whether s begins with constant
bitstring sss of length 8x + 3 (with continuation bit assumed), where
0 ≤ x ≤ 127, and removes sss from s on success.

• D72802 — SDBEGINS ‘0’ (s – s′′), checks whether s begins with a
binary zero.

• D72806 — SDBEGINS ‘1’ (s – s′′), checks whether s begins with a
binary one.

• D72E_xsss— SDBEGINSQ (s – s′′ −1 or s 0), a quiet version of SDBEGINS.

• D730 — SCUTFIRST (s l r – s′), returns the first 0 ≤ l ≤ 1023 bits and
first 0 ≤ r ≤ 4 references of s.

• D731 — SSKIPFIRST (s l r – s′).

• D732 — SCUTLAST (s l r – s′), returns the last 0 ≤ l ≤ 1023 data bits
and last 0 ≤ r ≤ 4 references of s.

• D733 — SSKIPLAST (s l r – s′).

• D734 — SUBSLICE (s l r l′ r′ – s′), returns 0 ≤ l′ ≤ 1023 bits and
0 ≤ r′ ≤ 4 references from Slice s, after skipping the first 0 ≤ l ≤ 1023
bits and first 0 ≤ r ≤ 4 references.

• D736 — SPLIT (s l r – s′ s′′), splits the first 0 ≤ l ≤ 1023 data bits and
first 0 ≤ r ≤ 4 references from s into s′, returning the remainder of s
as s′′.

• D737 — SPLITQ (s l r – s′ s′′ −1 or s 0), a quiet version of SPLIT.

• D739 — XCTOS (c – s ?), transforms an ordinary or exotic cell into a
Slice, as if it were an ordinary cell. A flag is returned indicating whether
c is exotic. If that be the case, its type can later be deserialized from
the first eight bits of s.

96

A.6. Cell primitives

• D73A — XLOAD (c – c′), loads an exotic cell c and returns an ordinary
cell c′. If c is already ordinary, does nothing. If c cannot be loaded,
throws an exception.

• D73B — XLOADQ (c – c′ −1 or c 0), loads an exotic cell c as XLOAD, but
returns 0 on failure.

• D741 — SCHKBITS (s l –), checks whether there are at least l data bits
in Slice s. If this is not the case, throws a cell deserialisation (i.e., cell
underflow) exception.

• D742— SCHKREFS (s r –), checks whether there are at least r references
in Slice s.

• D743 — SCHKBITREFS (s l r –), checks whether there are at least l
data bits and r references in Slice s.

• D745 — SCHKBITSQ (s l – ?), checks whether there are at least l data
bits in Slice s.

• D746 — SCHKREFSQ (s r – ?), checks whether there are at least r refer-
ences in Slice s.

• D747 — SCHKBITREFSQ (s l r – ?), checks whether there are at least l
data bits and r references in Slice s.

• D749 — SBITS (s – l), returns the number of data bits in Slice s.

• D74A — SREFS (s – r), returns the number of references in Slice s.

• D74B — SBITREFS (s – l r), returns both the number of data bits and
the number of references in s.

• D750 — LDILE4 (s – x s′), loads a little-endian signed 32-bit integer.

• D751 — LDULE4 (s – x s′), loads a little-endian unsigned 32-bit integer.

• D752 — LDILE8 (s – x s′), loads a little-endian signed 64-bit integer.

• D753 — LDULE8 (s – x s′), loads a little-endian unsigned 64-bit integer.

• D754 — PLDILE4 (s – x), preloads a little-endian signed 32-bit integer.

97

A.7. Continuation and control flow primitives

• D755 — PLDULE4 (s – x), preloads a little-endian unsigned 32-bit inte-
ger.

• D756 — PLDILE8 (s – x), preloads a little-endian signed 64-bit integer.

• D757 — PLDULE8 (s – x), preloads a little-endian unsigned 64-bit inte-
ger.

• D758 — LDILE4Q (s – x s′ −1 or s 0), quietly loads a little-endian
signed 32-bit integer.

• D759 — LDULE4Q (s – x s′ −1 or s 0), quietly loads a little-endian
unsigned 32-bit integer.

• D75A — LDILE8Q (s – x s′ −1 or s 0), quietly loads a little-endian
signed 64-bit integer.

• D75B — LDULE8Q (s – x s′ −1 or s 0), quietly loads a little-endian
unsigned 64-bit integer.

• D75C — PLDILE4Q (s – x −1 or 0), quietly preloads a little-endian
signed 32-bit integer.

• D75D — PLDULE4Q (s – x −1 or 0), quietly preloads a little-endian
unsigned 32-bit integer.

• D75E — PLDILE8Q (s – x −1 or 0), quietly preloads a little-endian
signed 64-bit integer.

• D75F — PLDULE8Q (s – x −1 or 0), quietly preloads a little-endian
unsigned 64-bit integer.

• D760 — LDZEROES (s – n s′), returns the count n of leading zero bits
in s, and removes these bits from s.

• D761 — LDONES (s – n s′), returns the count n of leading one bits in s,
and removes these bits from s.

• D762 — LDSAME (s x – n s′), returns the count n of leading bits equal
to 0 ≤ x ≤ 1 in s, and removes these bits from s.

98

A.7. Continuation and control flow primitives

A.7 Continuation and control flow primitives

A.7.1. Unconditional control flow primitives.

• D8 — EXECUTE or CALLX (c –), calls or executes continuation c (i.e.,
cc← c ◦0 cc).

• D9 — JMPX (c –), jumps , or transfers control, to continuation c (i.e.,
cc ← c ◦0 c0, or rather cc ← (c ◦0 c0) ◦1 c1). The remainder of the
previous current continuation cc is discarded.

• DApr — CALLXARGS p,r (c –), calls continuation c with p parameters
and expecting r return values, 0 ≤ p ≤ 15, 0 ≤ r ≤ 15.

• DB0p — CALLXARGS p,−1 (c –), calls continuation c with 0 ≤ p ≤ 15
parameters, expecting an arbitrary number of return values.

• DB1p — JMPXARGS p (c –), jumps to continuation c, passing only the
top 0 ≤ p ≤ 15 values from the current stack to it (the remainder of
the current stack is discarded).

• DB2r — RETARGS r, returns to c0, with 0 ≤ r ≤ 15 return values taken
from the current stack.

• DB30 — RET or RETTRUE, returns to the continuation at c0 (i.e., per-
forms cc ← c0). The remainder of the current continuation cc is
discarded. Approximately equivalent to PUSH c0; JMPX.

• DB31 — RETALT or RETFALSE, returns to the continuation at c1 (i.e.,
cc← c1). Approximately equivalent to PUSH c1; JMPX.

• DB32 — BRANCH or RETBOOL (f –), performs RETTRUE if integer f 6= 0,
or RETFALSE if f = 0.

• DB34 — CALLCC (c –), call with current continuation, transfers control
to c, pushing the old value of cc into c’s stack (instead of discarding it
or writing it into new c0).

• DB35 — JMPXDATA (c –), similar to CALLCC, but the remainder of the
current continuation (the old value of cc) is converted into a Slice before
pushing it into the stack of c.

99

A.7. Continuation and control flow primitives

• DB36pr — CALLCCARGS p,r (c –), similar to CALLXARGS, but pushes
the old value of cc (along with the top 0 ≤ p ≤ 15 values from the
original stack) into the stack of newly-invoked continuation c, setting
cc.nargs to −1 ≤ r ≤ 14.

• DB38 — CALLXVARARGS (c p r –), similar to CALLXARGS, but takes
−1 ≤ p, r ≤ 254 from the stack. The next three operations also take p
and r from the stack, both in the range −1 . . . 254.

• DB39 — RETVARARGS (p r –), similar to RETARGS.

• DB3A — JMPXVARARGS (c p r –), similar to JMPXARGS.

• DB3B — CALLCCVARARGS (c p r –), similar to CALLCCARGS.

• DB3C — CALLREF, equivalent to PUSHREFCONT; CALLX.

• DB3D — JMPREF, equivalent to PUSHREFCONT; JMPX.

• DB3E — JMPREFDATA, equivalent to PUSHREFCONT; JMPXDATA.

• DB3F — RETDATA, equivalent to PUSH c0; JMPXDATA. In this way, the
remainder of the current continuation is converted into a Slice and
returned to the caller.

A.7.2. Conditional control flow primitives.

• DC — IFRET (f –), performs a RET, but only if integer f is non-zero.
If f is a NaN, throws an integer overflow exception.

• DD — IFNOTRET (f –), performs a RET, but only if integer f is zero.

• DE — IF (f c –), performs EXECUTE for c (i.e., executes c), but only if
integer f is non-zero. Otherwise simply discards both values.

• DF — IFNOT (f c –), executes continuation c, but only if integer f is
zero. Otherwise simply discards both values.

• E0 — IFJMP (f c –), jumps to c (similarly to JMPX), but only if f is
non-zero.

• E1 — IFNOTJMP (f c –), jumps to c (similarly to JMPX), but only if f
is zero.

100

A.7. Continuation and control flow primitives

• E2 — IFELSE (f c c′ –), if integer f is non-zero, executes c, otherwise
executes c′. Equivalent to CONDSELCHK; EXECUTE.

• E300 — IFREF (f –), equivalent to PUSHREFCONT; IF.

• E301 — IFNOTREF (f –), equivalent to PUSHREFCONT; IFNOT.

• E302 — IFJMPREF (f –), equivalent to PUSHREFCONT; IFJMP.

• E303 — IFNOTJMPREF (f –), equivalent to PUSHREFCONT; IFNOTJMP.

• E304 — CONDSEL (f x y – x or y), if integer f is non-zero, returns x,
otherwise returns y. Notice that no type checks are performed on x
and y; as such, it is more like a conditional stack operation. Roughly
equivalent to ROT; ISZERO; INC; ROLL; NIP.

• E305 — CONDSELCHK (f x y – x or y), same as CONDSEL, but first checks
whether x and y have the same type.

• E308 — IFRETALT (f –), performs RETALT if integer f 6= 0.

• E309 — IFNOTRETALT (f –), performs RETALT if integer f = 0.

• E39_n — IFBITJMP n (x c – x), checks whether bit 0 ≤ n ≤ 31 is set
in integer x, and if so, performs JMPX to continuation c. Value x is left
in the stack.

• E3B_n — IFNBITJMP n (x c – x), jumps to c if bit 0 ≤ n ≤ 31 is not
set in integer x.

• E3D_n — IFBITJMPREF n (x – x), performs a JMPREF if bit 0 ≤ n ≤ 31
is set in integer x.

• E3F_n— IFNBITJMPREF n (x – x), performs a JMPREF if bit 0 ≤ n ≤ 31
is not set in integer x.

A.7.3. Control flow primitives: loops. Most of the loop primitives listed
below are implemented with the aid of extraordinary continuations, such as
ec_until (cf. 4.1.5), with the loop body and the original current continua-
tion cc stored as the arguments to this extraordinary continuation. Typically
a suitable extraordinary continuation is constructed, and then saved into the
loop body continuation savelist as c0; after that, the modified loop body
continuation is loaded into cc and executed in the usual fashion.

101

A.7. Continuation and control flow primitives

• E4 — REPEAT (n c –), executes continuation c n times, if integer n
is non-negative. If n ≥ 231 or n < −231, generates a range check
exception. Notice that a RET inside the code of c works as a continue,
not as a break. One should use either alternative (experimental) loops
or alternative RETALT (along with a SETEXITALT before the loop) to
break out of a loop.

• E5 — REPEATEND (n –), similar to REPEAT, but it is applied to the
current continuation cc.

• E6 — UNTIL (c –), executes continuation c, then pops an integer x
from the resulting stack. If x is zero, performs another iteration of
this loop. The actual implementation of this primitive involves an
extraordinary continuation ec_until (cf. 4.1.5) with its arguments
set to the body of the loop (continuation c) and the original current
continuation cc. This extraordinary continuation is then saved into
the savelist of c as c.c0 and the modified c is then executed. The
other loop primitives are implemented similarly with the aid of suitable
extraordinary continuations.

• E7 — UNTILEND (–), similar to UNTIL, but executes the current contin-
uation cc in a loop. When the loop exit condition is satisfied, performs
a RET.

• E8 — WHILE (c′ c –), executes c′ and pops an integer x from the
resulting stack. If x is zero, exists the loop and transfers control to
the original cc. If x is non-zero, executes c, and then begins a new
iteration.

• E9 — WHILEEND (c′ –), similar to WHILE, but uses the current continu-
ation cc as the loop body.

• EA — AGAIN (c –), similar to REPEAT, but executes c infinitely many
times. A RET only begins a new iteration of the infinite loop, which can
be exited only by an exception, or a RETALT (or an explicit JMPX).

• EB — AGAINEND (–), similar to AGAIN, but performed with respect to
the current continuation cc.

A.7.4. Manipulating the stack of continuations.

102

A.7. Continuation and control flow primitives

• ECrn — SETCONTARGS r,n (x1 x2. . .xr c – c′), similar to SETCONTARGS
r, but sets c.nargs to the final size of the stack of c′ plus n. In other
words, transforms c into a closure or a partially applied function, with
0 ≤ n ≤ 14 arguments missing.

• EC0n — SETNUMARGS n or SETCONTARGS 0,n (c – c′), sets c.nargs to
n plus the current depth of c’s stack, where 0 ≤ n ≤ 14. If c.nargs is
already set to a non-negative value, does nothing.

• ECrF — SETCONTARGS r or SETCONTARGS r,−1 (x1 x2. . .xr c – c′),
pushes 0 ≤ r ≤ 15 values x1 . . . xr into the stack of (a copy of) the
continuation c, starting with x1. If the final depth of c’s stack turns
out to be greater than c.nargs, a stack overflow exception is generated.

• ED0p — RETURNARGS p (–), leaves only the top 0 ≤ p ≤ 15 values
in the current stack (somewhat similarly to ONLYTOPX), with all the
unused bottom values not discarded, but saved into continuation c0 in
the same way as SETCONTARGS does.

• ED10— RETURNVARARGS (p –), similar to RETURNARGS, but with Integer
0 ≤ p ≤ 255 taken from the stack.

• ED11— SETCONTVARARGS (x1 x2. . .xr c r n – c′), similar to SETCONTARGS,
but with 0 ≤ r ≤ 255 and −1 ≤ n ≤ 255 taken from the stack.

• ED12 — SETNUMVARARGS (c n – c′), where −1 ≤ n ≤ 255. If n = −1,
this operation does nothing (c′ = c). Otherwise its action is similar to
SETNUMARGS n, but with n taken from the stack.

A.7.5. Creating simple continuations and closures.

• ED1E — BLESS (s – c), transforms a Slice s into a simple ordinary
continuation c, with c.code = s and an empty stack and savelist.

• ED1F — BLESSVARARGS (x1. . .xr s r n – c), equivalent to ROT; BLESS;
ROTREV; SETCONTVARARGS.

• EErn — BLESSARGS r, n (x1. . .xr s – c), where 0 ≤ r ≤ 15, −1 ≤
n ≤ 14, equivalent to BLESS; SETCONTARGS r, n. The value of n is
represented inside the instruction by the 4-bit integer n mod 16.

103

A.7. Continuation and control flow primitives

• EE0n — BLESSNUMARGS n or BLESSARGS 0,n (s – c), also transforms a
Slice s into a Continuation c, but sets c.nargs to 0 ≤ n ≤ 14.

A.7.6. Operations with continuation savelists and control registers.

• ED4i — PUSH c(i) or PUSHCTR c(i) (– x), pushes the current value of
control register c(i). If the control register is not supported in the cur-
rent codepage, or if it does not have a value, an exception is triggered.

• ED44 — PUSH c4 or PUSHROOT, pushes the “global data root” cell refer-
ence, thus enabling access to persistent smart-contract data.

• ED5i — POP c(i) or POPCTR c(i) (x –), pops a value x from the stack
and stores it into control register c(i), if supported in the current code-
page. Notice that if a control register accepts only values of a specific
type, a type-checking exception may occur.

• ED54 — POP c4 or POPROOT, sets the “global data root” cell reference,
thus allowing modification of persistent smart-contract data.

• ED6i — SETCONT c(i) or SETCONTCTR c(i) (x c – c′), stores x into the
savelist of continuation c as c(i), and returns the resulting continuation
c′. Almost all operations with continuations may be expressed in terms
of SETCONTCTR, POPCTR, and PUSHCTR.

• ED7i — SETRETCTR c(i) (x –), equivalent to PUSH c0; SETCONTCTR
c(i); POP c0.

• ED8i — SETALTCTR c(i) (x –), equivalent to PUSH c1; SETCONTCTR
c(i); POP c0.

• ED9i — POPSAVE c(i) or POPCTRSAVE c(i) (x –), similar to POP c(i),
but also saves the old value of c(i) into continuation c0. Equivalent
(up to exceptions) to SAVECTR c(i); POP c(i).

• EDAi — SAVE c(i) or SAVECTR c(i) (–), saves the current value of
c(i) into the savelist of continuation c0. If an entry for c(i) is already
present in the savelist of c0, nothing is done. Equivalent to PUSH c(i);
SETRETCTR c(i).

• EDBi — SAVEALT c(i) or SAVEALTCTR c(i) (x –), similar to SAVE c(i),
but saves the current value of c(i) into the savelist of c1, not c0.

104

A.7. Continuation and control flow primitives

• EDCi — SAVEBOTH c(i) or SAVEBOTHCTR c(i) (x –), equivalent to DUP;
SAVE c(i); SAVEALT c(i).

• EDE0 — PUSHCTRX (i – x), similar to PUSHCTR c(i), but with i, 0 ≤ i ≤
255, taken from the stack. Notice that this primitive is one of the few
“exotic” primitives, which are not polymorphic like stack manipulation
primitives, and at the same time do not have well-defined types of
parameters and return values, because the type of x depends on i.

• EDE1 — POPCTRX (x i –), similar to POPCTR c(i), but with 0 ≤ i ≤ 255
from the stack.

• EDE2 — SETCONTCTRX (x c i – c′), similar to SETCONTCTR c(i), but with
0 ≤ i ≤ 255 from the stack.

• EDF0 — COMPOS or BOOLAND (c c′ – c′′), computes the composition c◦0c′,
which has the meaning of “perform c, and, if successful, perform c′” (if
c is a boolean circuit) or simply “perform c, then c′”. Equivalent to
SWAP; SETCONT c0.

• EDF1 — COMPOSALT or BOOLOR (c c′ – c′′), computes the alternative
composition c ◦1 c′, which has the meaning of “perform c, and, if not
successful, perform c′” (if c is a boolean circuit). Equivalent to SWAP;
SETCONT c1.

• EDF2 — COMPOSBOTH (c c′ – c′′), computes (c ◦0 c′) ◦1 c′, which has the
meaning of “compute boolean circuit c, then compute c′, regardless of
the result of c”.

• EDF3 — ATEXIT (c –), sets c0 ← c ◦0 c0. In other words, c will be
executed before exiting current subroutine.

• EDF4 — ATEXITALT (c –), sets c1 ← c ◦1 c1. In other words, c will
be executed before exiting current subroutine by its alternative return
path.

• EDF5 — SETEXITALT (c –), sets c1 ← (c ◦0 c0) ◦1 c1. In this way,
a subsequent RETALT will first execute c, then transfer control to the
original c0. This can be used, for instance, to exit from nested loops.

• EDF6 — THENRET (c – c′), computes c′ := c ◦0 c0

105

A.8. Exception generating and handling primitives

• EDF7 — THENRETALT (c – c′), computes c′ := c ◦0 c1

• EDF8 — INVERT (–), interchanges c0 and c1.

• EDF9 — BOOLEVAL (c – ?), performs cc ←
(
c ◦0 ((PUSH − 1) ◦0 cc)

)
◦1

((PUSH 0) ◦0 cc). If c represents a boolean circuit, the net effect is to
evaluate it and push either −1 or 0 into the stack before continuing.

• EErn — BLESSARGS r, n (x1. . .xr s – c), described in A.7.4.

A.7.7. Dictionary subroutine calls and jumps.

• F0n— CALL n or CALLDICT n (– n), calls the continuation in c3, push-
ing integer 0 ≤ n ≤ 255 into its stack as an argument. Approximately
equivalent to PUSHINT n; PUSH c3; EXECUTE.

• F12_n — CALL n for 0 ≤ n < 214 (– n), an encoding of CALL n for
larger values of n.

• F16_n — JMP n or JMPDICT n (– n), jumps to the continuation in c3,
pushing integer 0 ≤ n < 214 as its argument. Approximately equivalent
to PUSHINT n; PUSH c3; JMPX.

• F1A_n — PREPARE n (– n c), equivalent to PUSHINT n; PUSH c3,
for 0 ≤ n < 214. In this way, CALL n is approximately equivalent
to PREPARE n; EXECUTE, and JMP n is approximately equivalent to
PREPARE n; JMPX. One might use, for instance, CALLARGS or CALLCC
instead of EXECUTE here.

A.8 Exception generating and handling primitives

A.8.1. Throwing exceptions.

• F22_nn — THROW nn (– 0 nn), throws exception 0 ≤ nn ≤ 63 with
parameter zero. In other words, it transfers control to the continuation
in c2, pushing 0 and nn into its stack, and discarding the old stack
altogether.

• F26_nn — THROWIF nn (f –), throws exception 0 ≤ nn ≤ 63 with
parameter zero only if integer f 6= 0.

106

A.8. Exception generating and handling primitives

• F2A_nn — THROWIFNOT nn (f –), throws exception 0 ≤ nn ≤ 63 with
parameter zero only if integer f = 0.

• F2C4_nn — THROW nn for 0 ≤ nn < 211, an encoding of THROW nn for
larger values of nn.

• F2CC_nn — THROWARG nn (x – x nn), throws exception 0 ≤ nn <
211 with parameter x, by copying x and nn into the stack of c2 and
transferring control to c2.

• F2D4_nn — THROWIF nn (f –) for 0 ≤ nn < 211.

• F2DC_nn — THROWARGIF nn (x f –), throws exception 0 ≤ nn < 211

with parameter x only if integer f 6= 0.

• F2E4_nn — THROWIFNOT nn (f –) for 0 ≤ nn < 211.

• F2EC_nn — THROWARGIFNOT nn (x f –), throws exception 0 ≤ nn <
211 with parameter x only if integer f = 0.

• F2F0— THROWANY (n – 0 n), throws exception 0 ≤ n < 216 with parame-
ter zero. Approximately equivalent to PUSHINT 0; SWAP; THROWARGANY.

• F2F1 — THROWARGANY (x n – x n), throws exception 0 ≤ n < 216 with
parameter x, transferring control to the continuation in c2. Approxi-
mately equivalent to PUSH c2; JMPXARGS 2.

• F2F2 — THROWANYIF (n f –), throws exception 0 ≤ n < 216 with
parameter zero only if f 6= 0.

• F2F3 — THROWARGANYIF (x n f –), throws exception 0 ≤ n < 216 with
parameter x only if f 6= 0.

• F2F4 — THROWANYIFNOT (n f –), throws exception 0 ≤ n < 216 with
parameter zero only if f = 0.

• F2F5 — THROWARGANYIFNOT (x n f –), throws exception 0 ≤ n < 216

with parameter x only if f = 0.

A.8.2. Catching and handling exceptions.

107

A.9. Dictionary manipulation primitives

• F2FF — TRY (c c′ –), sets c2 to c′, first saving the old value of c2 both
into the savelist of c′ and into the savelist of the current continuation,
which is stored into c.c0 and c′.c0. Then runs c similarly to EXECUTE.
If c does not throw any exceptions, the original value of c2 is automati-
cally restored on return from c. If an exception occurs, the execution is
transferred to c′, but the original value of c2 is restored in the process,
so that c′ can re-throw the exception by THROWANY if it cannot handle
it by itself.

• F3pr — TRYARGS p,r (c c′ –), similar to TRY, but with CALLARGS
p,r internally used instead of EXECUTE. In this way, all but the top
0 ≤ p ≤ 15 stack elements will be saved into current continuation’s
stack, and then restored upon return from either c or c′, with the top
0 ≤ r ≤ 15 values of the resulting stack of c or c′ copied as return
values.

A.9 Dictionary manipulation primitives

TVM’s dictionary support is discussed at length in 3.3. The basic opera-
tions with dictionaries are listed in 3.3.10, while the taxonomy of dictionary
manipulation primitives is provided in 3.3.11. Here we use the concepts and
notation introduced in those sections.

A.9.1. Dictionary creation.

• 8B04 — NEWDICT (– s), returns a Slice representing a new empty
dictionary. It is an alternative mnemonics for PUSHSLICE x4.

• F400 — DICTEMPTY (s – ?), returns a flag indicating whether a dictio-
nary is empty. Equivalent to PLDU 1; DEC.

A.9.2. Dictionary serialization and deserialization.

• CE — STDICT (s b – b′), stores dictionary s into Builder b, returing the
resulting Builder b′. It is actually a synonym for STSLICE.

• F401 — SKIPDICT or SKIPOPTREF (s – s′), equivalent to LDDICT; NIP.

• F402 — LDOPTREF (s – s′ c −1 or s′ 0), performs LDI 1, and then a
LDREF if the previous operation returns −1. May be applied to dictio-
naries or to values of arbitrary (ˆY)? types.

108

A.9. Dictionary manipulation primitives

• F403 — PLDOPTREF (s – c −1 or 0), similar to LDOPTREF, but does not
return the remainder of Slice s.

• F404 — LDDICT (s – s′ s′′), loads (parses) a dictionary s′ from Slice s,
and returns the remainder of s as s′′. This is a “split function” for all
HashmapE(n,X) dictionary types.

• F405 — PLDDICT (s – s′), preloads a dictionary s′ from Slice s. Ap-
proximately equivalent to LDDICT; DROP.

• F406 — LDDICTQ (s – s′ s′′ −1 or s 0), a quiet version of LDDICT.

• F407 — PLDDICTQ (s – s′ −1 or 0), a quiet version of PLDDICT.

A.9.3. Get dictionary operations.

• F40A — DICTGET (k s n – x −1 or 0), looks up key k (represented by
a Slice, the first 0 ≤ n ≤ 1023 data bits of which are used as a key)
in dictionary s of type HashmapE(n,X) with n-bit keys. On success,
returns the value found as a Slice x.

• F40B — DICTGETREF (k s n – c −1 or 0), similar to DICTGET, but with
a LDREF; ENDS applied to x on success. This operation is useful for
dictionaries of type HashmapE(n, ˆY).

• F40C — DICTIGET (i s n – x −1 or 0), similar to DICTGET, but with
a signed (big-endian) n-bit Integer i as a key. If i does not fit into n
bits, returns 0. If i is a NaN, throws an integer overflow exception.

• F40D — DICTIGETREF (i s n – c −1 or 0), combines DICTIGET with
DICTGETREF: it uses signed n-bit Integer i as a key and returns a Cell
instead of a Slice on success.

• F40E — DICTUGET (i s n – x −1 or 0), similar to DICTIGET, but with
unsigned (big-endian) n-bit Integer i used as a key.

• F40F — DICTUGETREF (i s n – c −1 or 0), similar to DICTIGETREF, but
with an unsigned n-bit Integer key i.

A.9.4. Set/Replace/Add dictionary operations. The mnemonics of
the following dictionary primitives are constructed in a systematic fashion
according to the regular expression DICT[, I, U](SET, REPLACE, ADD)[GET][REF]

109

A.9. Dictionary manipulation primitives

depending on the type of the key used (a Slice or a signed or unsigned
Integer), the dictionary operation to be performed, and the way the values
are accepted and returned (as Cells or as Slices). Therefore, we provide a
detailed description only for some primitives, assuming that this information
is sufficient for the reader to understand the precise action of the remaining
primitives.

• F412 — DICTSET (x k s n – s′), sets the value associated with n-bit
key k (represented by a Slice as in DICTGET) in dictionary s (also rep-
resented by a Slice) to value x (again a Slice), and returns the resulting
dictionary as s′.

• F413 — DICTSETREF (c k s n – s′), similar to DICTSET, but with the
value set to a reference to Cell c.

• F414 — DICTISET (x i s n – s′), similar to DICTSET, but with the key
represented by a (big-endian) signed n-bit integer i. If i does not fit
into n bits, a range check exception is generated.

• F415 — DICTISETREF (c i s n – s′), similar to DICTSETREF, but with
the key a signed n-bit integer as in DICTISET.

• F416 — DICTUSET (x i s n – s′), similar to DICTISET, but with i an
unsigned n-bit integer.

• F417 — DICTUSETREF (c i s n – s′), similar to DICTISETREF, but with
i unsigned.

• F41A — DICTSETGET (x k s n – s′ y −1 or s′ 0), combines DICTSET
with DICTGET: it sets the value corresponding to key k to x, but also
returns the old value y associated with the key in question, if present.

• F41B— DICTSETGETREF (c k s n – s′ c′ −1 or s′ 0), combines DICTSETREF
with DICTGETREF similarly to DICTSETGET.

• F41C — DICTISETGET (x i s n – s′ y −1 or s′ 0), similar to DICTSETGET,
but with the key represented by a big-endian signed n-bit Integer i.

• F41D — DICTISETGETREF (c i s n – s′ c′ −1 or s′ 0), a version of
DICTSETGETREF with signed Integer i as a key.

110

A.9. Dictionary manipulation primitives

• F41E— DICTUSETGET (x i s n – s′ y −1 or s′ 0), similar to DICTISETGET,
but with i an unsigned n-bit integer.

• F41F — DICTUSETGETREF (c i s n – s′ c′ −1 or s′ 0).

• F422 — DICTREPLACE (x k s n – s′ −1 or s 0), a Replace operation,
which is similar to DICTSET, but sets the value of key k in dictionary s
to x only if the key k was already present in s.

• F423 — DICTREPLACEREF (c k s n – s′ −1 or s 0), a Replace coun-
terpart of DICTSETREF.

• F424— DICTIREPLACE (x i s n – s′ −1 or s 0), a version of DICTREPLACE
with signed n-bit Integer i used as a key.

• F425 — DICTIREPLACEREF (c i s n – s′ −1 or s 0).

• F426 — DICTUREPLACE (x i s n – s′ −1 or s 0).

• F427 — DICTUREPLACEREF (c i s n – s′ −1 or s 0).

• F42A — DICTREPLACEGET (x k s n – s′ y −1 or s 0), a Replace coun-
terpart of DICTSETGET: on success, also returns the old value associated
with the key in question.

• F42B — DICTREPLACEGETREF (c k s n – s′ c′ −1 or s 0).

• F42C — DICTIREPLACEGET (x i s n – s′ y −1 or s 0).

• F42D — DICTIREPLACEGETREF (c i s n – s′ c′ −1 or s 0).

• F42E — DICTUREPLACEGET (x i s n – s′ y −1 or s 0).

• F42F — DICTUREPLACEGETREF (c i s n – s′ c′ −1 or s 0).

• F432 — DICTADD (x k s n – s′ −1 or s 0), an Add counterpart of
DICTSET: sets the value associated with key k in dictionary s to x, but
only if it is not already present in s.

• F433 — DICTADDREF (c k s n – s′ −1 or s 0).

• F434 — DICTIADD (x i s n – s′ −1 or s 0).

111

A.9. Dictionary manipulation primitives

• F435 — DICTIADDREF (c i s n – s′ −1 or s 0).

• F436 — DICTUADD (x i s n – s′ −1 or s 0).

• F437 — DICTUADDREF (c i s n – s′ −1 or s 0).

• F43A — DICTADDGET (x k s n – s′ −1 or s y 0), an Add counterpart
of DICTSETGET: sets the value associated with key k in dictionary s to
x, but only if key k is not already present in s. Otherwise, just returns
the old value y without changing the dictionary.

• F43B — DICTADDGETREF (c k s n – s′ −1 or s c′ 0), an Add counterpart
of DICTSETGETREF.

• F43C — DICTIADDGET (x i s n – s′ −1 or s y 0).

• F43D — DICTIADDGETREF (c i s n – s′ −1 or s c′ 0).

• F43E — DICTUADDGET (x i s n – s′ −1 or s y 0).

• F43F — DICTUADDGETREF (c i s n – s′ −1 or s c′ 0).

A.9.5. Builder-accepting variants of Set dictionary operations. The
following primitives accept the new value as a Builder b instead of a Slice x,
which often is more convenient if the value needs to be serialized from several
components computed in the stack. (This is reflected by appending a B to
the mnemonics of the corresponding Set primitives that work with Slices.)
The net effect is roughly equivalent to converting b into a Slice by ENDC; CTOS
and executing the corresponding primitive listed in A.9.4.

• F441 — DICTSETB (b k s n – s′).

• F442 — DICTISETB (b i s n – s′).

• F443 — DICTUSETB (b i s n – s′).

• F445 — DICTSETGETB (b k s n – s′ y −1 or s′ 0).

• F446 — DICTISETGETB (b i s n – s′ y −1 or s′ 0).

• F447 — DICTUSETGETB (b i s n – s′ y −1 or s′ 0).

• F449 — DICTREPLACEB (b k s n – s′ −1 or s 0).

112

A.9. Dictionary manipulation primitives

• F44A — DICTIREPLACEB (b i s n – s′ −1 or s 0).

• F44B — DICTUREPLACEB (b i s n – s′ −1 or s 0).

• F44D — DICTREPLACEGETB (b k s n – s′ y −1 or s 0).

• F44E — DICTIREPLACEGETB (b i s n – s′ y −1 or s 0).

• F44F — DICTUREPLACEGETB (b i s n – s′ y −1 or s 0).

• F451 — DICTADDB (b k s n – s′ −1 or s 0).

• F452 — DICTIADDB (b i s n – s′ −1 or s 0).

• F453 — DICTUADDB (b i s n – s′ −1 or s 0).

• F455 — DICTADDGETB (b k s n – s′ −1 or s y 0).

• F456 — DICTIADDGETB (b i s n – s′ −1 or s y 0).

• F457 — DICTUADDGETB (b i s n – s′ −1 or s y 0).

A.9.6. Delete dictionary operations.

• F459— DICTDEL (k s n – s′ −1 or s 0), deletes n-bit key, represented by
a Slice k, from dictionary s. If the key is present, returns the modified
dictionary s′ and the success flag −1. Otherwise, returns the original
dictionary s and 0.

• F45A — DICTIDEL (i s n – s′ ?), a version of DICTDEL with the key
represented by a signed n-bit Integer i. If i does not fit into n bits,
simply returns s 0 (“key not found, dictionary unmodified”).

• F45B — DICTUDEL (i s n – s′ ?), similar to DICTIDEL, but with i an
unsigned n-bit integer.

• F462 — DICTDELGET (k s n – s′ x −1 or s 0), deletes n-bit key, repre-
sented by a Slice k, from dictionary s. If the key is present, returns the
modified dictionary s′, the original value x associated with the key k
(represented by a Slice), and the success flag −1. Otherwise, returns
the original dictionary s and 0.

113

A.9. Dictionary manipulation primitives

• F463 — DICTDELGETREF (k s n – s′ c −1 or s 0), similar to DICTDELGET,
but with LDREF; ENDS applied to x on success, so that the value re-
turned c is a Cell.

• F464 — DICTIDELGET (i s n – s′ x −1 or s 0), a variant of primitive
DICTDELGET with signed n-bit integer i as a key.

• F465 — DICTIDELGETREF (i s n – s′ c −1 or s 0), a variant of primitive
DICTIDELGET returning a Cell instead of a Slice.

• F466 — DICTUDELGET (i s n – s′ x −1 or s 0), a variant of primitive
DICTDELGET with unsigned n-bit integer i as a key.

• F467 — DICTUDELGETREF (i s n – s′ c −1 or s 0), a variant of primitive
DICTUDELGET returning a Cell instead of a Slice.

A.9.7. Prefix code dictionary operations. These are some basic op-
erations for constructing prefix code dictionaries (cf. 3.4.2). The primary
application for prefix code dictionaries is deserializing TL-B serialized data
structures, or, more generally, parsing prefix codes. Therefore, most prefix
code dictionaries will be constant and created at compile time, not by the
following primitives.

Some Get operations for prefix code dictionaries may be found inA.9.10.
Other prefix code dictionary operations include:

• F470 — PFXDICTSET (x k s n – s′ −1 or s 0).

• F471 — PFXDICTREPLACE (x k s n – s′ −1 or s 0).

• F472 — PFXDICTADD (x k s n – s′ −1 or s 0).

• F473 — PFXDICTDEL (k s n – s′ −1 or s 0).

These primitives are completely similar to their non-prefix code counterparts
DICTSET etc (cf. A.9.4), with the obvious difference that even a Set may fail
in a prefix code dictionary, so a success flag must be returned by PFXDICTSET
as well.

A.9.8. Variants of GetNext and GetPrev operations.

114

A.9. Dictionary manipulation primitives

• F474— DICTGETNEXT (k s n – x′ k′ −1 or 0), computes the minimal key
k′ in dictionary s that is lexicographically greater than k, and returns k′
(represented by a Slice) along with associated value x′ (also represented
by a Slice).

• F475— DICTGETNEXTEQ (k s n – x′ k′ −1 or 0), similar to DICTGETNEXT,
but computes the minimal key k′ that is lexicographically greater than
or equal to k.

• F476 — DICTGETPREV (k s n – x′ k′ −1 or 0), similar to DICTGETNEXT,
but computes the maximal key k′ lexicographically smaller than k.

• F477— DICTGETPREVEQ (k s n – x′ k′ −1 or 0), similar to DICTGETPREV,
but computes the maximal key k′ lexicographically smaller than or
equal to k.

• F478 — DICTIGETNEXT (i s n – x′ i′ −1 or 0), similar to DICTGETNEXT,
but interprets all keys in dictionary s as big-endian signed n-bit in-
tegers, and computes the minimal key i′ that is larger than Integer i
(which does not necessarily fit into n bits).

• F479 — DICTIGETNEXTEQ (i s n – x′ i′ −1 or 0).

• F47A — DICTIGETPREV (i s n – x′ i′ −1 or 0).

• F47B — DICTIGETPREVEQ (i s n – x′ i′ −1 or 0).

• F47C — DICTUGETNEXT (i s n – x′ i′ −1 or 0), similar to DICTGETNEXT,
but interprets all keys in dictionary s as big-endian unsigned n-bit
integers, and computes the minimal key i′ that is larger than Integer i
(which does not necessarily fit into n bits, and is not necessarily non-
negative).

• F47D — DICTUGETNEXTEQ (i s n – x′ i′ −1 or 0).

• F47E — DICTUGETPREV (i s n – x′ i′ −1 or 0).

• F47F — DICTUGETPREVEQ (i s n – x′ i′ −1 or 0).

A.9.9. GetMin, GetMax, RemoveMin, RemoveMax operations.

115

A.9. Dictionary manipulation primitives

• F482 — DICTMIN (s n – x k −1 or 0), computes the minimal key k
(represented by a Slice with n data bits) in dictionary s, and returns k
along with the associated value x.

• F483— DICTMINREF (s n – c k −1 or 0), similar to DICTMIN, but returns
the only reference in the value as a Cell c.

• F484 — DICTIMIN (s n – x i −1 or 0), somewhat similar to DICTMIN,
but computes the minimal key i under the assumption that all keys
are big-endian signed n-bit integers. Notice that the key and value
returned may differ from those computed by DICTMIN and DICTUMIN.

• F485 — DICTIMINREF (s n – c i −1 or 0).

• F486 — DICTUMIN (s n – x i −1 or 0), similar to DICTMIN, but returns
the key as an unsigned n-bit Integer i.

• F487 — DICTUMINREF (s n – c i −1 or 0).

• F48A — DICTMAX (s n – x k −1 or 0), computes the maximal key k
(represented by a Slice with n data bits) in dictionary s, and returns k
along with the associated value x.

• F48B — DICTMAXREF (s n – c k −1 or 0).

• F48C — DICTIMAX (s n – x i −1 or 0).

• F48D — DICTIMAXREF (s n – c i −1 or 0).

• F48E — DICTUMAX (s n – x i −1 or 0).

• F48F — DICTUMAXREF (s n – c i −1 or 0).

• F492 — DICTREMMIN (s n – s′ x k −1 or s 0), computes the minimal
key k (represented by a Slice with n data bits) in dictionary s, removes
k from the dictionary, and returns k along with the associated value x
and the modified dictionary s′.

• F493 — DICTREMMINREF (s n – s′ c k −1 or s 0), similar to DICTREMMIN,
but returns the only reference in the value as a Cell c.

116

A.9. Dictionary manipulation primitives

• F494 — DICTIREMMIN (s n – s′ x i −1 or s 0), somewhat similar to
DICTREMMIN, but computes the minimal key i under the assumption
that all keys are big-endian signed n-bit integers. Notice that the key
and value returned may differ from those computed by DICTREMMIN and
DICTUREMMIN.

• F495 — DICTIREMMINREF (s n – s′ c i −1 or s 0).

• F496 — DICTUREMMIN (s n – s′ x i −1 or s 0), similar to DICTREMMIN,
but returns the key as an unsigned n-bit Integer i.

• F497 — DICTUREMMINREF (s n – s′ c i −1 or s 0).

• F49A — DICTREMMAX (s n – s′ x k −1 or s 0), computes the maximal
key k (represented by a Slice with n data bits) in dictionary s, removes
k from the dictionary, and returns k along with the associated value x
and the modified dictionary s′.

• F49B — DICTREMMAXREF (s n – s′ c k −1 or s 0).

• F49C — DICTIREMMAX (s n – s′ x i −1 or s 0).

• F49D — DICTIREMMAXREF (s n – s′ c i −1 or s 0).

• F49E — DICTUREMMAX (s n – s′ x i −1 or s 0).

• F49F — DICTUREMMAXREF (s n – s′ c i −1 or s 0).

A.9.10. Special Get dictionary and prefix code dictionary opera-
tions, and constant dictionaries.

• F4A0 — DICTIGETJMP (i s n –), similar to DICTIGET (cf. A.9.3), but
with s′ BLESSed into a continuation with a subsequent JMPX to it on
success. On failure, does nothing. This is useful for implementing
switch/case constructions.

• F4A1 — DICTUGETJMP (i s n –), similar to DICTIGETJMP, but performs
DICTUGET instead of DICTIGET.

• F4A2 — DICTIGETEXEC (i s n –), similar to DICTIGETJMP, but with
EXECUTE instead of JMPX.

117

A.10. Application-specific primitives

• F4A3 — DICTUGETEXEC (i s n –), similar to DICTUGETJMP, but with
EXECUTE instead of JMPX.

• F4A6_n — DICTPUSHCONST n (– s n), pushes a non-empty constant
dictionary s (as a Slice) along with its key length 0 ≤ n ≤ 1023,
stored as a part of the instruction. The dictionary itself is created from
the first of remaining references of the current continuation. In this
way, the complete DICTPUSHCONST instruction can be obtained by first
serializing xF4A8_, then the non-empty dictionary itself (one 1 bit and
a cell reference), and then the unsigned 10-bit integer n (as if by a STU
10 instruction). An empty dictionary can be pushed by a NEWDICT
primitive (cf. A.9.1) instead.

• F4A8 — PFXDICTGETQ (s′ s n – s′′ x s′′′ −1 or s′ 0), looks up the
unique prefix of Slice s′ present in the prefix code dictionary (cf. 3.4.2)
represented by Slice s and 0 ≤ n ≤ 1023. If found, the prefix of s′ is
returned as s′′, and the corresponding value (also a Slice) as x. The
remainder of s′ is returned as a Slice s′′′. If no prefix of s′ is a key in
prefix code dictionary s, returns the unchanged s′ and a zero failure
flag.

• F4A9 — PFXDICTGET (s′ s n – s′′ x s′′′), similar to PFXDICTGET, but
throws a cell deserialization failure exception on failure.

• F4AA — PFXDICTGETJMP (s′ s n – s′′ s′′′ or s′), similar to PFXDICTGETQ,
but on success BLESSes the value x into a Continuation and transfers
control to it as if by a JMPX. On failure, returns s′ unchanged and
continues execution.

• F4AB — PFXDICTGETEXEC (s′ s n – s′′ s′′′), similar to PFXDICTGETJMP,
but EXECutes the continuation found instead of jumping to it. On
failure, throws a cell deserialization exception.

• F4AE_n— PFXDICTCONSTGETJMP n or PFXDICTSWITCH n (s′ – s′′ s′′′ or
s′), combines DICTPUSHCONST n for 0 ≤ n ≤ 1023 with PFXDICTGETJMP.

A.10 Application-specific primitives

Opcode range F8. . . FB is reserved for the application-specific primitives. When
TVM is used to execute TON Blockchain smart contracts, these application-

118

A.10. Application-specific primitives

specific primitives are in fact TON Blockchain-specific.

A.10.1. External actions and access to blockchain configuration
data. Some of the primitives listed below pretend to produce some exter-
nally visible actions, such as sending a message to another smart contract.
In fact, the execution of a smart contract in TVM never has any effect apart
from a modification of the TVM state. All external actions are collected into
a linked list stored in special register c6 (“output actions”). Additionally,
some primitives use the data kept in the first reference of a Cell stored in
c5 (“root of temporary data”, cf. 1.3.2). Smart contracts are free to modify
any other data kept in the cell c5, provided the first reference remains in-
tact (otherwise some application-specific primitives would be likely to throw
exceptions when invoked).

Most of the primitives listed below use 16-bit opcodes.

A.10.2. Gas-related primitives. Of the following primitives, only the first
two are “pure” in the sense that they do not use c5 or c6.

• F800 — ACCEPT, sets current gas limit gl to its maximal allowed value
gm, and resets the gas credit gc to zero (cf. 1.4), decreasing the value
of gr by gc in the process. In other words, the current smart contract
agrees to buy some gas to finish the current transaction. This action
is required to process external messages, which bring no value (hence
no gas) with themselves.

• F801 — SETGASLIMIT (g –), sets current gas limit gl to the minimum
of g and gm, and resets the gas credit gc to zero. If the gas consumed
so far (including the present instruction) exceeds the resulting value of
gl, an (unhandled) out of gas exception is thrown before setting new
gas limits. Notice that SETGASLIMIT with an argument g ≥ 263 − 1 is
equivalent to ACCEPT.

• F802 — BUYGAS (x –), computes the amount of gas that can be
bought for x nanograms, and sets gl accordingly in the same way as
SETGASLIMIT.

• F804 — GRAMTOGAS (x – g), computes the amount of gas that can be
bought for x nanograms. If x is negative, returns 0. If g exceeds 263−1,
it is replaced with this value.

• F805 — GASTOGRAM (g – x), computes the price of g gas in nanograms.

119

A.10. Application-specific primitives

• F806–F80F — Reserved for gas-related primitives.

A.10.3. Pseudo-random number generator primitives. The pseudo-
random number generator uses the random seed and (sometimes) other data
kept in c5.

• F810–F81F — Reserved for pseudo-random number generator primi-
tives.

A.10.4. Hashing and cryptography primitives.

• F900 — HASHCU (c – x), computes the representation hash (cf. 3.1.5)
of a Cell c and returns it as a 256-bit unsigned integer x. Useful for
signing and checking signatures of arbitrary entities represented by a
tree of cells.

• F901 — HASHSU (s – x), computes the hash of a Slice s and returns it
as a 256-bit unsigned integer x. The result is the same as if an ordinary
cell containing only data and references from s had been created and
its hash computed by HASHCU.

• F910 — CHKSIGNU (h s k – ?), checks the Ed25519-signature s of a
hash h (a 256-bit unsigned integer, usually computed as the hash of
some data) using public key k (also represented by a 256-bit unsigned
integer). The signature s must be a Slice containing at least 512 data
bits; only the first 512 bits are used. The result is −1 if the signature
is valid, 0 otherwise.

• F902–F93F — Reserved for hashing and cryptography primitives.

A.10.5. Currency manipulation primitives.

• FA00–FA1F — Reserved for currency manipulation primitives.

A.10.6. Message and address manipulation primitives.

• FA40–FA5F — Reserved for message and address manipulation primi-
tives.

A.10.7. Outbound message and output action primitives.

120

A.11. Debug primitives

• FB00 — SENDRAWMSG (c x –), sends a raw message contained in Cell
c, which should contain a correctly serialized object Message X, with
the only exception that the source address is allowed to have dummy
value addr_none (to be automatically replaced with the current smart-
contract address), and ihr_fee, fwd_fee, created_lt and created_at
fields can have arbitrary values (to be rewritten with correct values dur-
ing the action phase of the current transaction). Integer parameter x
contains the flags. Currently x = 0 is used for ordinary messages;
x = 128 is used for messages that are to carry all the remaining bal-
ance of the current smart contract; x′ = x + 1 means that the sender
wants to pay transfer fees separately; x′ = x+2 means that any errors
arising while processing this message during the action phase should
be ignored.

• FB02 — RAWRESERVE (x y –), creates an output action which would re-
serve exactly x nanograms (if y = 0), at most x nanograms (if y = 2), or
all but x nanograms (if y = 1 or y = 3), from the remaining balance of
the account. It is roughly equivalent to creating an outbound message
carrying x nanograms (or b − x nanograms, where b is the remaining
balance) to oneself, so that the subsequent output actions would not
be able to spend more money than the remainder. Bit +2 in y means
that the external action does not fail if the specified amount cannot be
reserved; instead, all remaining balance is reserved. Currently x must
be a non-negative integer, and y must be in the range 0 . . . 3.

• FB03 — RAWRESERVEX (s y –), similar to RAWRESERVE, but accepts a
Slice s with a CurrencyCollection as an argument. In this way curren-
cies other than Grams can be reserved.

• FB04–FB3F — Reserved for output action primitives.

A.11 Debug primitives

Opcodes beginning with FE are reserved for the debug primitives. These
primitives have known fixed operation length, and behave as (multibyte)
NOP operations. In particular, they never change the stack contents, and
never throw exceptions, unless there are not enough bits to completely de-
code the opcode. However, when invoked in a TVM instance with debug

121

A.11. Debug primitives

mode enabled, these primitives can produce specific output into the text de-
bug log of the TVM instance, never affecting the TVM state (so that from
the perspective of TVM the behavior of debug primitives in debug mode is
exactly the same). For instance, a debug primitive might dump all or some
of the values near the top of the stack, display the current state of TVM and
so on.

A.11.1. Debug primitives as multibyte NOPs.

• FEnn — DEBUG nn, for 0 ≤ nn < 240, is a two-byte NOP.

• FEFnssss — DEBUGSTR ssss, for 0 ≤ n < 16, is an (n + 3)-byte NOP,
with the (n+ 1)-byte “contents string” ssss skipped as well.

A.11.2. Debug primitives as operations without side-effect. Next
we describe the debug primitives that might (and actually are) implemented
in a version of TVM. Notice that another TVM implementation is free to
use these codes for other debug purposes, or treat them as multibyte NOPs.
Whenever these primitives need some arguments from the stack, they inspect
these arguments, but leave them intact in the stack. If there are insufficient
values in the stack, or they have incorrect types, debug primitives may output
error messages into the debug log, or behave as NOPs, but they cannot throw
exceptions.

• FE00 — DUMPSTK, dumps the stack (at most the top 255 values) and
shows the total stack depth.

• FE0n — DUMPSTKTOP n, 1 ≤ n < 15, dumps the top n values from the
stack, starting from the deepest of them. If there are d < n values
available, dumps only d values.

• FE10 — HEXDUMP, dumps s0 in hexadecimal form, be it a Slice or an
Integer.

• FE11 — HEXPRINT, similar to HEXDUMP, except the hexadecimal repre-
sentation of s0 is not immediately output, but rather concatenated to
an output text buffer.

• FE12 — BINDUMP, dumps s0 in binary form, similarly to HEXDUMP.

• FE13 — BINPRINT, outputs the binary representation of s0 to a text
buffer.

122

A.12. Codepage primitives

• FE14 — STRDUMP, dumps the Slice at s0 as an UTF-8 string.

• FE15 — STRPRINT, similar to STRDUMP, but outputs the string into a
text buffer (without carriage return).

• FE1E — DEBUGOFF, disables all debug output until it is re-enabled by
a DEBUGON. More precisely, this primitive increases an internal counter,
which disables all debug operations (except DEBUGOFF and DEBUGON)
when strictly positive.

• FE1F — DEBUGON, enables debug output (in a debug version of TVM).

• FE2n — DUMP s(n), 0 ≤ n < 15, dumps s(n).

• FE3n — PRINT s(n), 0 ≤ n < 15, concatenates the text representation
of s(n) (without any leading or trailing spaces or carriage returns) to a
text buffer which will be output before the output of any other debug
operation.

• FEC0–FEEF — Use these opcodes for custom/experimental debug oper-
ations.

• FEFnssss — DUMPTOSFMT ssss, dumps s0 formatted according to the
(n + 1)-byte string ssss. This string might contain (a prefix of) the
name of a TL-B type supported by the debugger. If the string begins
with a zero byte, simply outputs it (without the first byte) into the
debug log. If the string begins with a byte equal to one, concatenates
it to a buffer, which will be output before the output of any other debug
operation (effectively outputs a string without a carriage return).

• FEFn00ssss — LOGSTR ssss, string ssss is n bytes long.

• FEF000 — LOGFLUSH, flushes all pending debug output from the buffer
into the debug log.

• FEFn01ssss — PRINTSTR ssss, string ssss is n bytes long.

A.12 Codepage primitives

The following primitives, which begin with byte FF, typically are used at the
very beginning of a smart contract’s code or a library subroutine to select

123

A.12. Codepage primitives

another TVM codepage. Notice that we expect all codepages to contain
these primitives with the same codes, otherwise switching back to another
codepage might be impossible (cf. 5.1.8).

• FFnn — SETCP nn, selects TVM codepage 0 ≤ nn < 240. If the
codepage is not supported, throws an invalid opcode exception.

• FF00 — SETCP0, selects TVM (test) codepage zero as described in this
document.

• FFFz — SETCP z − 16, selects TVM codepage z − 16 for 1 ≤ z ≤ 15.
Negative codepages −13 . . . − 1 are reserved for restricted versions of
TVM needed to validate runs of TVM in other codepages as explained
in B.2.6. Negative codepage −14 is reserved for experimental code-
pages, not necessarily compatible between different TVM implementa-
tions, and should be disabled in the production versions of TVM.

• FFF0 — SETCPX (c –), selects codepage c with −215 ≤ c < 215 passed
in the top of the stack.

124

B.1. Serialization of the TVM state

B Formal properties and specifications of TVM
This appendix discusses certain formal properties of TVM that are necessary
for executing smart contracts in the TON Blockchain and validating such
executions afterwards.

B.1 Serialization of the TVM state

Recall that a virtual machine used for executing smart contracts in a block-
chain must be deterministic, otherwise the validation of each execution would
require the inclusion of all intermediate steps of the execution into a block,
or at least of the choices made when indeterministic operations have been
performed.

Furthermore, the state of such a virtual machine must be (uniquely) se-
rializable, so that even if the state itself is not usually included in a block,
its hash is still well-defined and can be included into a block for verification
purposes.

B.1.1. TVM stack values. TVM stack values can be serialized as follows:

vm_stk_tinyint#01 value:int64 = VmStackValue;
vm_stk_int#0201_ value:int257 = VmStackValue;
vm_stk_nan#02FF = VmStackValue;
vm_stk_cell#03 cell:^Cell = VmStackValue;
_ cell:^Cell st_bits:(## 10) end_bits:(## 10)
{ st_bits <= end_bits }
st_ref:(#<= 4) end_ref:(#<= 4)
{ st_ref <= end_ref } = VmCellSlice;

vm_stk_slice#04 _:VmCellSlice = VmStackValue;
vm_stk_builder#05 cell:^Cell = VmStackValue;
vm_stk_cont#06 cont:VmCont = VmStackValue;

Of these, vm_stk_tinyint is never used by TVM in codepage zero; it is used
only in restricted modes.

B.1.2. TVM stack. The TVM stack can be serialized as follows:

vm_stack#_ depth:(## 24) stack:(VmStackList depth) = VmStack;
vm_stk_cons#_ {n:#} head:VmStackValue tail:^(VmStackList n)
= VmStackList (n + 1);

vm_stk_nil#_ = VmStackList 0;

125

B.1. Serialization of the TVM state

B.1.3. TVM control registers. Control registers in TVM can be serialized
as follows:

_ cregs:(HashmapE 4 VmStackValue) = VmSaveList;

B.1.4. TVM gas limits. Gas limits in TVM can be serialized as follows:

gas_limits#_ remaining:int64 _:^[
max_limit:int64 cur_limit:int64 credit:int64]
= VmGasLimits;

B.1.5. TVM library environment. The TVM library environment can
be serialized as follows:

_ libraries:(HashmapE 256 ^Cell) = VmLibraries;

B.1.6. TVM continuations. Continuations in TVM can be serialized as
follows:

vmc_std$00 nargs:(## 22) stack:(Maybe VmStack) save:VmSaveList
cp:int16 code:VmCellSlice = VmCont;

vmc_envelope$01 nargs:(## 22) stack:(Maybe VmStack)
save:VmSaveList next:^VmCont = VmCont;

vmc_quit$1000 exit_code:int32 = VmCont;
vmc_quit_exc$1001 = VmCont;
vmc_until$1010 body:^VmCont after:^VmCont = VmCont;
vmc_again$1011 body:^VmCont = VmCont;
vmc_while_cond$1100 cond:^VmCont body:^VmCont

after:^VmCont = VmCont;
vmc_while_body$1101 cond:^VmCont body:^VmCont

after:^VmCont = VmCont;
vmc_pushint$1111 value:int32 next:^VmCont = VmCont;

B.1.7. TVM state. The total state of TVM can be serialized as follows:

vms_init$00 cp:int16 step:int32 gas:GasLimits
stack:(Maybe VmStack) save:VmSaveList code:VmCellSlice
lib:VmLibraries = VmState;

vms_exception$01 cp:int16 step:int32 gas:GasLimits
exc_no:int32 exc_arg:VmStackValue
save:VmSaveList lib:VmLibraries = VmState;

126

B.2. Step function of TVM

vms_running$10 cp:int16 step:int32 gas:GasLimits stack:VmStack
save:VmSaveList code:VmCellSlice lib:VmLibraries
= VmState;

vms_finished$11 cp:int16 step:int32 gas:GasLimits
exit_code:int32 no_gas:Boolean stack:VmStack
save:VmSaveList lib:VmLibraries = VmState;

When TVM is initialized, its state is described by a vms_init, usually with
step set to zero. The step function of TVM does nothing to a vms_finished
state, and transforms all other states into vms_running, vms_exception, or
vms_finished, with step increased by one.

B.2 Step function of TVM

A formal specification of TVM would be completed by the definition of a step
function f : VmState → VmState. This function deterministically trans-
forms a valid VM state into a valid subsequent VM state, and is allowed to
throw exceptions or return an invalid subsequent state if the original state
was invalid.

B.2.1. A high-level definition of the step function. We might present
a very long formal definition of the TVM step function in a high-level func-
tional programming language. Such a specification, however, would mostly
be useful as a reference for the (human) developers. We have chosen another
approach, better adapted to automated formal verification by computers.

B.2.2. An operational definition of the step function. Notice that the
step function f is a well-defined computable function from trees of cells into
trees of cells. As such, it can be computed by a universal Turing machine.
Then a program P computing f on such a machine would provide a machine-
checkable specification of the step function f . This program P effectively is
an emulator of TVM on this Turing machine.

B.2.3. A reference implementation of the TVM emulator inside
TVM. We see that the step function of TVM may be defined by a reference
implementation of a TVM emulator on another machine. An obvious idea
is to use TVM itself, since it is well-adapted to working with trees of cells.
However, an emulator of TVM inside itself is not very useful if we have
doubts about a particular implementation of TVM and want to check it. For

127

B.2. Step function of TVM

instance, if such an emulator interpreted a DICTISET instruction simply by
invoking this instruction itself, then a bug in the underlying implementation
of TVM would remain unnoticed.

B.2.4. Reference implementation inside a minimal version of TVM.
We see that using TVM itself as a host machine for a reference implementa-
tion of TVM emulator would yield little insight. A better idea is to define
a stripped-down version of TVM, which supports only the bare minimum
of primitives and 64-bit integer arithmetic, and provide a reference imple-
mentation P of the TVM step function f for this stripped-down version of
TVM.

In that case, one must carefully implement and check only a handful
of primitives to obtain a stripped-down version of TVM, and compare the
reference implementation P running on this stripped-down version to the full
custom TVM implementation being verified. In particular, if there are any
doubts about the validity of a specific run of a custom TVM implementation,
they can now be easily resolved with the aid of the reference implementation.

B.2.5. Relevance for the TON Blockchain. The TON Blockchain adopts
this approach to validate the runs of TVM (e.g., those used for processing
inbound messages by smart contracts) when the validators’ results do not
match one another. In this case, a reference implementation of TVM, stored
inside the masterchain as a configurable parameter (thus defining the current
revision of TVM), is used to obtain the correct result.

B.2.6. Codepage −1. Codepage −1 of TVM is reserved for the stripped-
down version of TVM. Its main purpose is to execute the reference imple-
mentation of the step function of the full TVM. This codepage contains only
special versions of arithmetic primitives working with “tiny integers” (64-bit
signed integers); therefore, TVM’s 257-bit Integer arithmetic must be de-
fined in terms of 64-bit arithmetic. Elliptic curve cryptography primitives
are also implemented directly in codepage −1, without using any third-party
libraries. Finally, a reference implementation of the sha256 hash function is
also provided in codepage −1.

B.2.7. Codepage −2. This bootstrapping process could be iterated even
further, by providing an emulator of the stripped-down version of TVM writ-
ten for an even simpler version of TVM that supports only boolean values
(or integers 0 and 1)—a “codepage −2”. All 64-bit arithmetic used in code-
page −1 would then need to be defined by means of boolean operations, thus

128

B.2. Step function of TVM

providing a reference implementation for the stripped-down version of TVM
used in codepage −1. In this way, if some of the TON Blockchain validators
did not agree on the results of their 64-bit arithmetic, they could regress to
this reference implementation to find the correct answer.30

30The preliminary version of TVM does not use codepage −2 for this purpose. This
may change in the future.

129

C.1. Sample leaf function

C Code density of stack and register machines
This appendix extends the general consideration of stack manipulation prim-
itives provided in 2.2, explaining the choice of such primitives for TVM, with
a comparison of stack machines and register machines in terms of the quan-
tity of primitives used and the code density. We do this by comparing the
machine code that might be generated by an optimizing compiler for the
same source files, for different (abstract) stack and register machines.

It turns out that the stack machines (at least those equipped with the ba-
sic stack manipulation primitives described in 2.2.1) have far superior code
density. Furthermore, the stack machines have excellent extendability with
respect to additional arithmetic and arbitrary data processing operations, es-
pecially if one considers machine code automatically generated by optimizing
compilers.

C.1 Sample leaf function

We start with a comparison of machine code generated by an (imaginary)
optimizing compiler for several abstract register and stack machines, cor-
responding to the same high-level language source code that contains the
definition of a leaf function (i.e., a function that does not call any other func-
tions). For both the register machines and stack machines, we observe the
notation and conventions introduced in 2.1.

C.1.1. Sample source file for a leaf function. The source file we consider
contains one function f that takes six (integer) arguments, a, b, c, d, e, f ,
and returns two (integer) values, x and y, which are the solutions of the
system of two linear equations{

ax+ by = e

cx+ dy = f
(6)

The source code of the function, in a programming language similar to C,
might look as follows:

(int, int) f(int a, int b, int c, int d, int e, int f) {
int D = a*d - b*c;
int Dx = e*d - b*f;
int Dy = a*f - e*c;

130

C.1. Sample leaf function

return (Dx / D, Dy / D);
}

We assume (cf. 2.1) that the register machines we consider accept the six
parameters a. . . f in registers r0. . . r5, and return the two values x and y in
r0 and r1. We also assume that the register machines have 16 registers, and
that the stack machine can directly access s0 to s15 by its stack manipu-
lation primitives; the stack machine will accept the parameters in s5 to s0,
and return the two values in s0 and s1, somewhat similarly to the register
machine. Finally, we assume at first that the register machine is allowed
to destroy values in all registers (which is slightly unfair towards the stack
machine); this assumption will be revisited later.

C.1.2. Three-address register machine. The machine code (or rather the
corresponding assembly code) for a three-address register machine (cf. 2.1.7)
might look as follows:

IMUL r6,r0,r3 // r6 := r0 * r3 = ad
IMUL r7,r1,r2 // r7 := bc
SUB r6,r6,r7 // r6 := ad-bc = D
IMUL r3,r4,r3 // r3 := ed
IMUL r1,r1,r5 // r1 := bf
SUB r3,r3,r1 // r3 := ed-bf = Dx
IMUL r1,r0,r5 // r1 := af
IMUL r7,r4,r2 // r7 := ec
SUB r1,r1,r7 // r1 := af-ec = Dy
IDIV r0,r3,r6 // x := Dx/D
IDIV r1,r1,r6 // y := Dy/D
RET

We have used 12 operations and at least 23 bytes (each operation uses 3×4 =
12 bits to indicate the three registers involved, and at least 4 bits to indicate
the operation performed; thus we need two or three bytes to encode each
operation). A more realistic estimate would be 34 (three bytes for each
arithmetic operation) or 31 bytes (two bytes for addition and subtraction,
three bytes for multiplication and division).

C.1.3. Two-address register machine. The machine code for a two-
address register machine might look as follows:

131

C.1. Sample leaf function

MOV r6,r0 // r6 := r0 = a
MOV r7,r1 // r7 := b
IMUL r6,r3 // r6 := r6*r3 = ad
IMUL r7,r2 // r7 := bc
IMUL r3,r4 // r3 := de
IMUL r1,r5 // r1 := bf
SUB r6,r7 // r6 := ad-bc = D
IMUL r5,r0 // r5 := af
SUB r3,r1 // r3 := de-bf = Dx
IMUL r2,r4 // r2 := ce
MOV r0,r3 // r0 := Dx
SUB r5,r2 // r5 := af-ce = Dy
IDIV r0,r6 // r0 := x = Dx/D
MOV r1,r5 // r1 := Dy
IDIV r1,r6 // r1 := Dy/D
RET

We have used 16 operations; optimistically assuming each of them (with the
exception of RET) can be encoded by two bytes, this code would require 31
bytes.31

C.1.4. One-address register machine. The machine code for a one-
address register machine might look as follows:

MOV r8,r0 // r8 := r0 = a
XCHG r1 // r0 <-> r1; r0 := b, r1 := a
MOV r6,r0 // r6 := b
IMUL r2 // r0 := r0*r2; r0 := bc
MOV r7,r0 // r7 := bc
MOV r0,r8 // r0 := a
IMUL r3 // r0 := ad

31It is interesting to compare this code with that generated by optimizing C compilers
for the x86-64 architecture.
First of all, the integer division operation for x86-64 uses the one-address form, with

the (double-length) dividend to be supplied in accumulator pair r2:r0. The quotient is
also returned in r0. As a consequence, two single-to-double extension operations (CDQ or
CQO) and at least one move operation need to be added.
Secondly, the encoding used for arithmetic and move operations is less optimistic than

in our example above, requiring about three bytes per operation on average. As a result,
we obtain a total of 43 bytes for 32-bit integers, and 68 bytes for 64-bit integers.

132

C.1. Sample leaf function

SUB r7 // r0 := ad-bc = D
XCHG r1 // r1 := D, r0 := b
IMUL r5 // r0 := bf
XCHG r3 // r0 := d, r3 := bf
IMUL r4 // r0 := de
SUB r3 // r0 := de-bf = Dx
IDIV r1 // r0 := Dx/D = x
XCHG r2 // r0 := c, r2 := x
IMUL r4 // r0 := ce
XCHG r5 // r0 := f, r5 := ce
IMUL r8 // r0 := af
SUB r5 // r0 := af-ce = Dy
IDIV r1 // r0 := Dy/D = y
MOV r1,r0 // r1 := y
MOV r0,r2 // r0 := x
RET

We have used 23 operations; if we assume one-byte encoding for all arithmetic
operations and XCHG, and two-byte encodings for MOV, the total size of the
code will be 29 bytes. Notice, however, that to obtain the compact code
shown above we had to choose a specific order of computation, and made
heavy use of the commutativity of multiplication. (For example, we compute
bc before af , and af − bc immediately after af .) It is not clear whether a
compiler would be able to make all such optimizations by itself.

C.1.5. Stack machine with basic stack primitives. The machine code
for a stack machine equipped with basic stack manipulation primitives de-
scribed in 2.2.1 might look as follows:

PUSH s5 // a b c d e f a
PUSH s3 // a b c d e f a d
IMUL // a b c d e f ad
PUSH s5 // a b c d e f ad b
PUSH s5 // a b c d e f ad b c
IMUL // a b c d e f ad bc
SUB // a b c d e f ad-bc
XCHG s3 // a b c ad-bc e f d
PUSH s2 // a b c ad-bc e f d e
IMUL // a b c ad-bc e f de

133

C.1. Sample leaf function

XCHG s5 // a de c ad-bc e f b
PUSH s1 // a de c ad-bc e f b f
IMUL // a de c ad-bc e f bf
XCHG s1,s5 // a f c ad-bc e de bf
SUB // a f c ad-bc e de-bf
XCHG s3 // a f de-bf ad-bc e c
IMUL // a f de-bf ad-bc ec
XCHG s3 // a ec de-bf ad-bc f
XCHG s1,s4 // ad-bc ec de-bf a f
IMUL // D ec Dx af
XCHG s1 // D ec af Dx
XCHG s2 // D Dx af ec
SUB // D Dx Dy
XCHG s1 // D Dy Dx
PUSH s2 // D Dy Dx D
IDIV // D Dy x
XCHG s2 // x Dy D
IDIV // x y
RET

We have used 29 operations; assuming one-byte encodings for all stack oper-
ations involved (including XCHG s1,s(i)), we have used 29 code bytes as well.
Notice that with one-byte encoding, the “unsystematic” operation ROT (equiv-
alent to XCHG s1; XCHG s2) would reduce the operation and byte count to
28. This shows that such “unsystematic” operations, borrowed from Forth,
may indeed reduce the code size on some occasions.

Notice as well that we have implicitly used the commutativity of multi-
plication in this code, computing de − bf instead of ed − bf as specified in
high-level language source code. If we were not allowed to do so, an extra
XCHG s1 would need to be inserted before the third IMUL, increasing the total
size of the code by one operation and one byte.

The code presented above might have been produced by a rather unso-
phisticated compiler that simply computed all expressions and subexpres-
sions in the order they appear, then rearranged the arguments near the top
of the stack before each operation as outlined in 2.2.2. The only “manual”
optimization done here involves computing ec before af ; one can check that
the other order would lead to slightly shorter code of 28 operations and bytes
(or 29, if we are not allowed to use the commutativity of multiplication), but

134

C.1. Sample leaf function

the ROT optimization would not be applicable.

C.1.6. Stack machine with compound stack primitives. A stack ma-
chine with compound stack primitives (cf. 2.2.3) would not significantly
improve code density of the code presented above, at least in terms of bytes
used. The only difference is that, if we were not allowed to use commutativ-
ity of multiplication, the extra XCHG s1 inserted before the third IMUL might
be combined with two previous operations XCHG s3, PUSH s2 into one com-
pound operation PUXC s2,s3; we provide the resulting code below. To make
this less redundant, we show a version of the code that computes subexpres-
sion af before ec as specified in the original source file. We see that this
replaces six operations (starting from line 15) with five other operations, and
disables the ROT optimization:

PUSH s5 // a b c d e f a
PUSH s3 // a b c d e f a d
IMUL // a b c d e f ad
PUSH s5 // a b c d e f ad b
PUSH s5 // a b c d e f ad b c
IMUL // a b c d e f ad bc
SUB // a b c d e f ad-bc
PUXC s2,s3 // a b c ad-bc e f e d
IMUL // a b c ad-bc e f ed
XCHG s5 // a ed c ad-bc e f b
PUSH s1 // a ed c ad-bc e f b f
IMUL // a ed c ad-bc e f bf
XCHG s1,s5 // a f c ad-bc e ed bf
SUB // a f c ad-bc e ed-bf
XCHG s4 // a ed-bf c ad-bc e f
XCHG s1,s5 // e Dx c D a f
IMUL // e Dx c D af
XCHG s2 // e Dx af D c
XCHG s1,s4 // D Dx af e c
IMUL // D Dx af ec
SUB // D Dx Dy
XCHG s1 // D Dy Dx
PUSH s2 // D Dy Dx D
IDIV // D Dy x
XCHG s2 // x Dy D

135

C.1. Sample leaf function

IDIV // x y
RET

We have used a total of 27 operations and 28 bytes, the same as the previous
version (with the ROT optimization). However, we did not use the commuta-
tivity of multiplication here, so we can say that compound stack manipulation
primitives enable us to reduce the code size from 29 to 28 bytes.

Yet again, notice that the above code might have been generated by an
unsophisticated compiler. Manual optimizations might lead to more com-
pact code; for instance, we could use compound operations such as XCHG3
to prepare in advance not only the correct values of s0 and s1 for the next
arithmetic operation, but also the value of s2 for the arithmetic operation
after that. The next section provides an example of such an optimization.

C.1.7. Stack machine with compound stack primitives and manu-
ally optimized code. The previous version of code for a stack machine
with compound stack primitives can be manually optimized as follows.

By interchanging XCHG operations with preceding XCHG, PUSH, and arith-
metic operations whenever possible, we obtain code fragment XCHG s2,s6;
XCHG s1,s0; XCHG s0,s5, which can then be replaced by compound oper-
ation XCHG3 s6,s0,s5. This compound operation would admit a two-byte
encoding, thus leading to 27-byte code using only 21 operations:

PUSH2 s5,s2 // a b c d e f a d
IMUL // a b c d e f ad
PUSH2 s5,s4 // a b c d e f ad b c
IMUL // a b c d e f ad bc
SUB // a b c d e f ad-bc
PUXC s2,s3 // a b c ad-bc e f e d
IMUL // a b c D e f ed
XCHG3 s6,s0,s5 // (same as XCHG s2,s6; XCHG s1,s0; XCHG s0,s5)

// e f c D a ed b
PUSH s5 // e f c D a ed b f
IMUL // e f c D a ed bf
SUB // e f c D a ed-bf
XCHG s4 // e Dx c D a f
IMUL // e Dx c D af
XCHG2 s4,s2 // D Dx af e c
IMUL // D Dx af ec

136

C.2. Comparison of machine code for sample leaf function

SUB // D Dx Dy
XCPU s1,s2 // D Dy Dx D
IDIV // D Dy x
XCHG s2 // x Dy D
IDIV // x y
RET

It is interesting to note that this version of stack machine code contains only
9 stack manipulation primitives for 11 arithmetic operations. It is not clear,
however, whether an optimizing compiler would be able to reorganize the
code in such a manner by itself.

C.2 Comparison of machine code for sample leaf func-
tion

Table 1 summarizes the properties of machine code corresponding to the same
source file described in C.1.1, generated for a hypothetical three-address
register machine (cf. C.1.2), with both “optimistic” and “realistic” instruc-
tion encodings; a two-address machine (cf. C.1.3); a one-address machine
(cf. C.1.4); and a stack machine, similar to TVM, using either only the
basic stack manipulation primitives (cf. C.1.5) or both the basic and the
composite stack primitives (cf. C.1.7).

The meaning of the columns in Table 1 is as follows:

• “Operations” — The quantity of instructions used, split into “data”
(i.e., register move and exchange instructions for register machines, and
stack manipulation instructions for stack machines) and “arithmetic”
(instructions for adding, subtracting, multiplying and dividing integer
numbers). The “total” is one more than the sum of these two, because
there is also a one-byte RET instruction at the end of machine code.

• “Code bytes” — The total amount of code bytes used.

• “Opcode space” — The portion of “opcode space” (i.e., of possible
choices for the first byte of the encoding of an instruction) used by
data and arithmetic instructions in the assumed instruction encoding.
For example, the “optimistic” encoding for the three-address machine
assumes two-byte encodings for all arithmetic instructions op r(i),
r(j), r(k). Each arithmetic instruction would then consume portion

137

C.2. Comparison of machine code for sample leaf function

Operations Code bytes Opcode space
Machine data arith total data arith total data arith total
3-addr. (opt.) 0 11 12 0 22 23 0/256 64/256 65/256
3-addr. (real.) 0 11 12 0 30 31 0/256 34/256 35/256
2-addr. 4 11 16 8 22 31 1/256 4/256 6/256
1-addr. 11 11 23 17 11 29 17/256 64/256 82/256
stack (basic) 16 11 28 16 11 28 64/256 4/256 69/256
stack (comp.) 9 11 21 15 11 27 84/256 4/256 89/256

Table 1: A summary of machine code properties for hypothetical 3-address, 2-address,
1-address, and stack machines, generated for a sample leaf function (cf. C.1.1). The two
most important columns, reflecting code density and extendability to other operations,
are marked by bold font. Smaller values are better in both of these columns.

16/256 = 1/16 of the opcode space. Notice that for the stack ma-
chine we have assumed one-byte encodings for XCHG s(i), PUSH s(i)
and POP s(i) in all cases, augmented by XCHG s1,s(i) for the basic
stack instructions case only. As for the compound stack operations,
we have assumed two-byte encodings for PUSH3, XCHG3, XCHG2, XCPU,
PUXC, PUSH2, but not for XCHG s1,s(i).

The “code bytes” column reflects the density of the code for the specific
sample source. However, “opcode space” is also important, because it reflects
the extendability of the achieved density to other classes of operations (e.g.,
if one were to complement arithmetic operations with string manipulation
operations and so on). Here the “arithmetic” subcolumn is more important
than the “data” subcolumn, because no further data manipulation operations
would be required for such extensions.

We see that the three-address register machine with the “optimistic” en-
coding, assuming two-byte encodings for all three-register arithmetic opera-
tions, achieves the best code density, requiring only 23 bytes. However, this
comes at a price: each arithmetic operation consumes 1/16 of the opcode
space, so the four operations already use a quarter of the opcode space. At
most 11 other operations, arithmetic or not, might be added to this architec-
ture while preserving such high code density. On the other hand, when we
consider the “realistic” encoding for the three-address machine, using two-
byte encodings only for the most frequently used addition/subtraction oper-
ations (and longer encodings for less frequently used multiplication/division
operations, reflecting the fact that the possible extension operations would
likely fall in this class), then the three-address machine ceases to offer such

138

C.2. Comparison of machine code for sample leaf function

attractive code density.
In fact, the two-address machine becomes equally attractive at this point:

it is capable of achieving the same code size of 31 bytes as the three-address
machine with the “realistic” encoding, using only 6/256 of the opcode space
for this! However, 31 bytes is the worst result in this table.

The one-address machine uses 29 bytes, slightly less than the two-address
machine. However, it utilizes a quarter of the opcode space for its arithmetic
operations, hampering its extendability. In this respect it is similar to the
three-address machine with the “optimistic” encoding, but requires 29 bytes
instead of 23! So there is no reason to use the one-address machine at all, in
terms of extendability (reflected by opcode space used for arithmetic opera-
tions) compared to code density.

Finally, the stack machine wins the competition in terms of code density
(27 or 28 bytes), losing only to the three-address machine with the “opti-
mistic” encoding (which, however, is terrible in terms of extendability).

To summarize: the two-address machine and stack machine achieve the
best extendability with respect to additional arithmetic or data processing
instructions (using only 1/256 of code space for each such instruction), while
the stack machine additionally achieves the best code density by a small
margin. The stack machine utilizes a significant part of its code space (more
than a quarter) for data (i.e., stack) manipulation instructions; however,
this does not seriously hamper extendability, because the stack manipulation
instructions occupy a constant part of the opcode stace, regardless of all other
instructions and extensions.

While one might still be tempted to use a two-address register machine,
we will explain shortly (cf. C.3) why the two-address register machine offers
worse code density and extendability in practice than it appears based on
this table.

As for the choice between a stack machine with only basic stack manip-
ulation primitives or one supporting compound stack primitives as well, the
case for the more sophisticated stack machine appears to be weaker: it offers
only one or two fewer bytes of code at the expense of using considerably more
opcode space for stack manipulation, and the optimized code using these ad-
ditional instructions is hard for programmers to write and for compilers to
automatically generate.

C.2.1. Register calling conventions: some registers must be pre-
served by functions. Up to this point, we have considered the machine

139

C.2. Comparison of machine code for sample leaf function

code of only one function, without taking into account the interplay between
this function and other functions in the same program.

Usually a program consists of more than one function, and when a func-
tion is not a “simple” or “leaf” function, it must call other functions. There-
fore, it becomes important whether a called function preserves all or at least
some registers. If it preserves all registers except those used to return re-
sults, the caller can safely keep its local and temporary variables in certain
registers; however, the callee needs to save all the registers it will use for
its temporary values somewhere (usually into the stack, which also exists on
register machines), and then restore the original values. On the other hand,
if the called function is allowed to destroy all registers, it can be written in
the manner described in C.1.2, C.1.3, and C.1.4, but the caller will now be
responsible for saving all its temporary values into the stack before the call,
and restoring these values afterwards.

In most cases, calling conventions for register machines require preserva-
tion of some but not all registers. We will assume that m ≤ n registers will
be preserved by functions (unless they are used for return values), and that
these registers are r(n−m) . . . r(n− 1). Case m = 0 corresponds to the case
“the callee is free to destroy all registers” considered so far; it is quite painful
for the caller. Case m = n corresponds to the case “the callee must preserve
all registers”; it is quite painful for the callee, as we will see in a moment.
Usually a value of m around n/2 is used in practice.

The following sections consider cases m = 0, m = 8, and m = 16 for our
register machines with n = 16 registers.

C.2.2. Case m = 0: no registers to preserve. This case has been
considered and summarized in C.2 and Table 1 above.

C.2.3. Case m = n = 16: all registers must be preserved. This case is
the most painful one for the called function. It is especially difficult for leaf
functions like the one we have been considering, which do not benefit at all
from the fact that other functions preserve some registers when called—they
do not call any functions, but instead must preserve all registers themselves.

In order to estimate the consequences of assuming m = n = 16, we will
assume that all our register machines are equipped with a stack, and with
one-byte instructions PUSH r(i) and POP r(i), which push or pop a register
into/from the stack. For example, the three-address machine code provided
in C.1.2 destroys the values in registers r2, r3, r6, and r7; this means
that the code of this function must be augmented by four instructions PUSH

140

C.2. Comparison of machine code for sample leaf function

Operations Code bytes Opcode space
Machine r data arith total data arith total data arith total
3-addr. (opt.) 4 8 11 20 8 22 31 32/256 64/256 97/256
3-addr. (real.) 4 8 11 20 8 30 39 32/256 34/256 67/256
2-addr. 5 14 11 26 18 22 41 33/256 4/256 38/256
1-addr. 6 23 11 35 29 11 41 49/256 64/256 114/256
stack (basic) 0 16 11 28 16 11 28 64/256 4/256 69/256
stack (comp.) 0 9 11 21 15 11 27 84/256 4/256 89/256

Table 2: A summary of machine code properties for hypothetical 3-address, 2-address, 1-
address, and stack machines, generated for a sample leaf function (cf. C.1.1), assuming all
of the 16 registers must be preserved by called functions (m = n = 16). The new column
labeled r denotes the number of registers to be saved and restored, leading to 2r more
operations and code bytes compared to Table 1. Newly-added PUSH and POP instructions
for register machines also utilize 32/256 of the opcode space. The two rows corresponding
to stack machines remain unchanged.

r2; PUSH r3; PUSH r6; PUSH r7 at the beginning, and by four instructions
POP r7; POP r6; POP r3; POP r2 right before the RET instruction, in order
to restore the original values of these registers from the stack. These four
additional PUSH/POP pairs would increase the operation count and code size
in bytes by 4 × 2 = 8. A similar analysis can be done for other register
machines as well, leading to Table 2.

We see that under these assumptions the stack machines are the obvious
winners in terms of code density, and are in the winning group with respect
to extendability.

C.2.4. Case m = 8, n = 16: registers r8. . . r15 must be preserved.
The analysis of this case is similar to the previous one. The results are
summarized in Table 3.

Notice that the resulting table is very similar to Table 1, apart from the
“Opcode space” columns and the row for the one-address machine. Therefore,
the conclusions of C.2 still apply in this case, with some minor modifications.
We must emphasize, however, that these conclusions are valid only for leaf
functions, i.e., functions that do not call other functions. Any program aside
from the very simplest will have many non-leaf functions, especially if we are
minimizing resulting machine code size (which prevents inlining of functions
in most cases).

C.2.5. A fairer comparison using a binary code instead of a byte
code. The reader may have noticed that our preceding discussion of k-

141

C.3. Sample non-leaf function

Operations Code bytes Opcode space
Machine r data arith total data arith total data arith total
3-addr. (opt.) 0 0 11 12 0 22 23 32/256 64/256 97/256
3-addr. (real.) 0 0 11 12 0 30 31 32/256 34/256 67/256
2-addr. 0 4 11 16 8 22 31 33/256 4/256 38/256
1-addr. 1 13 11 25 19 11 31 49/256 64/256 114/256
stack (basic) 0 16 11 28 16 11 28 64/256 4/256 69/256
stack (comp.) 0 9 11 21 15 11 27 84/256 4/256 89/256

Table 3: A summary of machine code properties for hypothetical 3-address, 2-address,
1-address and stack machines, generated for a sample leaf function (cf. C.1.1), assuming
that only the last 8 of the 16 registers must be preserved by called functions (m = 8,
n = 16). This table is similar to Table 2, but has smaller values of r.

address register machines and stack machines depended very much on our
insistence that complete instructions be encoded by an integer number of
bytes. If we had been allowed to use a “bit” or “binary code” instead of a
byte code for encoding instructions, we could more evenly balance the opcode
space used by different machines. For instance, the opcode of SUB for a three-
address machine had to be either 4-bit (good for code density, bad for opcode
space) or 12-bit (very bad for code density), because the complete instruction
has to occupy a multiple of eight bits (e.g., 16 or 24 bits), and 3 · 4 = 12 of
those bits have to be used for the three register names.

Therefore, let us get rid of this restriction.
Now that we can use any number of bits to encode an instruction, we

can choose all opcodes of the same length for all the machines considered.
For instance, all arithmetic instructions can have 8-bit opcodes, as the stack
machine does, using 1/256 of the opcode space each; then the three-address
register machine will use 20 bits to encode each complete arithmetic instruc-
tion. All MOVs, XCHGs, PUSHes, and POPs on register machines can be assumed
to have 4-bit opcodes, because this is what we do for the most common stack
manipulation primitives on a stack machine. The results of these changes
are shown in Table 4.

We can see that the performance of the various machines is much more
balanced, with the stack machine still the winner in terms of the code density,
but with the three-address machine enjoying the second place it really merits.
If we were to consider the decoding speed and the possibility of parallel
execution of instructions, we would have to choose the three-address machine,
because it uses only 12 instructions instead of 21.

142

C.3. Sample non-leaf function

Operations Code bytes Opcode space
Machine r data arith total data arith total data arith total
3-addr. 0 0 11 12 0 27.5 28.5 64/256 4/256 69/256
2-addr. 0 4 11 16 6 22 29 64/256 4/256 69/256
1-addr. 1 13 11 25 16 16.5 32.5 64/256 4/256 69/256
stack (basic) 0 16 11 28 16 11 28 64/256 4/256 69/256
stack (comp.) 0 9 11 21 15 11 27 84/256 4/256 89/256

Table 4: A summary of machine code properties for hypothetical 3-address, 2-address,
1-address and stack machines, generated for a sample leaf function (cf. C.1.1), assuming
that only 8 of the 16 registers must be preserved by functions (m = 8, n = 16). This
time we can use fractions of bytes to encode instructions, so as to match opcode space
used by different machines. All arithmetic instructions have 8-bit opcodes, all data/stack
manipulation instructions have 4-bit opcodes. In other respects this table is similar to
Table 3.

C.3 Sample non-leaf function

This section compares the machine code for different register machines for a
sample non-leaf function. Again, we assume that either m = 0, m = 8, or
m = 16 registers are preserved by called functions, with m = 8 representing
the compromise made by most modern compilers and operating systems.

C.3.1. Sample source code for a non-leaf function. A sample source file
may be obtained by replacing the built-in integer type with a custom Rational
type, represented by a pointer to an object in memory, in our function for
solving systems of two linear equations (cf. C.1.1):

struct Rational;
typedef struct Rational *num;
extern num r_add(num, num);
extern num r_sub(num, num);
extern num r_mul(num, num);
extern num r_div(num, num);

(num, num) r_f(num a, num b, num c, num d, num e, num f) {
num D = r_sub(r_mul(a, d), r_mul(b, c)); // a*d-b*c
num Dx = r_sub(r_mul(e, d), r_mul(b, f)); // e*d-b*f
num Dy = r_sub(r_mul(a, f), r_mul(e, c)); // a*f-e*c
return (r_div(Dx, D), r_div(Dy, D)); // Dx/D, Dy/D

}

143

C.3. Sample non-leaf function

We will ignore all questions related to allocating new objects of type Rational
in memory (e.g., in heap), and to preventing memory leaks. We may assume
that the called subroutines r_sub, r_mul, and so on allocate new objects
simply by advancing some pointer in a pre-allocated buffer, and that unused
objects are later freed by a garbage collector, external to the code being
analysed.

Rational numbers will now be represented by pointers, addresses, or ref-
erences, which will fit into registers of our hypothetical register machines or
into the stack of our stack machines. If we want to use TVM as an instance
of these stack machines, we should use values of type Cell to represent such
references to objects of type Rational in memory.

We assume that subroutines (or functions) are called by a special CALL
instruction, which is encoded by three bytes, including the specification of
the function to be called (e.g., the index in a “global function table”).

C.3.2. Three-address and two-address register machines, m = 0 pre-
served registers. Because our sample function does not use built-in arith-
metic instructions at all, compilers for our hypothetical three-address and
two-address register machines will produce the same machine code. Apart
from the previously introduced PUSH r(i) and POP r(i) one-byte instructions,
we assume that our two- and three-address machines support the following
two-byte instructions: MOV r(i),s(j), MOV s(j),r(i), and XCHG r(i),s(j), for
0 ≤ i, j ≤ 15. Such instructions occupy only 3/256 of the opcode space, so
their addition seems quite natural.

We first assume that m = 0 (i.e., that all subroutines are free to destroy
the values of all registers). In this case, our machine code for r_f does
not have to preserve any registers, but has to save all registers containing
useful values into the stack before calling any subroutines. A size-optimizing
compiler might produce the following code:

PUSH r4 // STACK: e
PUSH r1 // STACK: e b
PUSH r0 // .. e b a
PUSH r6 // .. e b a f
PUSH r2 // .. e b a f c
PUSH r3 // .. e b a f c d
MOV r0,r1 // b
MOV r1,r2 // c
CALL r_mul // bc

144

C.3. Sample non-leaf function

PUSH r0 // .. e b a f c d bc
MOV r0,s4 // a
MOV r1,s1 // d
CALL r_mul // ad
POP r1 // bc; .. e b a f c d
CALL r_sub // D:=ad-bc
XCHG r0,s4 // b ; .. e D a f c d
MOV r1,s2 // f
CALL r_mul // bf
POP r1 // d ; .. e D a f c
PUSH r0 // .. e D a f c bf
MOV r0,s5 // e
CALL r_mul // ed
POP r1 // bf; .. e D a f c
CALL r_sub // Dx:=ed-bf
XCHG r0,s4 // e ; .. Dx D a f c
POP r1 // c ; .. Dx D a f
CALL r_mul // ec
XCHG r0,s1 // a ; .. Dx D ec f
POP r1 // f ; .. Dx D ec
CALL r_mul // af
POP r1 // ec; .. Dx D
CALL r_sub // Dy:=af-ec
XCHG r0,s1 // Dx; .. Dy D
MOV r1,s0 // D
CALL r_div // x:=Dx/D
XCHG r0,s1 // Dy; .. x D
POP r1 // D ; .. x
CALL r_div // y:=Dy/D
MOV r1,r0 // y
POP r0 // x ; ..
RET

We have used 41 instructions: 17 one-byte (eight PUSH/POP pairs and one
RET), 13 two-byte (MOV and XCHG; out of them 11 “new” ones, involving the
stack), and 11 three-byte (CALL), for a total of 17 · 1 + 13 · 2 + 11 · 3 = 76
bytes.32

32Code produced for this function by an optimizing compiler for x86-64 architecture

145

C.3. Sample non-leaf function

C.3.3. Three-address and two-address register machines, m = 8
preserved registers. Now we have eight registers, r8 to r15, that are
preserved by subroutine calls. We might keep some intermediate values there
instead of pushing them into the stack. However, the penalty for doing so
consists in a PUSH/POP pair for every such register that we choose to use,
because our function is also required to preserve its original value. It seems
that using these registers under such a penalty does not improve the density
of the code, so the optimal code for three- and two-address machines for
m = 8 preserved registers is the same as that provided in C.3.2, with a total
of 42 instructions and 74 code bytes.

C.3.4. Three-address and two-address register machines, m = 16
preserved registers. This time all registers must be preserved by the
subroutines, excluding those used for returning the results. This means that
our code must preserve the original values of r2 to r5, as well as any other
registers it uses for temporary values. A straightforward way of writing the
code of our subroutine would be to push registers r2 up to, say, r8 into the
stack, then perform all the operations required, using r6–r8 for intermediate
values, and finally restore registers from the stack. However, this would not
optimize code size. We choose another approach:

PUSH r0 // STACK: a
PUSH r1 // STACK: a b
MOV r0,r1 // b
MOV r1,r2 // c
CALL r_mul // bc
PUSH r0 // .. a b bc
MOV r0,s2 // a
MOV r1,r3 // d
CALL r_mul // ad
POP r1 // bc; .. a b
CALL r_sub // D:=ad-bc
XCHG r0,s0 // b; .. a D
MOV r1,r5 // f
CALL r_mul // bf
PUSH r0 // .. a D bf

with size-optimization enabled actually occupied 150 bytes, due mostly to the fact that
actual instruction encodings are about twice as long as we had optimistically assumed.

146

C.3. Sample non-leaf function

MOV r0,r4 // e
MOV r1,r3 // d
CALL r_mul // ed
POP r1 // bf; .. a D
CALL r_sub // Dx:=ed-bf
XCHG r0,s1 // a ; .. Dx D
MOV r1,r5 // f
CALL r_mul // af
PUSH r0 // .. Dx D af
MOV r0,r4 // e
MOV r1,r2 // c
CALL r_mul // ec
MOV r1,r0 // ec
POP r0 // af; .. Dx D
CALL r_sub // Dy:=af-ec
XCHG r0,s1 // Dx; .. Dy D
MOV r1,s0 // D
CALL r_div // x:=Dx/D
XCHG r0,s1 // Dy; .. x D
POP r1 // D ; .. x
CALL r_div // y:=Dy/D
MOV r1,r0 // y
POP r0 // x
RET

We have used 39 instructions: 11 one-byte, 17 two-byte (among them 5 “new”
instructions), and 11 three-byte, for a total of 11 · 1 + 17 · 2 + 11 · 3 = 78
bytes. Somewhat paradoxically, the code size in bytes is slightly longer than
in the previous case (cf. C.3.2), contrary to what one might have expected.
This is partially due to the fact that we have assumed two-byte encodings for
“new” MOV and XCHG instructions involving the stack, similarly to the “old”
instructions. Most existing architectures (such as x86-64) use longer encod-
ings (maybe even twice as long) for their counterparts of our “new” move and
exchange instructions compared to the “usual” register-register ones. Taking
this into account, we see that we would have obtained here 83 bytes (versus
87 for the code in C.3.2) assuming three-byte encodings of new operations,
and 88 bytes (versus 98) assuming four-byte encodings. This shows that,
for two-address architectures without optimized encodings for register-stack

147

C.3. Sample non-leaf function

move and exchange operations, m = 16 preserved registers might result in
slightly shorter code for some non-leaf functions, at the expense of leaf func-
tions (cf. C.2.3 and C.2.4), which would become considerably longer.

C.3.5. One-address register machine, m = 0 preserved registers.
For our one-address register machine, we assume that new register-stack in-
structions work through the accumulator only. Therefore, we have three
new instructions, LD s(j) (equivalent to MOV r0,s(j) of two-address ma-
chines), ST s(j) (equivalent to MOV s(j),r0), and XCHG s(j) (equivalent to
XCHG r0,s(j)). To make the comparison with two-address machines more
interesting, we assume one-byte encodings for these new instructions, even
though this would consume 48/256 = 3/16 of the opcode space.

By adapting the code provided in C.3.2 to the one-address machine, we
obtain the following:

PUSH r4 // STACK: e
PUSH r1 // STACK: e b
PUSH r0 // .. e b a
PUSH r6 // .. e b a f
PUSH r2 // .. e b a f c
PUSH r3 // .. e b a f c d
LD s1 // r0:=c
XCHG r1 // r0:=b, r1:=c
CALL r_mul // bc
PUSH r0 // .. e b a f c d bc
LD s1 // d
XCHG r1 // r1:=d
LD s4 // a
CALL r_mul // ad
POP r1 // bc; .. e b a f c d
CALL r_sub // D:=ad-bc
XCHG s4 // b ; .. e D a f c d
XCHG r1
LD s2 // f
XCHG r1 // r0:=b, r1:=f
CALL r_mul // bf
POP r1 // d ; .. e D a f c
PUSH r0 // .. e D a f c bf
LD s5 // e

148

C.3. Sample non-leaf function

CALL r_mul // ed
POP r1 // bf; .. e D a f c
CALL r_sub // Dx:=ed-bf
XCHG s4 // e ; .. Dx D a f c
POP r1 // c ; .. Dx D a f
CALL r_mul // ec
XCHG s1 // a ; .. Dx D ec f
POP r1 // f ; .. Dx D ec
CALL r_mul // af
POP r1 // ec; .. Dx D
CALL r_sub // Dy:=af-ec
XCHG s1 // Dx; .. Dy D
POP r1 // D ; .. Dy
PUSH r1 // .. Dy D
CALL r_div // x:=Dx/D
XCHG s1 // Dy; .. x D
POP r1 // D ; .. x
CALL r_div // y:=Dy/D
XCHG r1 // r1:=y
POP r0 // r0:=x ; ..
RET

We have used 45 instructions: 34 one-byte and 11 three-byte, for a total of 67
bytes. Compared to the 76 bytes used by two- and three-address machines
in C.3.2, we see that, again, the one-address register machine code may be
denser than that of two-register machines, at the expense of utilizing more
opcode space (just as shown in C.2). However, this time the extra 3/16 of
the opcode space was used for data manipulation instructions, which do not
depend on specific arithmetic operations or user functions invoked.

C.3.6. One-address register machine, m = 8 preserved registers.
As explained in C.3.3, the preservation of r8–r15 between subroutine calls
does not improve the size of our previously written code, so the one-address
machine will use for m = 8 the same code provided in C.3.5.

C.3.7. One-address register machine, m = 16 preserved registers.
We simply adapt the code provided in C.3.4 to the one-address register
machine:

PUSH r0 // STACK: a

149

C.3. Sample non-leaf function

PUSH r1 // STACK: a b
MOV r0,r1 // b
MOV r1,r2 // c
CALL r_mul // bc
PUSH r0 // .. a b bc
LD s2 // a
MOV r1,r3 // d
CALL r_mul // ad
POP r1 // bc; .. a b
CALL r_sub // D:=ad-bc
XCHG s0 // b; .. a D
MOV r1,r5 // f
CALL r_mul // bf
PUSH r0 // .. a D bf
MOV r0,r4 // e
MOV r1,r3 // d
CALL r_mul // ed
POP r1 // bf; .. a D
CALL r_sub // Dx:=ed-bf
XCHG s1 // a ; .. Dx D
MOV r1,r5 // f
CALL r_mul // af
PUSH r0 // .. Dx D af
MOV r0,r4 // e
MOV r1,r2 // c
CALL r_mul // ec
MOV r1,r0 // ec
POP r0 // af; .. Dx D
CALL r_sub // Dy:=af-ec
XCHG s1 // Dx; .. Dy D
POP r1 // D ; .. Dy
PUSH r1 // .. Dy D
CALL r_div // x:=Dx/D
XCHG s1 // Dy; .. x D
POP r1 // D ; .. x
CALL r_div // y:=Dy/D
MOV r1,r0 // y
POP r0 // x

150

C.3. Sample non-leaf function

RET

We have used 40 instructions: 18 one-byte, 11 two-byte, and 11 three-byte,
for a total of 18 · 1 + 11 · 2 + 11 · 3 = 73 bytes.

C.3.8. Stack machine with basic stack primitives. We reuse the code
provided in C.1.5, simply replacing arithmetic primitives (VM instructions)
with subroutine calls. The only substantive modification is the insertion
of the previously optional XCHG s1 before the third multiplication, because
even an optimizing compiler cannot now know whether CALL r_mul is a
commutative operation. We have also used the “tail recursion optimization”
by replacing the final CALL r_div followed by RET with JMP r_div.

PUSH s5 // a b c d e f a
PUSH s3 // a b c d e f a d
CALL r_mul // a b c d e f ad
PUSH s5 // a b c d e f ad b
PUSH s5 // a b c d e f ad b c
CALL r_mul // a b c d e f ad bc
CALL r_sub // a b c d e f ad-bc
XCHG s3 // a b c ad-bc e f d
PUSH s2 // a b c ad-bc e f d e
XCHG s1 // a b c ad-bc e f e d
CALL r_mul // a b c ad-bc e f ed
XCHG s5 // a ed c ad-bc e f b
PUSH s1 // a ed c ad-bc e f b f
CALL r_mul // a ed c ad-bc e f bf
XCHG s1,s5 // a f c ad-bc e ed bf
CALL r_sub // a f c ad-bc e ed-bf
XCHG s3 // a f ed-bf ad-bc e c
CALL r_mul // a f ed-bf ad-bc ec
XCHG s3 // a ec ed-bf ad-bc f
XCHG s1,s4 // ad-bc ec ed-bf a f
CALL r_mul // D ec Dx af
XCHG s1 // D ec af Dx
XCHG s2 // D Dx af ec
CALL r_sub // D Dx Dy
XCHG s1 // D Dy Dx
PUSH s2 // D Dy Dx D

151

C.4. Comparison of machine code for sample non-leaf function

CALL r_div // D Dy x
XCHG s2 // x Dy D
JMP r_div // x y

We have used 29 instructions; assuming one-byte encodings for all stack
operations, and three-byte encodings for CALL and JMP instructions, we end
up with 51 bytes.

C.3.9. Stack machine with compound stack primitives. We again
reuse the code provided in C.1.7, replacing arithmetic primitives with sub-
routine calls and making the tail recursion optimization:

PUSH2 s5,s2 // a b c d e f a d
CALL r_mul // a b c d e f ad
PUSH2 s5,s4 // a b c d e f ad b c
CALL r_mul // a b c d e f ad bc
CALL r_sub // a b c d e f ad-bc
PUXC s2,s3 // a b c ad-bc e f e d
CALL r_mul // a b c D e f ed
XCHG3 s6,s0,s5 // (same as XCHG s2,s6; XCHG s1,s0; XCHG s0,s5)

// e f c D a ed b
PUSH s5 // e f c D a ed b f
CALL r_mul // e f c D a ed bf
CALL r_sub // e f c D a ed-bf
XCHG s4 // e Dx c D a f
CALL r_mul // e Dx c D af
XCHG2 s4,s2 // D Dx af e c
CALL r_mul // D Dx af ec
CALL r_sub // D Dx Dy
XCPU s1,s2 // D Dy Dx D
CALL r_div // D Dy x
XCHG s2 // x Dy D
JMP r_div // x y

This code uses only 20 instructions, 9 stack-related and 11 control flow-
related (CALL and JMP), for a total of 48 bytes.

152

C.4. Comparison of machine code for sample non-leaf function

Operations Code bytes Opcode space
Machine m data cont. total data cont. total data arith total

3-addr. 0,8 29 12 41 42 34 76 35/256 34/256 72/25616 27 12 39 44 34 78

2-addr. 0,8 29 12 41 42 34 76 37/256 4/256 44/25616 27 12 39 44 34 78

1-addr. 0,8 33 12 45 33 34 67 97/256 64/256 164/25616 28 12 40 39 34 73
stack (basic) − 18 11 29 18 33 51 64/256 4/256 71/256
stack (comp.) − 9 11 20 15 33 48 84/256 4/256 91/256

Table 5: A summary of machine code properties for hypothetical 3-address, 2-address,
1-address, and stack machines, generated for a sample non-leaf function (cf. C.3.1),
assuming m of the 16 registers must be preserved by called subroutines.

C.4 Comparison of machine code for sample non-leaf
function

Table 5 summarizes the properties of machine code corresponding to the
same source file provided in C.3.1. We consider only the “realistically”
encoded three-address machines. Three-address and two-address machines
have the same code density properties, but differ in the utilization of opcode
space. The one-address machine, somewhat surprisingly, managed to pro-
duced shorter code than the two-address and three-address machines, at the
expense of using up more than half of all opcode space. The stack machine
is the obvious winner in this code density contest, without compromizing its
excellent extendability (measured in opcode space used for arithmetic and
other data transformation instructions).

C.4.1. Combining with results for leaf functions. It is instructive
to compare this table with the results in C.2 for a sample leaf function,
summarized in Table 1 (for m = 0 preserved registers) and the very similar
Table 3 (for m = 8 preserved registers), and, if one is still interested in case
m = 16 (which turned out to be worse than m = 8 in almost all situations),
also to Table 2.

We see that the stack machine beats all register machines on non-leaf
functions. As for the leaf functions, only the three-address machine with the
“optimistic” encoding of arithmetic instructions was able to beat the stack
machine, winning by 15%, by compromising its extendability. However, the
same three-address machine produces 25% longer code for non-leaf functions.

153

C.4. Comparison of machine code for sample non-leaf function

Operations Code bytes Opcode space
Machine m data cont. total data cont. total data arith total

3-addr. 0,8 29 12 41 35.5 34 69.5 110/256 4/256 117/25616 27 12 39 35.5 34 69.5

2-addr. 0,8 29 12 41 35.5 34 69.5 110/256 4/256 117/25616 27 12 39 35.5 34 69.5

1-addr. 0,8 33 12 45 33 34 67 112/256 4/256 119/25616 28 12 40 33.5 34 67.5
stack (basic) − 18 11 29 18 33 51 64/256 4/256 71/256
stack (comp.) − 9 11 20 15 33 48 84/256 4/256 91/256

Table 6: A summary of machine code properties for hypothetical 3-address, 2-address,
1-address, and stack machines, generated for a sample non-leaf function (cf. C.3.1),
assuming m of the 16 registers must be preserved by called subroutines. This time we use
fractions of bytes to encode instructions, enabling a fairer comparison. Otherwise, this
table is similar to Table 5.

If a typical program consists of a mixture of leaf and non-leaf functions in
approximately equal proportion, then the stack machine will still win.

C.4.2. A fairer comparison using a binary code instead of a byte
code. Similarly to C.2.5, we may offer a fairer comparison of different
register machines and the stack machine by using arbitrary binary codes
instead of byte codes to encode instructions, and matching the opcode space
used for data manipulation and arithmetic instructions by different machines.
The results of this modified comparison are summarized in Table 6. We see
that the stack machines still win by a large margin, while using less opcode
space for stack/data manipulation.

C.4.3. Comparison with real machines. Note that our hypothetical
register machines have been considerably optimized to produce shorter code
than actually existing register machines; the latter are subject to other design
considerations apart from code density and extendability, such as backward
compatibility, faster instruction decoding, parallel execution of neighboring
instructions, ease of automatically producing optimized code by compilers,
and so on.

For example, the very popular two-address register architecture x86-64
produces code that is approximately twice as long as our “ideal” results for
the two-address machines. On the other hand, our results for the stack
machines are directly applicable to TVM, which has been explicitly designed
with the considerations presented in this appendix in mind. Furthermore, the

154

C.4. Comparison of machine code for sample non-leaf function

actual TVM code is even shorter (in bytes) than shown in Table 5 because
of the presence of the two-byte CALL instruction, allowing TVM to call up to
256 user-defined functions from the dictionary at c3. This means that one
should subtract 10 bytes from the results for stack machines in Table 5 if one
wants to specifically consider TVM, rather than an abstract stack machine;
this produces a code size of approximately 40 bytes (or shorter), almost half
that of an abstract two-address or three-address machine.

C.4.4. Automatic generation of optimized code. An interesting point
is that the stack machine code in our samples might have been generated
automatically by a very simple optimizing compiler, which rearranges values
near the top of the stack appropriately before invoking each primitive or
calling a function as explained in 2.2.2 and 2.2.5. The only exception is the
unimportant “manual” XCHG3 optimization described inC.1.7, which enabled
us to shorten the code by one more byte.

By contrast, the heavily optimized (with respect to size) code for register
machines shown in C.3.2 and C.3.3 is unlikely to be produced automati-
cally by an optimizing compiler. Therefore, if we had compared compiler-
generated code instead of manually-generated code, the advantages of stack
machines with respect to code density would have been even more striking.

155

