
Fift: A Brief Introduction

Nikolai Durov

May 23, 2019

Abstract

The aim of this text is to provide a brief description of Fift, a new
programming language specifically designed for creating and managing
TON Blockchain smart contracts, and its features used for interaction
with the TON Virtual Machine [4] and the TON Blockchain [5].

Introduction
This document provides a brief description of Fift, a stack-based general-
purpose programming language optimized for creating, debugging, and man-
aging TON Blockchain smart contracts.

Fift has been specifically designed to interact with the TON Virtual Ma-
chine (TON VM or TVM) [4] and the TON Blockchain [5]. In particular,
it offers native support for 257-bit integer arithmetic and TVM cell ma-
nipulation shared with TVM, as well as an interface to the Ed25519-based
cryptography employed by the TON Blockchain. A macro assembler for
TVM code, useful for writing new smart contracts, is also included in the
Fift distribution.

Being a stack-based language, Fift is not unlike Forth. Because of the
brevity of this text, some knowledge of Forth might be helpful for under-
standing Fift.1 However, there are significant differences between the two
languages. For instance, Fift enforces runtime type-checking, and keeps val-
ues of different types (not only integers) in its stack.

A list of words (built-in functions, or primitives) defined in Fift, along
with their brief descriptions, is presented in Appendix A.

1Good introductions to Forth exist; we can recommend [1].

1

Introduction

Please note that the current version of this document describes a pre-
liminary test version of Fift; some minor details are likely to change in the
future.

2

Introduction

Contents
1 Overview 5

2 Fift basics 7
2.1 List of Fift stack value types 7
2.2 Comments . 8
2.3 Terminating Fift . 8
2.4 Simple integer arithmetic . 8
2.5 Stack manipulation words . 10
2.6 Defining new words . 12
2.7 Named constants . 13
2.8 Integer and fractional constants, or literals 14
2.9 String literals . 16
2.10 Simple string manipulation . 16
2.11 Boolean expressions, or flags 17
2.12 Integer comparison operations 18
2.13 String comparison operations 18
2.14 Command line arguments in script mode 19

3 Blocks, loops, and conditionals 20
3.1 Defining and executing blocks 20
3.2 Conditional execution of blocks 21
3.3 Simple loops . 22
3.4 Loops with an exit condition 22
3.5 Throwing exceptions . 23

4 Dictionary, interpreter, and compiler 23
4.1 The state of the Fift interpreter 24
4.2 Active and ordinary words . 24
4.3 Compiling literals . 25
4.4 Defining new active words . 25
4.5 Defining words and dictionary manipulation 26
4.6 Dictionary lookup . 28
4.7 Creating and manipulating word lists 29
4.8 Custom defining words . 30

3

Introduction

5 Cell manipulation 31
5.1 Slice literals . 31
5.2 Builder primitives . 32
5.3 Slice primitives . 34
5.4 Cell hash operations . 37
5.5 Bag-of-cells operations . 37
5.6 Binary file I/O and Bytes manipulation 38

6 TON-specific operations 40
6.1 Ed25519 cryptography . 40
6.2 Smart-contract address parser 41
6.3 Dictionary manipulation . 42
6.4 Invoking TVM from Fift . 43

7 Using the Fift assembler 46
7.1 Loading the Fift assembler . 46
7.2 Fift assembler basics . 46
7.3 Pushing integer constants . 48
7.4 Immediate arguments . 49
7.5 Immediate continuations . 50
7.6 Control flow: loops and conditionals 52
7.7 Macro definitions . 54
7.8 Larger programs and subroutines 55

A List of Fift words 61

4

Chapter 1. Overview

1 Overview
Fift is a simple stack-based programming language designed for testing and
debugging the TON Virtual Machine [4] and the TON Blockchain [5], but
potentially useful for other purposes as well. When Fift is invoked (usually by
executing a binary file called fift), it either reads, parses, and interprets one
or several source files indicated in the command line, or enters the interac-
tive mode and interprets Fift commands read and parsed from the standard
input. There is also a “script mode”, activated by command line switch -s,
in which all command line arguments except the first one are passed to the
Fift program by means of the variables $n and $#. In this way, Fift can
be used both for interactive experimentation and debugging as well as for
writing simple scripts.

All data manipulated by Fift is kept in a (LIFO) stack. Each stack
entry is supplemented by a type tag, which unambiguously determines the
type of the value kept in the corresponding stack entry. The types of values
supported by Fift include Integer (representing signed 257-bit integers), Cell
(representing a TVM cell, which consists of up to 1023 data bits and up
to four references to other cells as explained in [4]), Slice (a partial view
of a Cell used for parsing cells), and Builder (used for building new cells).
These data types (and their implementations) are shared with TVM [4], and
can be safely passed from the Fift stack to the TVM stack and back when
necessary (e.g., when TVM is invoked from Fift by using a Fift primitive
such as runvmcode).

In addition to the data types shared with TVM, Fift introduces some
unique data types, such as Bytes (arbitrary byte sequences), String (UTF-8
strings), WordList , and WordDef (used by Fift to create new “words” and
manipulate their definitions). In fact, Fift can be extended to manipulate
arbitrary “objects” (represented by the generic type Object), provided they
are derived from C++ class td::CntObject in the current implementation.

Fift source files and libraries are usually kept in text files with the suf-
fix .fif. A search path for libraries and included files is passed to the Fift
executable either in a -I command line argument or in the FIFTPATH environ-
ment variable. If neither is set, the default library search path /usr/lib/fift
is used.

On startup, the standard Fift library is read from the file Fift.fif before
interpreting any other sources. It must be present in the library search path,
otherwise Fift execution will fail.

5

Chapter 1. Overview

A fundamental Fift data structure is its global dictionary, containing
words—or, more precisely, word definitions—that correspond both to built-
in primitives and functions and to user-defined functions.2 A word can be
executed in Fift simply by typing its name (a UTF-8 string without space
characters) in interactive mode. When Fift starts up, some words (primi-
tives) are already defined (by some C++ code in the current implementa-
tion); other words are defined in the standard library Fift.fif. After that,
the user may extend the dictionary by defining new words or redefining old
ones.

The dictionary is supposed to be split into several vocabularies, or name-
spaces; however, namespaces are not implemented yet, so all words are cur-
rently defined in the same global namespace.

The Fift parser for input source files and for the standard input (in the
interactive mode) is rather simple: the input is read line-by-line, then blank
characters are skipped, and the longest prefix of the remaining line that is
(the name of) a dictionary word is detected and removed from the input
line.3 After that, the word thus found is executed, and the process repeats
until the end of the line. When the input line is exhausted, a subsequent line
is read from the current input file or the standard input.

In order to be detected, most words require a blank character or an end-
of-line immediately after them; this is reflected by appending a space to their
names in the dictionary. Other words, called prefix words, do not require a
blank character immediately after them.

If no word is found, the string consisting of the first remaining characters
of the input line until the next blank or end-of-line character is interpreted
as an Integer and pushed into the stack. For instance, if we invoke Fift, type
2 3 + . (and press Enter), Fift first pushes an Integer constant equal to 2
into its stack, followed by another integer constant equal to 3. After that, the
built-in primitive “+” is parsed and found in the dictionary; when invoked, it
takes the two topmost elements from the stack and replaces them with their
sum (5 in our example). Finally, “.” is a primitive that prints the decimal
representation of the top-of-stack Integer, followed by a space. As a result,
we observe “5 ok” printed by the Fift interpreter into the standard output.
The string “ok” is printed by the interpreter whenever it finishes interpreting

2Fift words are typically shorter than functions or subroutines of other programming
languages. A nice discussion and some guidelines (for Forth words) may be found in [2].

3Notice that in contrast to Forth, Fift word names are case-sensitive: dup and DUP are
distinct words.

6

2.1. List of Fift stack value types

a line read from the standard input in the interactive mode.
A list of built-in words may be found in Appendix A.

2 Fift basics
This chapter provides an introduction into the basic features of the Fift pro-
gramming language. The discussion is informal and incomplete at first, but
gradually becomes more formal and more precise. In some cases, later chap-
ters and Appendix A provide more details about the words first mentioned
in this chapter; similarly, some tricks that will be dutifully explained in later
chapters are already used here where appropriate.

2.1 List of Fift stack value types

Currently, the values of the following data types can be kept in a Fift stack:

• Integer — A signed 257-bit integer. Usually denoted by x, y, or z in
the stack notation (when the stack effect of a Fift word is described).

• Cell — A TVM cell, consisting of up to 1023 data bits and up to 4
references to other cells (cf. [4]). Usually denoted by c or its variants,
such as c′ or c2.

• Slice — A partial view of a TVM cell, used for parsing data from Cells.
Usually denoted by s.

• Builder — A partially built Cell, containing up to 1023 data bits and
up to four references; can be used to create new Cells. Usually denoted
by b.

• String — A (usually printable) UTF-8 string. Usually denoted by S.

• Bytes — An arbitrary sequence of 8-bit bytes, typically used to repre-
sent binary data. Usually denoted by B.

• WordList — A (partially created) list of word references, used for cre-
ating new Fift word definitions. Usually denoted by l.

• WordDef — An execution token, usually representing the definition of
an existing Fift word. Usually denoted by e.

7

2.4. Simple integer arithmetic

• Object — An arbitrary C++ object of any class derived from base class
td::CntObject; may be used by Fift extensions to manipulate other
data types and interface with other C++ libraries.

The first four types listed above are shared with TVM; the remainder are
Fift-specific. Notice that not all TVM stack types are present in Fift. For
instance, the TVM Continuation type is not explicitly recognized by Fift; if
a value of this type ends up in a Fift stack, it is manipulated as a generic
Object.

2.2 Comments

Fift recognizes two kinds of comments: “// ” (which must be followed by a
space) opens a single-line comment until the end of the line, and /* defines
a multi-line comment until */. Both words // and /* are defined in the
standard Fift library (Fift.fif).

2.3 Terminating Fift

The word bye terminates the Fift interpreter with a zero exit code. If a
non-zero exit code is required (for instance, in Fift scripts), one can use word
halt, which terminates Fift with the given exit code (passed as an Integer
at the top of the stack). In contrast, quit does not quit to the operating
system, but rather exits to the top level of the Fift interpreter.

2.4 Simple integer arithmetic

When Fift encounters a word that is absent from the dictionary, but which
can be interpreted as an integer constant (or “literal”), its value is pushed
into the stack (as explained in 2.8 in more detail). Apart from that, several
integer arithmetic primitives are defined:

• + (x y – x+ y), replaces two Integers x and y passed at the top of the
stack with their sum x+ y. All deeper stack elements remain intact. If
either x or y is not an Integer, or if the sum does not fit into a signed
257-bit Integer, an exception is thrown.

• - (x y – x − y), computes the difference x − y of two Integers x and
y. Notice that the first argument x is the second entry from the top

8

2.4. Simple integer arithmetic

of the stack, while the second argument y is taken from the top of the
stack.

• negate (x – −x), changes the sign of an Integer.

• * (x y – xy), computes the product xy of two Integers x and y.

• / (x y – q := bx/yc), computes the floor-rounded quotient bx/yc of two
Integers.

• mod (x y – r := x mod y), computes the remainder x mod y = x − y ·
bx/yc of division of x by y.

• /mod (x y – q r), computes both the quotient and the remainder.

• /c, /r (x y – q), division words similar to /, but using ceiling rounding
(q := dx/ye) and nearest-integer rounding (q := b1/2 + x/yc), respec-
tively.

• /cmod, /rmod (x y – q r := x− qy), division words similar to /mod, but
using ceiling or nearest-integer rounding.

• << (x y – x · 2y), computes an arithmetic left shift of binary number x
by y ≥ 0 positions, yielding x · 2y.

• >> (x y – q := bx · 2−yc), computes an arithmetic right shift by y ≥ 0
positions.

• >>c, >>r (x y – q), similar to >>, but using ceiling or nearest-integer
rounding.

• and, or, xor (x y – x⊕ y), compute the bitwise AND, OR, or XOR of
two Integers.

• not (x – −1− x), bitwise complement of an Integer.

• */ (x y z – bxy/zc), “multiply-then-divide”: multiplies two integers x
and y producing a 513-bit intermediate result, then divides the product
by z.

• */mod (x y z – q r), similar to */, but computes both the quotient and
the remainder.

9

2.5. Stack manipulation words

• */c, */r (x y z – q), */cmod, */rmod (x y z – q r), similar to */ or
*/mod, but using ceiling or nearest-integer rounding.

• *>>, *>>c, *>>r (x y z – q), similar to */ and its variants, but with
division replaced with a right shift. Compute q = xy/2z rounded in
the indicated fashion (floor, ceiling, or nearest integer).

• <</, <</c, <</r (x y z – q), similar to */, but with multiplication
replaced with a left shift. Compute q = 2zx/y rounded in the indicated
fashion (notice the different order of arguments y and z compared to
*/).

In addition, the word “.” may be used to print the decimal representation
of an Integer passed at the top of the stack (followed by a single space), and
“x.” prints the hexadecimal representation of the top-of-stack integer. The
integer is removed from the stack afterwards.

The above primitives can be employed to use the Fift interpreter in in-
teractive mode as a simple calculator for arithmetic expressions represented
in reverse Polish notation (with operation symbols after the operands). For
instance,

7 4 - .

computes 7− 4 = 3 and prints “3 ok”, and

2 3 4 * + .
2 3 + 4 * .

computes 2 + 3 · 4 = 14 and (2 + 3) · 4 = 20, and prints “14 20 ok”.

2.5 Stack manipulation words

Stack manipulation words rearrange one or several values near the top of
the stack, regardless of their types, and leave all deeper stack values intact.
Some of the most often used stack manipulation words are listed below:

• dup (x – x x), duplicates the top-of-stack entry. If the stack is empty,
throws an exception.4

• drop (x –), removes the top-of-stack entry.
4Notice that Fift word names are case-sensitive, so one cannot type DUP instead of dup.

10

2.5. Stack manipulation words

• swap (x y – y x), interchanges the two topmost stack entries.

• rot (x y z – y z x), rotates the three topmost stack entries.

• -rot (x y z – z x y), rotates the three topmost stack entries in the
opposite direction. Equivalent to rot rot.

• over (x y – x y x), creates a copy of the second stack entry from the
top over the top-of-stack entry.

• tuck (x y – y x y), equivalent to swap over.

• nip (x y – y), removes the second stack entry from the top. Equivalent
to swap drop.

• 2dup (x y – x y x y), equivalent to over over.

• 2drop (x y –), equivalent to drop drop.

• 2swap (a b c d – c d a b), interchanges the two topmost pairs of stack
entries.

• pick (xn . . .x0 n – xn . . .x0 xn), creates a copy of the n-th entry
from the top of the stack, where n ≥ 0 is also passed in the stack. In
particular, 0 pick is equivalent to dup, and 1 pick to over.

• roll (xn . . .x0 n – xn−1 . . .x0 xn), rotates the top n stack entries, where
n ≥ 0 is also passed in the stack. In particular, 1 roll is equivalent to
swap, and 2 roll to rot.

• -roll (xn . . .x0 n – x0 xn . . .x1), rotates the top n stack entries in
the opposite direction, where n ≥ 0 is also passed in the stack. In
particular, 1 -roll is equivalent to swap, and 2 -roll to -rot.

• exch (xn . . .x0 n – x0 . . .xn), interchanges the top of the stack with
the n-th stack entry from the top, where n ≥ 0 is also taken from the
stack. In particular, 1 exch is equivalent to swap, and 2 exch to swap
rot.

• exch2 (. . .n m – . . .), interchanges the n-th stack entry from the top
with the m-th stack entry from the top, where n ≥ 0, m ≥ 0 are taken
from the stack.

11

2.6. Defining new words

• ?dup (x – x x or 0), duplicates an Integer x, but only if it is non-zero.
Otherwise leaves it intact.

For instance, “5 dup * .” will compute 5 · 5 = 25 and print “25 ok”.
One can use the word “.s”—which prints the contents of the entire stack,

starting from the deepest elements, without removing the elements printed
from the stack—to inspect the contents of the stack at any time, and to check
the effect of any stack manipulation words. For instance,

1 2 3 4 .s
rot .s

prints

1 2 3 4
ok

1 3 4 2
ok

When Fift does not know how to print a stack value of an unknown type,
it instead prints ???.

2.6 Defining new words

In its simplest form, defining new Fift words is very easy and can be done
with the aid of three special words: “{”, “}”, and “:”. One simply opens the
definition with { (necessarily followed by a space), then lists all the words that
constitute the new definition, then closes the definition with } (also followed
by a space), and finally assigns the resulting definition (represented by a
WordDef value in the stack) to a new word by writing : 〈new-word-name〉.
For instance,

{ dup * } : square

defines a new word square, which executes dup and * when invoked. In this
way, typing 5 square becomes equivalent to typing 5 dup *, and produces
the same result (25):

5 square .

prints “25 ok”. One can also use the new word as a part of new definitions:

12

2.7. Named constants

{ dup square square * } : **5
3 **5 .

prints “243 ok”, which indeed is 35.
If the word indicated after “:” is already defined, it is tacitly redefined.

However, all existing definitions of other words will continue to use the old
definition of the redefined word. For instance, if we redefine square after
we have already defined **5 as above, **5 will continue to use the original
definition of square.

2.7 Named constants

One can define (named) constants—i.e., words that push a predefined value
when invoked—by using the defining word constant instead of the defining
word “:” (colon). For instance,

1000000000 constant Gram

defines a constant Gram equal to Integer 109. In other words, 1000000000
will be pushed into the stack whenever Gram is invoked:

Gram 2 * .

prints “2000000000 ok”.
Of course, one can use the result of a computation to initialize the value

of a constant:

Gram 1000 / constant mGram
mGram .

prints “1000000 ok”.
The value of a constant does not necessarily have to be an Integer. For

instance, one can define a string constant in the same way:

"Hello, world!" constant hello
hello type cr

prints “Hello, world!” on a separate line.
If a constant is redefined, all existing definitions of other words will con-

tinue to use the old value of the constant. In this respect, a constant does
not behave as a global variable.

One can also store two values into one “double” constant by using the
defining word 2constant. For instance,

13

2.8. Integer and fractional constants, or literals

355 113 2constant pifrac

defines a new word pifrac, which will push 355 and 113 (in that order) when
invoked. The two components of a double constant can be of different types.

If one wants to create a constant with a fixed name within a block or
a colon definition, one should use =: and 2=: instead of constant and
2constant:

{ dup =: x dup * =: y } : setxy
3 setxy x . y . x y + .
7 setxy x . y . x y + .

produces

3 9 12 ok
7 49 56 ok

If one wants to recover the execution-time value of such a “constant”, one can
prefix the name of the constant with the word @’:

{ ."(" @’ x . .", " @’ y . .") " } : showxy
3 setxy showxy

produces

(3 , 9) ok

2.8 Integer and fractional constants, or literals

Fift recognizes unnamed integer constants (called literals to distinguish them
from named constants) in decimal, binary, and hexadecimal formats. Binary
literals are prefixed by 0b, hexadecimal literals are prefixed by 0x, and dec-
imal literals do not require a prefix. For instance, 0b1011, 11, and 0xb
represent the same integer (11). An integer literal may be prefixed by a mi-
nus sign “-” to change its sign; the minus sign is accepted both before and
after the 0x and 0b prefixes.

When Fift encounters a string that is absent from the dictionary but is a
valid integer literal (fitting into the 257-bit signed integer type Integer), its
value is pushed into the stack.

Apart from that, Fift offers some support for decimal and common frac-
tions. If a string consists of two valid integer literals separated by a slash /,

14

2.8. Integer and fractional constants, or literals

then Fift interprets it as a fractional literal and represents it by two Integers
p and q in the stack, the numerator p and the denominator q. For instance,
-17/12 pushes −17 and 12 into the Fift stack (being thus equivalent to -17
12), and -0x11/0b1100 does the same thing. Decimal, binary, and hexadeci-
mal fractions, such as 2.39 or -0x11.ef, are also represented by two integers
p and q, where q is a suitable power of the base (10, 2, or 16, respectively).
For instance, 2.39 is equivalent to 239 100, and -0x11.ef is equivalent to
-0x11ef 0x100.

Such a representation of fractions is especially convenient for using them
with the scaling primitive */ and its variants, thus converting common and
decimal fractions into a suitable fixed-point representation. For instance, if
we want to represent fractional amounts of Grams by integer amounts of
nanograms, we can define some helper words

1000000000 constant Gram
{ Gram * } : Gram*
{ Gram swap */r } : Gram*/

and then write 2.39 Gram*/ or 17/12 Gram*/ instead of integer literals
2390000000 or 1416666667.

If one needs to use such Gram literals often, one can introduce a new
active prefix word GR$ as follows:

{ bl word (number) ?dup 0= abort"not a valid Gram amount"
1- { Gram swap */r } { Gram * } cond
1 ’nop

} ::_ GR$

makes GR$3, GR$2.39, and GR$17/12 equivalent to integer literals 3000000000,
2390000000, and 1416666667, respectively. Such values can be printed in
similar form by means of the following words:

{ dup abs <# ’ # 9 times char . hold #s rot sign #>
nip -trailing0 } : (.GR)

{ (.GR) ."GR$" type space } : .GR
-17239000000 .GR

produces GR$-17.239 ok. The above definitions make use of tricks explained
in later portions of this document (especially Chapter 4).

We can also manipulate fractions by themselves by defining suitable “ra-
tional arithmetic words”:

15

2.10. Simple string manipulation

// a b c d -- (a*d-b*c) b*d
{ -rot over * 2swap tuck * rot - -rot * } : R-
// a b c d -- a*c b*d
{ rot * -rot * swap } : R*
// a b --
{ swap ._ ."/" . } : R.
1.7 2/3 R- R.

will output “31/30 ok”, indicating that 1.7 − 2/3 = 31/30. Here “._” is a
variant of “.” that does not print a space after the decimal representation of
an Integer.

2.9 String literals

String literals are introduced by means of the prefix word ", which scans
the remainder of the line until the next " character, and pushes the string
thus obtained into the stack as a value of type String. For instance, "Hello,
world!" pushes the corresponding String into the stack:

"Hello, world!" .s

2.10 Simple string manipulation

The following words can be used to manipulate strings:

• "〈string〉" (– S), pushes a String literal into the stack.

• ."〈string〉" (–), prints a constant string into the standard output.

• type (S –), prints a String S taken from the top of the stack into the
standard output.

• cr (–), outputs a carriage return (or a newline character) into the
standard output.

• emit (x –), prints a UTF-8 encoded character with Unicode codepoint
given by Integer x into the standard output.

• char 〈string〉 (– x), pushes an Integer with the Unicode codepoint
of the first character of 〈string〉.

16

2.11. Boolean expressions, or flags

• bl (– x), pushes the Unicode codepoint of a space, i.e., 32.

• space (–), prints one space, equivalent to bl emit.

• $+ (S S ′ – S.S ′), concatenates two strings.

• $len (S – x), computes the byte length (not the UTF-8 character
length!) of a string.

• +"〈string〉" (S – S ′), concatenates String S with a string literal.
Equivalent to "〈string〉" $+.

• word (x – S), parses a word delimited by the character with the Unicode
codepoint x from the remainder of the current input line and pushes
the result as a String. For instance, bl word abracadabra type will
print the string “abracadabra”. If x = 0, skips leading spaces, and
then scans until the end of the current input line. If x = 32, skips
leading spaces before parsing the next word.

• (.) (x – S), returns the String with the decimal representation of
Integer x.

• (number) (S – 0 or x 1 or x y 2), attempts to parse the String S as an
integer or fractional literal as explained in 2.8.

For instance, ."*", "*" type, 42 emit, and char * emit are four different
ways to output a single asterisk.

2.11 Boolean expressions, or flags

Fift does not have a separate value type for representing boolean values.
Instead, any non-zero Integer can be used to represent truth (with −1 be-
ing the standard representation), while a zero Integer represents falsehood.
Comparison primitives normally return −1 to indicate success and 0 other-
wise.

Constants true and false can be used to push these special integers into
the stack:

• true (– −1), pushes −1 into the stack.

• false (– 0), pushes 0 into the stack.

17

2.14. Command line arguments in script mode

If boolean values are standard (either 0 or −1), they can be manipulated
by means of bitwise logical operations and, or, xor, not (listed in 2.4).
Otherwise, they must first be reduced to the standard form using 0<>:

• 0<> (x – x 6= 0), pushes −1 if Integer x is non-zero, 0 otherwise.

2.12 Integer comparison operations

Several integer comparison operations can be used to obtain boolean values:

• < (x y – ?), checks whether x < y (i.e., pushes −1 if x < y, 0 otherwise).

• >, =, <>, <=, >= (x y – ?), compare x and y and push −1 or 0 depending
on the result of the comparison.

• 0< (x – ?), checks whether x < 0 (i.e., pushes −1 if x is negative, 0
otherwise). Equivalent to 0 <.

• 0>, 0=, 0<>, 0<=, 0>= (x – ?), compare x against zero.

• cmp (x y – z), pushes 1 if x > y, −1 if x < y, and 0 if x = y.

• sgn (x – y), pushes 1 if x > 0, −1 if x < 0, and 0 if x = 0. Equivalent
to 0 cmp.

Example:

2 3 < .

prints “-1 ok”, because 2 is less than 3.
A more convoluted example:

{ "true " "false " rot 0= 1+ pick type 2drop } : ?.
2 3 < ?. 2 3 = ?. 2 3 > ?.

prints “true false false ok”.

2.13 String comparison operations

Strings can be lexicographically compared by means of the following words:

• $= (S S ′ – ?), returns −1 if strings S and S ′ are equal, 0 otherwise.

• $cmp (S S ′ – x), returns 0 if strings S and S ′ are equal, −1 if S is
lexicographically less than S ′, and 1 if S is lexicographically greater
than S ′.

18

Chapter 3. Blocks, loops, and conditionals

2.14 Command line arguments in script mode

The Fift interpreter can be invoked in script mode by passing -s as a com-
mand line option. In this mode, all further command line arguments are
not scanned for Fift startup command line options. Rather, the next argu-
ment after -s is used as the filename of the Fift source file, and all further
command line arguments are passed to the Fift program by means of special
words $n and $#:
• $# (– x), pushes the total number of command-line arguments passed

to the Fift program.

• $n (– S), pushes the n-th command-line argument as a String S. For
instance, $0 pushes the name of the script being executed, $1 the first
command line argument, and so on.

• $() (x – S), pushes the x-th command-line argument similarly to $n,
but with Integer x taken from the stack.

Additionally, if the very first line of a Fift source file begins with the two
characters “#!”, this line is ignored. In this way simple Fift scripts can be
written in a *ix system. For instance, if
#!/usr/bin/fift -s
{ ."usage: " $0 type ." <num1> <num2>" cr

."Computes the product of two integers." cr 1 halt } : usage
{ ’ usage if } : ?usage
$# 2 <> ?usage
$1 (number) 1- ?usage
$2 (number) 1- ?usage
* . cr

is saved into a file cmdline.fif in the current directory, and its execu-
tion bit is set (e.g., by chmod 755 cmdline.fif), then it can be invoked
from the shell or any other program, provided the Fift interpreter is in-
stalled as /usr/bin/fift, and its standard library Fift.fif is installed as
/usr/lib/fift/Fift.fif:
$./cmdline.fif 12 -5

prints
-60

when invoked from a *ix shell such as the Bourne–again shell (Bash).

19

3.2. Conditional execution of blocks

3 Blocks, loops, and conditionals
Similarly to the arithmetic operations, the execution flow in Fift is controlled
by stack-based primitives. This leads to an inversion typical of reverse Polish
notation and stack-based arithmetic: one first pushes a block representing
a conditional branch or the body of a loop into the stack, and then invokes
a conditional or iterated execution primitive. In this respect, Fift is more
similar to PostScript than to Forth.

3.1 Defining and executing blocks

A block is normally defined using the special words “{” and “}”. Roughly
speaking, all words listed between { and } constitute the body of a new block,
which is pushed into the stack as a value of type WordDef. A block may be
stored as a definition of a new Fift word by means of the defining word “:”
as explained in 2.6, or executed by means of the word execute:

17 { 2 * } execute .

prints “34 ok”, being essentially equivalent to “17 2 * .”. A slightly more
convoluted example:

{ 2 * } 17 over execute swap execute .

applies “anonymous function” x 7→ 2x twice to 17, and prints the result
2 · (2 · 17) = 68. In this way a block is an execution token, which can be
duplicated, stored into a constant, used to define a new word, or executed.

The word ’ recovers the current definition of a word. Namely, the con-
struct ’ 〈word-name〉 pushes the execution token equivalent to the current
definition of the word 〈word-name〉. For instance,
’ dup execute

is equivalent to dup, and

’ dup : duplicate

defines duplicate as a synonym for (the current definition of) dup.
Alternatively, we can duplicate a block to define two new words with the

same definition:

{ dup * }
dup : square : **2

defines both square and **2 to be equivalent to dup *.

20

3.3. Simple loops

3.2 Conditional execution of blocks

Conditional execution of blocks is achieved using the words if, ifnot, and
cond:

• if (x e –), executes e (which must be an execution token, i.e., a
WordDef),5 but only if Integer x is non-zero.

• ifnot (x e –), executes execution token e, but only if Integer x is zero.

• cond (x e e′ –), if Integer x is non-zero, executes e, otherwise executes
e′.

For instance, the last example in 2.12 can be more conveniently rewritten
as

{ { ."true " } { ."false " } cond } : ?.
2 3 < ?. 2 3 = ?. 2 3 > ?.

still resulting in “true false false ok”.
Notice that blocks can be arbitrarily nested, as already shown in the

previous example. One can write, for example,

{ ?dup
{ 0<

{ ."negative " }
{ ."positive " }
cond

}
{ ."zero " }
cond

} : chksign
-17 chksign

to obtain “negative ok”, because −17 is negative.
5A WordDef is more general than a WordList. For instance, the definition of the

primitive + is a WordDef, but not a WordList, because + is not defined in terms of other
Fift words.

21

3.4. Loops with an exit condition

3.3 Simple loops

The simplest loops are implemented by times:

• times (e n –), executes e exactly n times, if n ≥ 0. If n is negative,
throws an exception.

For instance,

1 { 10 * } 70 times .

computes and prints 1070.
We can use this kind of loop to implement a simple factorial function:

{ 0 1 rot { swap 1+ tuck * } swap times nip } : fact
5 fact .

prints “120 ok”, because 5! = 1 · 2 · 3 · 4 · 5 = 120.
This loop can be modified to compute Fibonacci numbers instead:

{ 0 1 rot { tuck + } swap times nip } : fibo
6 fibo .

computes the sixth Fibonacci number F6 = 13.

3.4 Loops with an exit condition

More sophisticated loops can be created with the aid of until and while:

• until (e –), executes e, then removes the top-of-stack integer and
checks whether it is zero. If it is, then begins a new iteration of the
loop by executing e. Otherwise exits the loop.

• while (e e′ –), executes e, then removes and checks the top-of-stack
integer. If it is zero, exits the loop. Otherwise executes e′, then begins
a new loop iteration by executing e and checking the exit condition
afterwards.

For instance, we can compute the first two Fibonacci numbers greater than
1000:

{ 1 0 rot { -rot over + swap rot 2dup >= } until drop
} : fib-gtr
1000 fib-gtr . .

22

Chapter 4. Dictionary, interpreter, and compiler

prints “1597 2584 ok”.
We can use this word to compute the first 70 decimal digits of the golden

ratio φ = (1 +
√

5)/2 ≈ 1.61803:

1 { 10 * } 70 times dup fib-gtr */ .

prints “161803 . . . 2604 ok”.

3.5 Throwing exceptions

Two built-in words are used to throw exceptions:

• abort (S –), throws an exception with an error message taken from
String S.

• abort"〈message〉" (x –), throws an exception with the error message
〈message〉 if x is a non-zero integer.

The exception thrown by these words is represented by the C++ exception
fift::IntError with its value equal to the specified string. It is normally
handled within the Fift interpreter itself by aborting all execution up to
the top level and printing a message with the name of the source file being
interpreted, the line number, the currently interpreted word, and the specified
error message. For instance:

{ dup 0= abort"Division by zero" / } : safe/
5 0 safe/ .

prints “safe/: Division by zero”, without the usual “ok”. The stack is
cleared in the process.

Incidentally, when the Fift interpreter encounters an unknown word that
cannot be parsed as an integer literal, an exception with the message “-?” is
thrown, with the effect indicated above, including the stack being cleared.

4 Dictionary, interpreter, and compiler
In this chapter we present several specific Fift words for dictionary manipu-
lation and compiler control. The “compiler” is the part of the Fift interpreter
that builds lists of word references (represented by WordList stack values)

23

4.2. Active and ordinary words

from word names; it is activated by the primitive “{” employed for defining
blocks as explained in 2.6 and 3.1.

Most of the information included in this chapter is rather sophisticated
and may be skipped during a first reading. However, the techniques described
here are heavily employed by the Fift assembler, used to compile TVM code.
Therefore, this section is indispensable if one wishes to understand the cur-
rent implementation of the Fift assembler.

4.1 The state of the Fift interpreter

The state of the Fift interpreter is controlled by an internal integer variable
called state, currently unavailable from Fift itself. When state is zero,
all words parsed from the input (i.e., the Fift source file or the standard
input in the interactive mode) are looked up in the dictionary and immedi-
ately executed afterwards. When state is positive, the words found in the
dictionary are not executed. Instead, they (or rather the references to their
current definitions) are compiled, i.e., added to the end of the WordList being
constructed.

Typically, state equals the number of the currently open blocks. For
instance, after interpreting “{ 0= { ."zero"” the state variable will be
equal to two, because there are two nested blocks. The WordList being
constructed is kept at the top of the stack.

The primitive “{” simply pushes a new empty WordList into the stack,
and increases state by one. The primitive “}” throws an exception if state
is already zero; otherwise it decreases state by one, and leaves the resulting
WordList in the stack, representing the block just constructed.6 After that,
if the resulting value of state is non-zero, the new block is compiled as a
literal (unnamed constant) into the encompassing block.

4.2 Active and ordinary words

All dictionary words have a special flag indicating whether they are active
words or ordinary words. By default, all words are ordinary. In particular,
all words defined with the aid of “:” and constant are ordinary.

6The word } also transforms this WordList into a WordDef, which has a different type
tag and therefore is a different Fift value, even if the same underlying C++ object is used
by the C++ implementation.

24

4.4. Defining new active words

When the Fift interpreter finds a word definition in the dictionary, it
checks whether it is an ordinary word. If it is, then the current word definition
is either executed (if state is zero) or “compiled” (if state is greater than
zero) as explained in 4.1.

On the other hand, if the word is active, then it is always executed, even
if state is positive. An active word is expected to leave some values x1 . . .xn
n e in the stack, where n ≥ 0 is an integer, x1 . . . xn are n values of arbitrary
types, and e is an execution token (a value of type WordDef). After that,
the interpreter performs different actions depending on state: if state is
zero, then n is discarded and e is executed, as if a nip execute phrase were
found. If state is non-zero, then this collection is “compiled” in the current
WordList (located immediately below x1 in the stack) in the same way as if
the (compile) primitive were invoked. This compilation amounts to adding
some code to the end of the current WordList that would push x1, . . . , xn
into the stack when invoked, and then adding a reference to e (representing
a delayed execution of e). If e is equal to the special value ’nop, representing
an execution token that does nothing when executed, then this last step is
omitted.

4.3 Compiling literals

When the Fift interpreter encounters a word that is absent from the dictio-
nary, it invokes the primitive (number) to attempt to parse it as an integer
or fractional literal. If this attempt succeeds, then the special value ’nop is
pushed, and the interpretation proceeds in the same way as if an active word
were encountered. In other words, if state is zero, then the literal is sim-
ply left in the stack; otherwise, (compile) is invoked to modify the current
WordList so that it would push the literal when executed.

4.4 Defining new active words

New active words are defined similarly to new ordinary words, but using “::”
instead of “:”. For instance,

{ bl word 1 ’ type } :: say

defines the active word say, which scans the next blank-separated word after
itself and compiles it as a literal along with a reference to the current defini-
tion of type into the current WordList (if state is non-zero, i.e., if the Fift

25

4.5. Defining words and dictionary manipulation

interpreter is compiling a block). When invoked, this addition to the block
will push the stored string into the stack and execute type, thus printing the
next word after say. On the other hand, if state is zero, then these two
actions are performed by the Fift interpreter immediately. In this way,

1 2 say hello + .

will print “hello3 ok”, while

{ 2 say hello + . } : test
1 test 4 test

will print “hello3 hello6 ok”.
Of course, a block may be used to represent the required action instead

of ’ type. For instance, if we want a version of say that prints a space after
the stored word, we can write

{ bl word 1 { type space } } :: say
{ 2 say hello + . } : test
1 test 4 test

to obtain “hello 3 hello 6 ok”.
Incidentally, the words " (introducing a string literal) and ." (printing a

string literal) can be defined as follows:

{ char " word 1 ’nop } ::_ "
{ char " word 1 ’ type } ::_ ."

The new defining word “::_” defines an active prefix word, i.e., an active
word that does not require a space afterwards.

4.5 Defining words and dictionary manipulation

Defining words are words that define new words in the Fift dictionary. For
instance, “:”, “::_”, and constant are defining words. All of these defining
words might have been defined using the primitive (create); in fact, the user
can introduce custom defining words if so desired. Let us list some defining
words and dictionary manipulation words:

• create 〈word-name〉 (e –), defines a new ordinary word with the name
equal to the next word scanned from the input, using WordDef e as its
definition. If the word already exists, it is tacitly redefined.

26

4.5. Defining words and dictionary manipulation

• (create) (e S x –), creates a new word with the name equal to String
S and definition equal to WordDef e, using flags passed in Integer
0 ≤ x ≤ 3. If bit +1 is set in x, creates an active word; if bit +2 is set
in x, creates a prefix word.

• : 〈word-name〉 (e –), defines a new ordinary word 〈word-name〉 in
the dictionary using WordDef e as its definition. If the specified word
is already present in the dictionary, it is tacitly redefined.

• forget 〈word-name〉 (–), forgets (removes from the dictionary) the
definition of the specified word.

• (forget) (S –), forgets the word with the name specified in String S.
If the word is not found, throws an exception.

• :_ 〈word-name〉 (e –), defines a new ordinary prefix word 〈word-name〉,
meaning that a blank or an end-of-line character is not required by the
Fift input parser after the word name. In all other respects it is similar
to “:”.

• :: 〈word-name〉 (e –), defines a new active word 〈word-name〉 in the
dictionary using WordDef e as its definition. If the specified word is
already present in the dictionary, it is tacitly redefined.

• ::_ 〈word-name〉 (e –), defines a new active prefix word 〈word-name〉,
meaning that a blank or an end-of-line character is not required by the
Fift input parser after the word name. In all other respects it is similar
to “::”.

• constant 〈word-name〉 (x –), defines a new ordinary word 〈word-name〉
that would push the given value x when invoked.

• 2constant 〈word-name〉 (x y –), defines a new ordinary word named
〈word-name〉 that would push the given values x and y (in that order)
when invoked.

• =: 〈word-name〉 (x –), defines a new ordinary word 〈word-name〉 that
would push the given value x when invoked, similarly to constant, but
works inside blocks and colon definitions.

27

4.6. Dictionary lookup

• 2=: 〈word-name〉 (x y –), defines a new ordinary word 〈word-name〉
that would push the given values x and y (in that order) when invoked,
similarly to 2constant, but works inside blocks and colon definitions.

Notice that most of the above words might have been defined in terms of
(create):

{ bl word 1 2 ’ (create) } "::" 1 (create)
{ bl word 0 2 ’ (create) } :: :
{ bl word 2 2 ’ (create) } :: :_
{ bl word 3 2 ’ (create) } :: ::_
{ bl word 0 (create) } : create
{ bl word (forget) } : forget

4.6 Dictionary lookup

The following words can be used to look up words in the dictionary:

• ’ 〈word-name〉 (– e), pushes the definition of the word 〈word-name〉,
recovered at the compile time. If the indicated word is not found,
throws an exception. Notice that ’ 〈word-name〉 execute is always
equivalent to 〈word-name〉 for ordinary words, but not for active words.

• nop (–), does nothing.

• ’nop (– e), pushes the default definition of nop—an execution token
that does nothing when executed.

• find (S – e −1 or e 1 or 0), looks up String S in the dictionary
and returns its definition as a WordDef e if found, followed by −1 for
ordinary words or 1 for active words. Otherwise pushes 0.

• (’) 〈word-name〉 (– e), similar to ’, but returns the definition of
the specified word at execution time, performing a dictionary lookup
each time it is invoked. May be used to recover current values of con-
stants inside word definitions and other blocks by using the phrase (’)
〈word-name〉 execute.

• @’ 〈word-name〉 (– e), similar to (’), but recovers the definition of
the specified word at execution time, performing a dictionary lookup

28

4.7. Creating and manipulating word lists

each time it is invoked, and then executes this definition. May be
used to recover current values of constants inside word definitions and
other blocks by using the phrase @’ 〈word-name〉, equivalent to (’)
〈word-name〉 execute, cf. 2.7.

• [compile] 〈word-name〉 (–), compiles 〈word-name〉 as if it were an or-
dinary word, even if it is active. Essentially equivalent to ’ 〈word-name〉
execute.

• words (–), prints the names of all words currently defined in the
dictionary.

4.7 Creating and manipulating word lists

In the Fift stack, lists of references to word definitions and literals, to be
used as blocks or word definitions, are represented by the values of the type
WordList. Some words for manipulating WordLists include:

• { (– l), an active word that increases internal variable state by one
and pushes a new empty WordList into the stack.

• } (l – e), an active word that transforms a WordList l into a Word-
Def (an execution token) e, thus making all further modifications of l
impossible, and decreases internal variable state by one and pushes
the integer 1, followed by a ’nop. The net effect is to transform the
constructed WordList into an execution token and push this execution
token into the stack, either immediately or during the execution of an
outer block.

• ({) (– l), pushes an empty WordList into the stack.

• (}) (l – e), transforms a WordList into an execution token, making all
further modifications impossible.

• (compile) (l x1 . . .xn n e – l′), extends WordList l so that it would
push 0 ≤ n ≤ 255 values x1, . . . , xn into the stack and execute the
execution token e when invoked, where 0 ≤ n ≤ 255 is an Integer. If e
is equal to the special value ’nop, the last step is omitted.

29

Chapter 5. Cell manipulation

• does (x1 . . .xn n e – e′), creates a new execution token e′ that would
push n values x1, . . . , xn into the stack and then execute e. It is roughly
equivalent to a combination of ({), (compile), and (}).

4.8 Custom defining words

The word does is actually defined in terms of simpler words:

{ swap ({) over 2+ -roll swap (compile) (}) } : does

It is especially useful for defining custom defining words. For instance,
constant and 2constant may be defined with the aid of does and create:

{ 1 ’nop does create } : constant
{ 2 ’nop does create } : 2constant

Of course, non-trivial actions may be performed by the words defined by
means of such custom defining words. For instance,

{ 1 { type space } does create } : says
"hello" says hello
"unknown error" says error
{ hello error } : test
test

will print “hello unknown error ok”, because hello is defined by means
of a custom defining word says to print “hello” whenever invoked, and
similarly error prints “unknown error” when invoked. The above definitions
are essentially equivalent to

{ ."hello" } : hello
{ ."unknown error" } : error

However, custom defining words may perform more sophisticated actions
when invoked, and preprocess their arguments at compile time. For instance,
the message can be computed in a non-trivial fashion:

"Hello, " "world!" $+ says hw

defines word hw, which prints “Hello, world!” when invoked. The string with
this message is computed once at compile time (when says is invoked), not
at execution time (when hw is invoked).

30

5.2. Builder primitives

5 Cell manipulation
We have discussed the basic Fift primitives not related to TVM or the TON
Blockchain so far. Now we will turn to TON-specific words, used to manip-
ulate Cells.

5.1 Slice literals

Recall that a (TVM) Cell consists of at most 1023 data bits and at most four
references to other Cells, a Slice is a read-only view of a portion of a Cell, and
a Builder is used to create new Cells. Fift has special provisions for defining
Slice literals (i.e., unnamed constants), which can also be transformed into
Cells if necessary.

Slice literals are introduced by means of active prefix words x{ and b{:

• b{〈binary-data〉} (– s), creates a Slice s that contains no references
and up to 1023 data bits specified in 〈binary-data〉, which must be a
string consisting only of the characters ‘0’ and ‘1’.

• x{〈hex-data〉} (– s), creates a Slice s that contains no references and
up to 1023 data bits specified in 〈hex-data〉. More precisely, each hex
digit from 〈hex-data〉 is transformed into four binary digits in the usual
fashion. After that, if the last character of 〈hex-data〉 is an underscore _,
then all trailing binary zeroes and the binary one immediately preceding
them are removed from the resulting binary string (cf. [4, 1.0] for more
details).

In this way, b{00011101} and x{1d} both push the same Slice consisting of
eight data bits and no references. Similarly, b{111010} and x{EA_} push the
same Slice consisting of six data bits. An empty Slice can be represented as
b{} or x{}.

If one wishes to define constant Slices with some Cell references, the
following words might be used:

• |_ (s s′ – s′′), given two Slices s and s′, creates a new Slice s′′, which is
obtained from s by appending a new reference to a Cell containing s′.

• |+ (s s′ – s′′), concatenates two Slices s and s′. This means that the
data bits of the new Slice s′′ are obtained by concatenating the data
bits of s and s′, and the list of Cell references of s′′ is constructed
similarly by concatenating the corresponding lists for s and s′.

31

5.2. Builder primitives

5.2 Builder primitives

The following words can be used to manipulate Builders, which can later be
used to construct new Cells:

• <b (– b), creates a new empty Builder.

• b> (b – c), transforms a Builder b into a new Cell c containing the same
data as b.

• i, (b x y – b′), appends the big-endian binary representation of a signed
y-bit integer x to Builder b, where 0 ≤ y ≤ 257. If there is not enough
room in b (i.e., if b already contains more than 1023− y data bits), or
if Integer x does not fit into y bits, an exception is thrown.

• u, (b x y – b′), appends the big-endian binary representation of an
unsigned y-bit integer x to Builder b, where 0 ≤ y ≤ 256. If the
operation is impossible, an exception is thrown.

• ref, (b c – b′), appends to Builder b a reference to Cell c. If b already
contains four references, an exception is thrown.

• s, (b s – b′), appends data bits and references taken from Slice s to
Builder b.

• sr, (b s – b′), constructs a new Cell containing all data and refer-
ences from Slice s, and appends a reference to this cell to Builder b.
Equivalent to <b swap s, b> ref,.

• $, (b S – b′), appends String S to Builder b. The string is interpreted
as a binary string of length 8n, where n is the number of bytes in the
UTF-8 representation of S.

• B, (b B – b′), appends Bytes B to Builder b.

• b+ (b b′ – b′′), concatenates two Builders b and b′.

• bbits (b – x), returns the number of data bits already stored in Builder b.
The result x is an Integer in the range 0 . . . 1023.

• brefs (b – x), returns the number of references already stored in
Builder b. The result x is an Integer in the range 0 . . . 4.

32

5.3. Slice primitives

• bbitrefs (b – x y), returns both the number of data bits x and the
number of references y already stored in Builder b.

• brembits (b – x), returns the maximum number of additional data bits
that can be stored in Builder b. Equivalent to bbits 1023 swap -.

• bremrefs (b – x), returns the maximum number of additional cell ref-
erences that can be stored in Builder b.

• brembitrefs (b – x y), returns both the maximum number of additional
data bits 0 ≤ x ≤ 1023 and the maximum number of additional cell
references 0 ≤ y ≤ 4 that can be stored in Builder b.

The resulting Builder may be inspected by means of the non-destructive
stack dump primitive .s, or by the phrase b> <s csr.. For instance:

{ <b x{4A} s, rot 16 u, swap 32 i, .s b> } : mkTest
17239 -1000000001 mkTest
<s csr.

outputs

BC{000e4a4357c46535ff}
ok

x{4A4357C46535FF}
ok

One can observe that .s dumps the internal representation of a Builder, with
two tag bytes at the beginning (usually equal to the number of cell references
already stored in the Builder, and to twice the number of complete bytes
stored in the Builder, increased by one if an incomplete byte is present). On
the other hand, csr. dumps a Slice (constructed from a Cell by <s, cf. 5.3)
in a form similar to that used by x{ to define Slice literals (cf. 5.1).

Incidentally, the word mkTest shown above (without the .s in its defini-
tion) corresponds to the TL-B constructor

test#4a first:uint16 second:int32 = Test;

and may be used to serialize values of this TL-B type.

33

5.3. Slice primitives

5.3 Slice primitives

The following words can be used to manipulate values of the type Slice, which
represents a read-only view of a portion of a Cell. In this way data previously
stored into a Cell may be deserialized, by first transforming a Cell into a
Slice, and then extracting the required data from this Slice step-by-step.

• <s (c – s), transforms a Cell c into a Slice s containing the same data.
It usually marks the start of the deserialization of a cell.

• s> (s –), throws an exception if Slice s is non-empty. It usually marks
the end of the deserialization of a cell, checking whether there are any
unprocessed data bits or references left.

• i@ (s x – y), fetches a signed big-endian x-bit integer from the first
x bits of Slice s. If s contains less than x data bits, an exception is
thrown.

• i@+ (s x – y s′), fetches a signed big-endian x-bit integer from the first
x bits of Slice s similarly to i@, but returns the remainder of s as well.

• i@? (s x – y −1 or 0), fetches a signed integer from a Slice similarly to
i@, but pushes integer −1 afterwards on success. If there are less than
x bits left in s, pushes integer 0 to indicate failure.

• i@?+ (s x – y s′ −1 or s 0), fetches a signed integer from Slice s and
computes the remainder of this Slice similarly to i@+, but pushes −1
afterwards to indicate success. On failure, pushes the unchanged Slice s
and 0 to indicate failure.

• u@, u@+, u@?, u@?+, counterparts of i@, i@+, i@?, i@?+ for deserializing
unsigned integers.

• B@ (s x – B), fetches first x bytes (i.e., 8x bits) from Slice s, and returns
them as a Bytes value B. If there are not enough data bits in s, throws
an exception.

• B@+ (s x – B s′), similar to B@, but returns the remainder of Slice s as
well.

• B@? (s x – B −1 or 0), similar to B@, but uses a flag to indicate failure
instead of throwing an exception.

34

5.3. Slice primitives

• B@?+ (s x – B s′ −1 or s 0), similar to B@+, but uses a flag to indicate
failure instead of throwing an exception.

• $@, $@+, $@?, $@?+, counterparts of B@, B@+, B@?, B@?+, returning the
result as a (UTF-8) String instead of a Bytes value. These primitives
do not check whether the byte sequence read is a valid UTF-8 string.

• ref@ (s – c), fetches the first reference from Slice s and returns the
Cell c referred to. If there are no references left, throws an exception.

• ref@+ (s – s′ c), similar to ref@, but returns the remainder of s as well.

• ref@? (s – c −1 or 0), similar to ref@, but uses a flag to indicate
failure instead of throwing an exception.

• ref@?+ (s – s′ c −1 or s 0), similar to ref@+, but uses a flag to indicate
failure instead of throwing an exception.

• empty? (s – ?), checks whether a Slice is empty (i.e., has no data bits
and no references left), and returns −1 or 0 accordingly.

• remaining (s – x y), returns both the number of data bits x and the
number of cell references y remaining in Slice s.

• sbits (s – x), returns the number of data bits x remaining in Slice s.

• srefs (s – x), returns the number of cell references x remaining in
Slice s.

• sbitrefs (s – x y), returns both the number of data bits x and
the number of cell references y remaining in Slice s. Equivalent to
remaining.

• $>s (S – s), transforms String S into a Slice. Equivalent to <b swap
$, b> <s.

• s>c (s – c), creates a Cell c directly from a Slice s. Equivalent to <b
swap s, b>.

• csr. (s –), recursively prints a Slice s. On the first line, the data
bits of s are displayed in hexadecimal form embedded into an x{...}
construct similar to the one used for Slice literals (cf. 5.1). On the
next lines, the cells referred to by s are printed with larger indentation.

35

5.4. Cell hash operations

For instance, values of the TL-B type Test discussed in 5.2

test#4a first:uint16 second:int32 = Test;

may be deserialized as follows:

{ <s 8 u@+ swap 0x4a <> abort"constructor tag mismatch"
16 u@+ 32 i@+ s> } : unpackTest

x{4A4357C46535FF} s>c unpackTest swap . .

prints “17239 -1000000001 ok” as expected.
Of course, if one needs to check constructor tags often, a helper word can

be defined for this purpose:

{ dup remaining abort"references in constructor tag"
tuck u@ -rot u@+ -rot <> abort"constructor tag mismatch"

} : tag?
{ <s x{4a} tag? 16 u@+ 32 i@+ s> } : unpackTest
x{4A4357C46535FF} s>c unpackTest swap . .

We can do even better with the aid of active prefix words (cf. 4.2 and 4.4):

{ dup remaining abort"references in constructor tag"
dup 256 > abort"constructor tag too long"
tuck u@ 2 { -rot u@+ -rot <> abort"constructor tag mismatch" }

} : (tagchk)
{ [compile] x{ 2drop (tagchk) } ::_ ?x{
{ [compile] b{ 2drop (tagchk) } ::_ ?b{
{ <s ?x{4a} 16 u@+ 32 i@+ s> } : unpackTest
x{4A4357C46535FF} s>c unpackTest swap . .

A shorter but less efficient solution would be to reuse the previously defined
tag?:

{ [compile] x{ drop ’ tag? } ::_ ?x{
{ [compile] b{ drop ’ tag? } ::_ ?b{
x{11EF55AA} ?x{11E} dup csr.
?b{110} csr.

first outputs “x{F55AA}”, and then throws an exception with the message
“constructor tag mismatch”.

36

5.5. Bag-of-cells operations

5.4 Cell hash operations

There are few words that operate on Cells directly. The most important of
them computes the (sha256-based) representation hash of a given cell (cf. [4,
3.1]), which can be roughly described as the sha256 hash of the cell’s data
bits concatenated with recursively computed hashes of the cells referred to
by this cell:

• hash (c – B), computes the sha256-based representation hash of Cell c
(cf. [4, 3.1]), which unambiguously defines c and all its descendants
(provided there are no collisions for sha256). The result is returned as
a Bytes value consisting of exactly 32 bytes.

• shash (s – B), computes the sha256-based representation hash of a
Slice by first transforming it into a cell. Equivalent to s>c hash.

5.5 Bag-of-cells operations

A bag of cells is a collection of one or more cells along with all their descen-
dants. It can usually be serialized into a sequence of bytes (represented by
a Bytes value in Fift) and then saved into a file or transferred by network.
Afterwards, it can be deserialized to recover the original cells. The TON
Blockchain systematically represents different data structures (including the
TON Blockchain blocks) as a tree of cells according to a certain TL-B scheme
(cf. [5], where this scheme is explained in detail), and then these trees of cells
are routinely imported into bags of cells and serialized into binary files.

Fift words for manipulating bags of cells include:

• B>boc (B – c), deserializes a “standard” bag of cells (i.e., a bag of cells
with exactly one root cell) represented by Bytes B, and returns the
root Cell c.

• boc+>B (c x – B), creates and serializes a “standard” bag of cells, con-
taining one root Cell c along with all its descendants. An Integer
parameter 0 ≤ x ≤ 31 is used to pass flags indicating the additional
options for bag-of-cells serialization, with individual bits having the
following effect:

– +1 enables bag-of-cells index creation (useful for lazy deserializa-
tion of large bags of cells).

37

5.6. Binary file I/O and Bytes manipulation

– +2 includes the CRC32-C of all data into the serialization (useful
for checking data integrity).

– +4 explicitly stores the hash of the root cell into the serialization
(so that it can be quickly recovered afterwards without a complete
deserialization).

– +8 stores hashes of some intermediate (non-leaf) cells (useful for
lazy deserialization of large bags of cells).

– +16 stores cell cache bits to control caching of deserialized cells.

Typical values of x are x = 0 or x = 2 for very small bags of cells (e.g.,
TON Blockchain external messages) and x = 31 for large bags of cells
(e.g., TON Blockchain blocks).

• boc>B (c – B), serializes a small “standard” bag of cells with root Cell c
and all its descendants. Equivalent to 0 boc+>B.

For instance, the cell created in 5.2 with a value of TL-B Test type may be
serialized as follows:

{ <b x{4A} s, rot 16 u, swap 32 i, b> } : mkTest
17239 -1000000001 mkTest boc>B Bx.

outputs “B5EE9C7201040101000000000900000E4A4357C46535FF ok”. Here
Bx. is the word that prints the hexadecimal representation of a Bytes value.

5.6 Binary file I/O and Bytes manipulation

The following words can be used to manipulate values of type Bytes (ar-
bitrary byte sequences) and to read them from or write them into binary
files:

• B{〈hex-digits〉} (– B), pushes a Bytes literal containing data repre-
sented by an even number of hexadecimal digits.

• Bx. (B –), prints the hexadecimal representation of a Bytes value.
Each byte is represented by exactly two uppercase hexadecimal digits.

• file>B (S – B), reads the (binary) file with the name specified in
String S and returns its contents as a Bytes value. If the file does not
exist, an exception is thrown.

38

5.6. Binary file I/O and Bytes manipulation

• B>file (B S –), creates a new (binary) file with the name specified in
String S and writes data from Bytes B into the new file. If the specified
file already exists, it is overwritten.

For instance, the bag of cells created in the example in 5.5 can be saved to
disk as sample.boc as follows:

{ <b x{4A} s, rot 16 u, swap 32 i, b> } : mkTest
17239 -1000000001 mkTest boc>B "sample.boc" B>file

It can be loaded and deserialized afterwards (even in another Fift session)
by means of file>B and B>boc:

{ <s 8 u@+ swap 0x4a <> abort"constructor tag mismatch"
16 u@+ 32 i@+ s> } : unpackTest

"sample.boc" file>B B>boc unpackTest swap . .

prints “17239 -1000000001 ok”.
Additionally, there are several words for directly packing (serializing) data

into Bytes values, and unpacking (deserializing) them afterwards. They can
be combined with B>file and file>B to save data directly into binary files,
and load them afterwards.

• Blen (B – x), returns the length of a Bytes value B in bytes.

• Bhash (B – B′), computes the sha256 hash of a Bytes value. The hash
is returned as a 32-byte Bytes value.

• B= (B B′ – ?), checks whether two Bytes sequences are equal.

• Bcmp (B B′ – x), lexicographically compares two Bytes sequences, and
returns −1, 0, or 1, depending on the comparison result.

• B>i@ (B x – y), deserializes the first x/8 bytes of a Bytes value B as a
signed big-endian x-bit Integer y.

• B>i@+ (B x – B′ y), deserializes the first x/8 bytes of B as a signed big-
endian x-bit Integer y similarly to B>i@, but also returns the remaining
bytes of B.

• B>u@, B>u@+, variants of B>i@ and B>i@+ deserializing unsigned inte-
gers.

39

6.1. Ed25519 cryptography

• B>Li@, B>Li@+, B>Lu@, B>Lu@+, little-endian variants of B>i@, B>i@+,
B>u@, B>u@+.

• B| (B x – B′ B′′), cuts the first x bytes from a Bytes value B, and
returns both the first x bytes (B′) and the remainder (B′′) as new
Bytes values.

• i>B (x y – B), stores a signed big-endian y-bit Integer x into a Bytes
value B consisting of exactly y/8 bytes. Integer y must be a multiple
of eight in the range 0 . . . 256.

• u>B (x y – B), stores an unsigned big-endian y-bit Integer x into a
Bytes value B consisting of exactly y/8 bytes, similarly to i>B.

• Li>B, Lu>B, little-endian variants of i>B and u>B.

• B+ (B′ B′′ – B), concatenates two Bytes sequences.

6 TON-specific operations
This chapter describes the TON-specific Fift words, with the exception of the
words used for Cell manipulation, already discussed in the previous chapter.

6.1 Ed25519 cryptography

Fift offers an interface to the same Ed25519 elliptic curve cryptography used
by TVM, described in Appendix A of [5]:

• now (– x), returns the current Unixtime as an Integer.

• newkeypair (– B B′), generates a new Ed25519 private/public key
pair, and returns both the private key B and the public key B′ as 32-
byte Bytes values. The quality of the keys is good enough for testing
purposes. Real applications must feed enough entropy into OpenSSL
PRNG before generating Ed25519 keypairs.

• priv>pub (B – B′), computes the public key corresponding to a pri-
vate Ed25519 key. Both the public key B′ and the private key B are
represented by 32-byte Bytes values.

40

6.3. Dictionary manipulation

• ed25519_sign (B B′ – B′′), signs data B with the Ed25519 private
key B′ (a 32-byte Bytes value) and returns the signature as a 64-byte
Bytes value B′′.

• ed25519_sign_uint (x B′ – B′′), converts a big-endian unsigned 256-
bit integer x into a 32-byte sequence and signs it using the Ed25519
private key B′ similarly to ed25519_sign. Equivalent to swap 256 u>B
swap ed25519_sign. The integer x to be signed is typically computed
as the hash of some data.

• ed25519_chksign (B B′ B′′ – ?), checks whether B′ is a valid Ed25519
signature of data B with the public key B′′.

6.2 Smart-contract address parser

Two special words can be used to parse TON smart-contract addresses in
human-readable (base64 or base64url) forms:

• smca>$ (x y z – S), packs a standard TON smart-contract address
with workchain x (a signed 32-bit Integer) and in-workchain address y
(an unsigned 256-bit Integer) into a 48-character string S (the human-
readable representation of the address) according to flags z. Possi-
ble individual flags in z are: +1 for non-bounceable addresses, +2 for
testnet-only addresses, and +4 for base64url output instead of base64.

• $>smca (S – x y z −1 or 0), unpacks a standard TON smart-contract
address from its human-readable string representation S. On suc-
cess, returns the signed 32-bit workchain x, the unsigned 256-bit in-
workchain address y, the flags z (where +1 means that the address
is non-bounceable, +2 that the address is testnet-only), and −1. On
failure, pushes 0.

A sample human-readable smart-contract address could be deserialized and
displayed as follows:

"Ef9Tj6fMJP-OqhAdhKXxq36DL-HYSzCc3-9O6UNzqsgPfYFX"
$>smca 0= abort"bad address"
rot . swap x. . cr

outputs “-1 538fa7...0f7d 0”, meaning that the specified address is in
workchain −1 (the masterchain of the TON Blockchain), and that the 256-bit
address inside workchain −1 is 0x538. . . f7d.

41

6.3. Dictionary manipulation

6.3 Dictionary manipulation

Fift has several words for hashmap or (TVM) dictionary manipulation, cor-
responding to values of TL-B type HashmapE n X as described in [4, 3.3].
These (TVM) dictionaries are not to be confused with the Fift dictionary,
which is a completely different thing. A dictionary of TL-B type HashmapE
n X is essentially a key-value collection with distinct n-bit keys (where
0 ≤ n ≤ 1023) and values of an arbitrary TL-B type X. Dictionaries are
represented by trees of cells (the complete layout may be found in [4, 3.3])
and stored as values of type Cell or Slice in the Fift stack.

• dictnew (– s), pushes a Slice that represents a new empty dictionary.

• idict! (v x s n – s′ −1 or s 0), adds a new value v (represented
by a Slice) with key given by signed big-endian n-bit integer x into
dictionary s with n-bit keys, and returns the new dictionary s′ and −1
on success. Otherwise the unchanged dictionary s and 0 are returned.

• idict!+ (v x s n – s′ −1 or s 0), adds a new key-value pair (x, v) into
dictionary s similarly to idict!, but fails if the key already exists by
returning the unchanged dictionary s and 0.

• b>idict!, b>idict!+, variants of idict! and idict!+ accepting the
new value v in a Builder instead of a Slice.

• udict!, udict!+, b>udict!, b>udict!+, variants of idict!, idict!+,
b>idict!, b>idict!+, but with an unsigned n-bit integer x used as a
key.

• idict@ (x s n – v −1 or 0), looks up the key represented by signed
big-endian n-bit Integer x in the dictionary represented by Slice s. If
the key is found, returns the corresponding value as a Slice v and −1.
Otherwise returns 0.

• udict@ (x s n – v −1 or 0), similar to idict@, but with an unsigned
big-endian n-bit Integer x used as a key.

• dictmap (s n e – s′), applies execution token e (i.e., an anonymous
function) to each of the key-value pairs stored in a dictionary s with
n-bit keys. The execution token is executed once for each key-value
pair, with a Builder b and a Slice v (containing the value) pushed into

42

6.4. Invoking TVM from Fift

the stack before executing e. After the execution e must leave in the
stack either a modified Builder b′ (containing all data from b along with
the new value v′) and −1, or 0 indicating failure. In the latter case,
the corresponding key is omitted from the new dictionary.

• dictmerge (s s′ n e – s′′), combines two dictionaries s and s′ with n-bit
keys into one dictionary s′′ with the same keys. If a key is present in
only one of the dictionaries s and s′, this key and the corresponding
value are copied verbatim to the new dictionary s′′. Otherwise the
execution token (anonymous function) e is invoked to merge the two
values v and v′ corresponding to the same key k in s and s′, respectively.
Before e is invoked, a Builder b and two Slices v and v′ representing
the two values to be merged are pushed. After the execution e leaves
either a modified Builder b′ (containing the original data from b along
with the combined value) and −1, or 0 on failure. In the latter case,
the corresponding key is omitted from the new dictionary.

Fift also offers some support for prefix dictionaries:

• pfxdict! (v k s n – s′ −1 or s 0), adds key-value pair (k, v), both
represented by Slices, into a prefix dictionary s with keys of length at
most n. On success, returns the modified dictionary s′ and −1. On
failure, returns the original dictionary s and 0.

• pfxdict!+ (v k s n – s′ −1 or s 0), adds key-value pair (k, v) into
prefix dictionary s similarly to pfxdict!, but fails if the key already
exists.

• pfxdict@ (k s n – v −1 or 0), looks up key k (represented by a Slice)
in the prefix dictionary s with the length of keys limited by n bits. On
success, returns the value found v and −1. On failure, returns 0.

6.4 Invoking TVM from Fift

TVM can be linked with the Fift interpreter. In this case, several Fift prim-
itives become available that can be used to invoke TVM with arguments
provided from Fift. The arguments can be prepared in the Fift stack, which
is passed in its entirety to the new instance of TVM. The resulting stack and
the exit code are passed back to Fift and can be examined afterwards.

43

6.4. Invoking TVM from Fift

• runvmcode (. . . s – . . .x), invokes a new instance of TVM with the
current continuation cc initialized from Slice s, thus executing code s
in TVM. The original Fift stack (without s) is passed in its entirety as
the initial stack of TVM. When TVM terminates, its resulting stack is
used as the new Fift stack, with the exit code x pushed at its top. If x
is non-zero, indicating that TVM has been terminated by an unhandled
exception, the next stack entry from the top contains the parameter
of this exception, and x is the exception code. All other entries are
removed from the stack in this case.

• runvmdict (. . . s – . . .x), invokes a new instance of TVM with the cur-
rent continuation cc initialized from Slice s similarly to runvmcode,
but also initializes the special register c3 with the same value, and
pushes a zero into the initial TVM stack before the TVM execution
begins. In a typical application Slice s consists of a subroutine selec-
tion code that uses the top-of-stack Integer to select the subroutine
to be executed, thus enabling the definition and execution of several
mutually-recursive subroutines (cf. [4, 4.6] and 7.8). The selector equal
to zero corresponds to the main() subroutine in a large TVM program.

• runvm (. . . s c – . . .x c′), invokes a new instance of TVM with both
the current continuation cc and the special register c3 initialized from
Slice s, and pushes a zero into the initial TVM stack similarly to
runvmdict, but also initializes special register c4 (the “root of per-
sistent data”, cf. [4, 1.4]) with Cell c. The final value of c4 is returned
at the top of the final Fift stack as another Cell c′. In this way one can
emulate the execution of smart contracts that inspect or modify their
persistent storage.

• gasrunvmcode (. . . s z – . . .x z′), a gas-aware version of runvmcode
that accepts an extra Integer argument z (the original gas limit) at the
top of the stack, and returns the gas consumed by this TVM run as a
new top-of-stack Integer value z′.

• gasrunvmdict (. . . s z – . . .x z′), a gas-aware version of runvmdict.

• gasrunvm (. . . s c z – . . .x c′ z′), a gas-aware version of runvm.

For example, one can create an instance of TVM running some simple code
as follows:

44

Chapter 7. Using the Fift assembler

2 3 9 x{1221} runvmcode .s

The TVM stack is initialized by three integers 2, 3, and 9 (in this order; 9
is the topmost entry), and then the Slice x{1221} containing 16 data bits
and no references is transformed into a TVM continuation and executed.
By consulting Appendix A of [4], we see that x{12} is the code of the TVM
instruction XCHG s1, s2, and that x{21} is the code of the TVM instruction
OVER (not to be confused with the Fift primitive over, which incidentally has
the same effect on the stack). The result of the above execution is:

execute XCHG s1,s2
execute OVER
execute implicit RET
3 2 9 2 0
ok

Here 0 is the exit code (indicating successful TVM termination), and 3 2 9
2 is the final TVM stack state.

If an unhandled exception is generated during the TVM execution, the
code of this exception is returned as the exit code:

2 3 9 x{122} runvmcode .s

produces

execute XCHG s1,s2
handling exception code 6: invalid or too short opcode
default exception handler, terminating vm with exit code 6
0 6
ok

Notice that TVM is executed with internal logging enabled, and its log is
displayed in the standard output.

Simple TVM programs may be represented by Slice literals with the aid
of the x{...} construct similarly to the above examples. More sophisticated
programs are usually created with the aid of the Fift assembler as explained
in the next section.

45

7.2. Fift assembler basics

7 Using the Fift assembler
The Fift assembler is a short program (currently less than 30KiB) written
completely in Fift that transforms human-readable mnemonics of TVM in-
structions into their binary representation. For instance, one could write <{
s1 s2 XCHG OVER }>s instead of x{1221} in the example discussed in 6.4,
provided the Fift assembler has been loaded beforehand (usually by the
phrase "Asm.fif" include).

7.1 Loading the Fift assembler

The Fift assembler is usually located in file Asm.fif in the Fift library direc-
tory (which usually contains standard Fift library files such as Fift.fif).
It is typically loaded by putting the phrase "Asm.fif" include at the very
beginning of a program that needs to use Fift assembler:

• include (S –), loads and interprets a Fift source file from the path
given by String S. If the filename S does not begin with a slash, the Fift
include search path, typically taken from the FIFTPATH environment
variable or the -I command-line argument of the Fift interpreter (and
equal to /usr/lib/fift if both are absent), is used to locate S.

The current implementation of the Fift assembler makes heavy use of custom
defining words (cf. 4.8); its source can be studied as a good example of how
defining words might be used to write very compact Fift programs (cf. also
the original edition of [1], where a simple 8080 Forth assembler is discussed).

In the future, almost all of the words defined by the Fift assembler will
be moved to a separate vocabulary (namespace). Currently they are defined
in the global namespace, because Fift does not support namespaces yet.

7.2 Fift assembler basics

The Fift assembler inherits from Fift its postfix operation notation, i.e., the
arguments or parameters are written before the corresponding instructions.
For instance, the TVM assembler instruction represented as XCHG s1,s2 in
[4] is represented in the Fift assembler as s1 s2 XCHG.

Fift assembler code is usually opened by a special opening word, such as
<{, and terminated by a closing word, such as }> or }>s. For instance,

46

7.2. Fift assembler basics

"Asm.fif" include
<{ s1 s2 XCHG OVER }>s
csr.

compiles two TVM instructions XCHG s1,s2 and OVER, and returns the result
as a Slice (because }>s is used). The resulting Slice is displayed by csr.,
yielding

x{1221}

One can use Appendix A of [4] and verify that x{12} is indeed the (codepage
zero) code of the TVM instruction XCHG s1,s2, and that x{21} is the code
of the TVM instruction OVER (not to be confused with Fift primitive over).

In the future, we will assume that the Fift assember is already loaded and
omit the phrase "Asm.fif" include from our examples.

The Fift assembler uses the Fift stack in a straightforward fashion, using
the top several stack entries to hold a Builder with the code being assembled,
and the arguments to TVM instructions. For example:

• <{ (– b), begins a portion of Fift assembler code by pushing an empty
Builder into the Fift stack (and potentially switching the namespace
to the one containing all Fift assembler-specific words). Approximately
equivalent to <b.

• }> (b – b′), terminates a portion of Fift assembler code and returns the
assembled portion as a Builder (and potentially recovers the original
namespace). Approximately equivalent to nop in most situations.

• }>c (b – c), terminates a portion of Fift assembler code and returns
the assembled portion as a Cell (and potentially recovers the original
namespace). Approximately equivalent to b>.

• }>s (b – s), terminates a portion of Fift assembler code similarly to }>,
but returns the assembled portion as a Slice. Equivalent to }>c <s.

• OVER (b – b′), assembles the code of the TVM instruction OVER by
appending it to the Builder at the top of the stack. Approximately
equivalent to x{21} s,.

• s1 (– s), pushes a special Slice used by the Fift assembler to represent
the “stack register” s1 of TVM.

47

7.3. Pushing integer constants

• s0. . . s15 (– s), words similar to s1, but pushing the Slice represent-
ing other “stack registers” of TVM. Notice that s16. . . s255 must be
accessed using the word s().

• s() (x – s), takes an Integer argument 0 ≤ x ≤ 255 and returns a
special Slice used by the Fift assembler to represent “stack register”
s(x).

• XCHG (b s s′ – b′), takes two special Slices representing two “stack regis-
ters” s(i) and s(j) from the stack, and appends to Builder b the code
for the TVM instruction XCHG s(i),s(j).

In particular, note that the word OVER defined by the Fift assembler has a
completely different effect from Fift primitive over.

The actual action of OVER and other Fift assembler words is somewhat
more complicated than that of x{21} s,. If the new instruction code does
not fit into the Builder b (i.e., if b would contain more than 1023 data bits after
adding the new instruction code), then this and all subsequent instructions
are assembled into a new Builder b̃, and the old Builder b is augmented by
a reference to the Cell obtained from b̃ once the generation of b̃ is finished.
In this way long stretches of TVM code are automatically split into chains
of valid Cells containing at most 1023 bits each. Because TVM interprets a
lonely cell reference at the end of a continuation as an implicit JMPREF, this
partitioning of TVM code into cells has almost no effect on the execution.

7.3 Pushing integer constants

The TVM instruction PUSHINT x, pushing an Integer constant x when in-
voked, can be assembled with the aid of Fift assembler words INT or PUSHINT:

• PUSHINT (b x – b′), assembles TVM instruction PUSHINT x into a Builder.

• INT (b x – b′), equivalent to PUSHINT.

Notice that the argument to PUSHINT is an Integer value taken from the Fift
stack and is not necessarily a literal. For instance, <{ 239 17 * INT }>s is
a valid way to assemble a PUSHINT 4063 instruction, because 239 ·17 = 4063.
Notice that the multiplication is performed by Fift during assemble time, not
during the TVM runtime. The latter computation might be performed by
means of <{ 239 INT 17 INT MUL }>s:

48

7.4. Immediate arguments

<{ 239 17 * INT }>s dup csr. runvmcode .s 2drop
<{ 239 INT 17 INT MUL }>s dup csr. runvmcode .s 2drop

produces

x{810FDF}
execute PUSHINT 4063
execute implicit RET
4063 0
ok

x{8100EF8011A8}
execute PUSHINT 239
execute PUSHINT 17
execute MUL
execute implicit RET
4063 0
ok

Notice that the Fift assembler chooses the shortest encoding of the PUSHINT x
instruction depending on its argument x.

7.4 Immediate arguments

Some TVM instructions (such as PUSHINT) accept immediate arguments.
These arguments are usually passed to the Fift word assembling the cor-
responding instruction in the Fift stack. Integer immediate arguments are
usually represented by Integers, cells by Cells, continuations by Builders and
Cells, and cell slices by Slices. For instance, 17 ADDCONST assembles TVM
instruction ADDCONST 17, and x{ABCD_} PUSHSLICE assembles PUSHSLICE
xABCD_:

239 <{ 17 ADDCONST x{ABCD_} PUSHSLICE }>s dup csr.
runvmcode . swap . csr.

produces

x{A6118B2ABCD0}
execute ADDINT 17
execute PUSHSLICE xABCD_
execute implicit RET
0 256 x{ABCD_}

49

7.5. Immediate continuations

On some occasions, the Fift assembler pretends to be able to accept imme-
diate arguments that are out of range for the corresponding TVM instruction.
For instance, ADDCONST x is defined only for −128 ≤ x < 128, but the Fift
assembler accepts 239 ADDCONST:

17 <{ 239 ADDCONST }>s dup csr. runvmcode .s

produces

x{8100EFA0}
execute PUSHINT 239
execute ADD
execute implicit RET
256 0

We can see that “ADDCONST 239” has been tacitly replaced by PUSHINT
239 and ADD. This feature is convenient when the immediate argument to
ADDCONST is itself a result of a Fift computation, and it is difficult to esti-
mate whether it will always fit into the required range.

In some cases, there are several versions of the same TVM instructions,
one accepting an immediate argument and another without any arguments.
For instance, there are both LSHIFT n and LSHIFT instructions. In the
Fift assembler, such variants are assigned distinct mnemonics. In partic-
ular, LSHIFT n is represented by n LSHIFT#, and LSHIFT is represented by
itself.

7.5 Immediate continuations

When an immediate argument is a continuation, it is convenient to create
the corresponding Builder in the Fift stack by means of a nested <{ . . . }>
construct. For instance, TVM assembler instructions

PUSHINT 1
SWAP
PUSHCONT {

MULCONST 10
}
REPEAT

can be assembled and executed by

50

7.5. Immediate continuations

7
<{ 1 INT SWAP <{ 10 MULCONST }> PUSHCONT REPEAT }>s dup csr.
runvmcode drop .

producing

x{710192A70AE4}
execute PUSHINT 1
execute SWAP
execute PUSHCONT xA70A
execute REPEAT
repeat 7 more times
execute MULINT 10
execute implicit RET
repeat 6 more times
...
repeat 1 more times
execute MULINT 10
execute implicit RET
repeat 0 more times
execute implicit RET
10000000

More convenient ways to use literal continuations created by means of the
Fift assembler exist. For instance, the above example can be also assembled
by

<{ 1 INT SWAP CONT:<{ 10 MULCONST }> REPEAT }>s csr.

or even

<{ 1 INT SWAP REPEAT:<{ 10 MULCONST }> }>s csr.

both producing “x{710192A70AE4} ok”.
Incidentally, a better way of implementing the above loop is by means of

REPEATEND:

7 <{ 1 INT SWAP REPEATEND 10 MULCONST }>s dup csr.
runvmcode drop .

or

51

7.6. Control flow: loops and conditionals

7 <{ 1 INT SWAP REPEAT: 10 MULCONST }>s dup csr.
runvmcode drop .

both produce “x{7101E7A70A}” and output “10000000” after seven iterations
of the loop.

Notice that several TVM instructions that store a continuation in a sep-
arate cell reference (such as JMPREF) accept their argument in a Cell, not
in a Builder. In such situations, the <{ ... }>c construct can be used to
produce this immediate argument.

7.6 Control flow: loops and conditionals

Almost all TVM control flow instructions—such as IF, IFNOT, IFRET, IFNOTRET,
IFELSE, WHILE, WHILEEND, REPEAT, REPEATEND, UNTIL, and UNTILEND—can
be assembled similarly to REPEAT and REPEATEND in the examples of 7.5
when applied to literal continuations. For instance, TVM assembler code

DUP
PUSHINT 1
AND
PUSHCONT {

MULCONST 3
INC

}
PUSHCONT {

RSHIFT 1
}
IFELSE

which computes 3n + 1 or n/2 depending on whether its argument n is odd
or even, can be assembled and applied to n = 7 by

<{ DUP 1 INT AND
IF:<{ 3 MULCONST INC }>ELSE<{ 1 RSHIFT# }>

}>s dup csr.
7 swap runvmcode drop .

producing

52

7.6. Control flow: loops and conditionals

x{2071B093A703A492AB00E2}
ok

execute DUP
execute PUSHINT 1
execute AND
execute PUSHCONT xA703A4
execute PUSHCONT xAB00
execute IFELSE
execute MULINT 3
execute INC
execute implicit RET
execute implicit RET
22 ok

Of course, a more compact and efficient way to implement this conditional
expression would be

<{ DUP 1 INT AND
IF:<{ 3 MULCONST INC }>ELSE: 1 RSHIFT#

}>s dup csr.

or

<{ DUP 1 INT AND
CONT:<{ 3 MULCONST INC }> IFJMP
1 RSHIFT#

}>s dup csr.

both producing the same code “x{2071B093A703A4DCAB00}”.
Fift assembler words that can be used to produce such “high-level” condi-

tionals and loops include IF:<{, IFNOT:<{, IFJMP:<{, }>ELSE<{, }>ELSE:,
}>IF, REPEAT:<{, UNTIL:<{, WHILE:<{, }>DO<{, }>DO:, AGAIN:<{, }>AGAIN,
}>REPEAT, and }>UNTIL. Their complete list can be found in the source file
Asm.fif. For instance, an UNTIL loop can be created by UNTIL:<{ ... }>
or <{ ... }>UNTIL, and a WHILE loop by WHILE:<{ ... }>DO<{ ... }>.

If we choose to keep a conditional branch in a separate cell, we can use
the <{ ... }>c construct along with instructions such as IFJMPREF:

<{ DUP 1 INT AND
<{ 3 MULCONST INC }>c IFJMPREF

53

7.7. Macro definitions

1 RSHIFT#
}>s dup csr.
3 swap runvmcode .s

has the same effect as the code from the previous example when executed,
but it is contained in two separate cells:

x{2071B0E302AB00}
x{A703A4}

execute DUP
execute PUSHINT 1
execute AND
execute IFJMPREF (2946....A1DD)
execute MULINT 3
execute INC
execute implicit RET
10 0

7.7 Macro definitions

Because TVM instructions are implemented in the Fift assembler using Fift
words that have a predictable effect on the Fift stack, the Fift assembler
is automatically a macro assembler, supporting macro definitions. For in-
stance, suppose that we wish to define a macro definition RANGE x y, which
checks whether the TVM top-of-stack value is between integer literals x and
y (inclusive). This macro definition can be implemented as follows:

{ 2dup > ’ swap if
rot DUP rot GEQINT SWAP swap LEQINT AND

} : RANGE
<{ DUP 17 239 RANGE IFNOT: DROP ZERO }>s dup csr.
66 swap runvmcode drop .

which produces

x{2020C210018100F0B9B0DC3070}
execute DUP
execute DUP
execute GTINT 16
execute SWAP

54

7.8. Larger programs and subroutines

execute PUSHINT 240
execute LESS
execute AND
execute IFRET
66

Notice that GEQINT and LEQINT are themselves macro definitions defined in
Asm.fif, because they do not correspond directly to TVM instructions. For
instance, x GEQINT corresponds to the TVM instruction GTINT x− 1.

Incidentally, the above code can be shortened by two bytes by replacing
IFNOT: DROP ZERO with AND.

7.8 Larger programs and subroutines

Larger TVM programs, such as TON Blockchain smart contracts, typically
consist of several mutually recursive subroutines, with one or several of them
selected as top-level subroutines (called main() or recv_internal() for
smart contracts). The execution starts from one of the top-level subrou-
tines, which is free to call any of the other defined subroutines, which in turn
can call whatever other subroutines they need.

Such TVM programs are implemented by means of a selector function,
which accepts an extra integer argument in the TVM stack; this integer
selects the actual subroutine to be invoked (cf. [4, 4.6]). Before execution, the
code of this selector function is loaded both into special register c3 and into
the current continuation cc. The selector of the main function (usually zero)
is pushed into the initial stack, and the TVM execution is started. Afterwards
a subroutine can be invoked by means of a suitable TVM instruction, such as
CALLDICT n, where n is the (integer) selector of the subroutine to be called.

The Fift assembler offers several words facilitating the implementation of
such large TVM programs. In particular, subroutines can be defined sep-
arately and assigned symbolic names (instead of numeric selectors), which
can be used to call them afterwards. The Fift assembler automatically cre-
ates a selector function from these separate subroutines and returns it as the
top-level assembly result.

Here is a simple example of such a program consisting of several subrou-
tines. This program computes the complex number (5 + i)4 · (239− i):

"Asm.fif" include

55

7.8. Larger programs and subroutines

PROGRAM{

NEWPROC add
NEWPROC sub
NEWPROC mul

sub <{ s3 s3 XCHG2 SUB s2 XCHG0 SUB }>s PROC

// compute (5+i)^4 * (239-i)
main PROC:<{

5 INT 1 INT // 5+i
2DUP
mul CALL
2DUP
mul CALL
239 INT -1 INT
mul JMP

}>

add PROC:<{
s1 s2 XCHG
ADD -ROT ADD SWAP

}>

// a b c d -- ac-bd ad+bc : complex number multiplication
mul PROC:<{

s3 s1 PUSH2 // a b c d a c
MUL // a b c d ac
s3 s1 PUSH2 // a b c d ac b d
MUL // a b c d ac bd
SUB // a b c d ac-bd
s4 s4 XCHG2 // ac-bd b c a d
MUL // ac-bd b c ad
-ROT MUL ADD

}>

}END>s
dup csr.

56

7.8. Larger programs and subroutines

runvmdict .s

This program produces:

x{FF00F4A40EF4A0F20B}
x{D9_}
x{2_}
x{1D5C573C00D73C00E0403BDFFC5000E_}
x{04A81668006_}

x{2_}
x{140CE840A86_}
x{14CC6A14CC6A2854112A166A282_}

implicit PUSH 0 at start
execute SETCP 0
execute DICTPUSHCONST 14 (xC_,1)
execute DICTIGETJMP
execute PUSHINT 5
execute PUSHINT 1
execute 2DUP
execute CALLDICT 3
execute SETCP 0
execute DICTPUSHCONST 14 (xC_,1)
execute DICTIGETJMP
execute PUSH2 s3,s1
execute MUL
...
execute ROTREV
execute MUL
execute ADD
execute implicit RET
114244 114244 0

Some observations and comments based on the previous example follow:

• A TVM program is opened by PROGRAM{ and closed by either }END>c
(which returns the assembled program as a Cell) or }END>s (which
returns a Slice).

• A new subroutine is declared by means of the phrase NEWPROC 〈name〉.
This declaration assigns the next positive integer as a selector for the

57

7.8. Larger programs and subroutines

newly-declared subroutine, and stores this integer into the constant
〈name〉. For instance, the above declarations define add, sub, and mul
as integer constants equal to 1, 2, and 3, respectively.

• Some subroutines are predeclared and do not need to be declared again
by NEWPROC. For instance, main is a subroutine identifier bound to the
integer constant (selector) 0.

• Other predefined subroutine selectors such as recv_internal (equal
to 0) or recv_external (equal to −1), useful for implementing TON
Blockchain smart contracts (cf. [5, 4.4]), can be declared by means of
constant (e.g., -1 constant recv_external).

• A subroutine can be defined either with the aid of the word PROC, which
accepts the integer selector of the subroutine and the Slice containing
the code for this subroutine, or with the aid of the construct 〈selector〉
PROC:<{ ... }>, convenient for defining larger subroutines.

• CALLDICT and JMPDICT instructions may be assembled with the aid
of the words CALL and JMP, which accept the integer selector of the
subroutine to be called as an immediate argument passed in the Fift
stack.

• The current implementation of the Fift assembler collects all subrou-
tines into a dictionary with 14-bit signed integer keys. Therefore, all
subroutine selectors must be in the range −213 . . . 213 − 1.

• If a subroutine with an unknown selector is called during runtime, an
exception with code 11 is thrown by the code automatically inserted
by the Fift assembler. This code also automatically selects codepage
zero for instruction encoding by means of a SETCP0 instruction.

• The Fift assembler checks that all subroutines declared by NEWPROC are
actually defined by PROC or PROC:<{ before the end of the program. It
also checks that a subroutine is not redefined.

One should bear in mind that very simple programs (including the sim-
plest smart contracts) may be made more compact by eliminating this general
subroutine selection machinery in favor of custom subroutine selection code
and removing unused subroutines. For instance, the above example can be
transformed into

58

7.8. Larger programs and subroutines

<{ 11 THROWIF
CONT:<{ s3 s1 PUSH2 MUL s3 s1 PUSH2 MUL SUB

s4 s4 XCHG2 MUL -ROT MUL ADD }>
5 INT 1 INT 2DUP s4 PUSH CALLX
2DUP s4 PUSH CALLX
ROT 239 INT -1 INT ROT JMPX

}>s
dup csr.
runvmdict .s

which produces

x{F24B9D5331A85331A8A15044A859A8A075715C24D85C24D8588100EF7F58D9}
implicit PUSH 0 at start
execute THROWIF 11
execute PUSHCONT x5331A85331A8A15044A859A8A0
execute PUSHINT 5
execute PUSHINT 1
execute 2DUP
execute PUSH s4
execute EXECUTE
execute PUSH2 s3,s1
execute MUL
...
execute XCHG2 s4,s4
execute MUL
execute ROTREV
execute MUL
execute ADD
execute implicit RET
114244 114244 0

59

References

References
[1] L. Brodie, Starting Forth: Introduction to the FORTH Language and

Operating System for Beginners and Professionals, 2nd edition, Prentice
Hall, 1987. Available at https://www.forth.com/starting-forth/.

[2] L. Brodie, Thinking Forth: A language and philosophy for solving
problems, Prentice Hall, 1984. Available at http://thinking-forth.
sourceforge.net/.

[3] N. Durov, Telegram Open Network, 2017.

[4] N. Durov, Telegram Open Network Virtual Machine, 2018.

[5] N. Durov, Telegram Open Network Blockchain, 2018.

60

https://www.forth.com/starting-forth/
http://thinking-forth.sourceforge.net/
http://thinking-forth.sourceforge.net/

Appendix A. List of Fift words

A List of Fift words
This Appendix provides an alphabetic list of almost all Fift words—including
primitives and definitions from the standard library Fift.fif, but excluding
Fift assembler words defined in Asm.fif (because the Fift assembler is simply
an application from the perspective of Fift). Some experimental words have
been omitted from this list. Other words may have been added to or removed
from Fift after this text was written. The list of all words available in your
Fift interpreter may be inspected by executing words.

Each word is described by its name, followed by its stack notation in
parentheses, indicating several values near the top of the Fift stack before
and after the execution of the word; all deeper stack entries are usually
assumed to be left intact. After that, a text description of the word’s effect
is provided. If the word has been discussed in a previous section of this
document, a reference to this section is included.

Active words and active prefix words that parse a portion of the input
stream immediately after their occurrence are listed here in a modified way.
Firstly, these words are listed alongside the portion of the input that they
parse; the segment of each entry that is actually a Fift word is underlined
for emphasis. Secondly, their stack effect is usually described from the user’s
perspective, and reflects the actions performed during the execution phase
of the encompassing blocks and word definitions.

For example, the active prefix word B{, used for defining Bytes literals
(cf. 5.6), is listed as B{〈hex-digits〉}, and its stack effect is shown as (–
B) instead of (– B 1 e), even though the real effect of the execution of the
active word B{ during the compilation phase of an encompassing block or
word definition is the latter one (cf. 4.2).

• "〈string〉" (– S), pushes a String literal into the stack, cf. 2.9 and 2.10.

• # (x S – x′ S ′), performs one step of the conversion of Integer x into
its decimal representation by appending to String S one decimal digit
representing x mod 10. The quotient x′ := bx/10c is returned as well.

• #s (x S – x′ S ′), performs # one or more times until the quotient x′
becomes non-positive. Equivalent to { # over 0<= } until.

• #> (S – S ′), finishes the conversion of an Integer into its human-
readable representation (decimal or otherwise) started with <# by re-
versing String S. Equivalent to $reverse.

61

Appendix A. List of Fift words

• $# (– x), pushes the total number of command-line arguments passed
to the Fift program, cf. 2.14. Defined only when the Fift interpreter
is invoked in script mode (with the -s command line argument).

• $() (x – S), pushes the x-th command-line argument similarly to $n,
but with Integer x ≥ 0 taken from the stack, cf. 2.14. Defined only
when the Fift interpreter is invoked in script mode (with the -s com-
mand line argument).

• $+ (S S ′ – S.S ′), concatenates two strings, cf. 2.10.

• $, (b S – b′), appends String S to Builder b, cf. 5.2. The string is
interpreted as a binary string of length 8n, where n is the number of
bytes in the UTF-8 representation of S.

• $n (– S), pushes the n-th command-line argument as a String S,
cf. 2.14. For instance, $0 pushes the name of the script being executed,
$1 the first command line argument, and so on. Defined only when the
Fift interpreter is invoked in script mode (with the -s command line
argument).

• $= (S S ′ – ?), returns −1 if strings S and S ′ are equal, 0 otherwise,
cf. 2.13. Equivalent to $cmp 0=.

• $>s (S – s), transforms the String S into a Slice, cf. 5.3. Equivalent
to <b swap $, b> <s.

• $>smca (S – x y z −1 or 0), unpacks a standard TON smart-contract
address from its human-readable string representation S, cf. 6.2. On
success, returns the signed 32-bit workchain x, the unsigned 256-bit
in-workchain address y, the flags z (where +1 means that the address
is non-bounceable, +2 that the address is testnet-only), and −1. On
failure, pushes 0.

• $@ (s x – S), fetches the first x bytes (i.e., 8x bits) from Slice s, and
returns them as a UTF-8 String S, cf. 5.3. If there are not enough
data bits in s, throws an exception.

• $@+ (s x – S s′), similar to $@, but returns the remainder of Slice s as
well, cf. 5.3.

62

Appendix A. List of Fift words

• $@? (s x – S −1 or 0), similar to $@, but uses a flag to indicate failure
instead of throwing an exception, cf. 5.3.

• $@?+ (s x – S s′ −1 or s 0), similar to $@+, but uses a flag to indicate
failure instead of throwing an exception, cf. 5.3.

• $cmp (S S ′ – x), returns 0 if strings S and S ′ are equal, −1 if S is
lexicographically less than S ′, and 1 if S is lexicographically greater
than S ′, cf. 2.13.

• $len (S – x), computes the byte length (not the UTF-8 character
length!) of a string, cf. 2.10.

• $reverse (S – S ′), reverses the order of UTF-8 characters in String S.
If S is not a valid UTF-8 string, the return value is undefined and may
be also invalid.

• %1<< (x y – z), computes z := x mod 2y = x&(2y − 1) for two Integers
x and 0 ≤ y ≤ 256.

• ’ 〈word-name〉 (– e), returns the execution token equal to the current
(compile-time) definition of 〈word-name〉, cf. 3.1. If the specified word
is not found, throws an exception.

• ’nop (– e), pushes the default definition of nop—an execution token
that does nothing when executed, cf. 4.6.

• (’) 〈word-name〉 (– e), similar to ’, but returns the definition of the
specified word at execution time, performing a dictionary lookup each
time it is invoked, cf. 4.6. May be used to recover the current values of
constants inside word definitions and other blocks by using the phrase
(’) 〈word-name〉 execute.

• (-trailing) (S x – S ′), removes from String S all trailing characters
with UTF-8 codepoint x.

• (.) (x – S), returns the String with the decimal representation of
Integer x. Equivalent to dup abs <# #s rot sign #> nip.

• (b.) (x – S), returns the String with the binary representation of
Integer x.

63

Appendix A. List of Fift words

• (compile) (l x1 . . .xn n e – l′), extends WordList l so that it would
push 0 ≤ n ≤ 255 values x1, . . . , xn into the stack and execute the
execution token e when invoked, where 0 ≤ n ≤ 255 is an Integer,
cf. 4.7. If e is equal to the special value ’nop, the last step is omitted.

• (create) (e S x –), creates a new word with the name equal to String S
and definition equal to WordDef e, using flags passed in Integer 0 ≤
x ≤ 3, cf. 4.5. If bit +1 is set in x, creates an active word; if bit +2 is
set in x, creates a prefix word.

• (execute) (x1 . . .xn n e – . . .), executes execution token e, but first
checks that there are at least 0 ≤ n ≤ 255 values in the stack apart
from n and e themselves. It is a counterpart of (compile) that may
be used to immediately “execute” (perform the intended runtime action
of) an active word after its immediate execution, as explained in 4.2.

• (forget) (S –), forgets the word with the name specified in String S,
cf. 4.5. If the word is not found, throws an exception.

• (number) (S – 0 or x 1 or x y 2), attempts to parse the String S as
an integer or fractional literal, cf. 2.10 and 2.8. On failure, returns a
single 0. On success, returns x 1 if S is a valid integer literal with value
x, or x y 2 if S is a valid fractional literal with value x/y.

• (x.) (x – S), returns the String with the hexadecimal representation
of Integer x.

• ({) (– l), pushes an empty WordList into the stack, cf. 4.7

• (}) (l – e), transforms a WordList into an execution token (WordDef),
making all further modifications impossible, cf. 4.7.

• * (x y – xy), computes the product xy of two Integers x and y, cf. 2.4.

• */ (x y z – bxy/zc), “multiply-then-divide”: multiplies two integers x
and y producing a 513-bit intermediate result, then divides the product
by z, cf. 2.4.

• */c (x y z – dxy/ze), “multiply-then-divide” with ceiling rounding:
multiplies two integers x and y producing a 513-bit intermediate result,
then divides the product by z, cf. 2.4.

64

Appendix A. List of Fift words

• */cmod (x y z – q r), similar to */c, but computes both the quotient
q := dxy/ze and the remainder r := xy − qz, cf. 2.4.

• */mod (x y z – q r), similar to */, but computes both the quotient
q := bxy/zc and the remainder r := xy − qz, cf. 2.4.

• */r (x y z – q := bxy/z + 1/2c), “multiply-then-divide” with nearest-
integer rounding: multiplies two integers x and y with 513-bit interme-
diate result, then divides the product by z, cf. 2.4.

• */rmod (x y z – q r), similar to */r, but computes both the quotient
q := bxy/z + 1/2c and the remainder r := xy − qz, cf. 2.4.

• *>> (x y z – q), similar to */, but with division replaced with a right
shift, cf. 2.4. Computes q := bxy/2zc for 0 ≤ z ≤ 256. Equivalent to
1<< */.

• *>>c (x y z – q), similar to */c, but with division replaced with a right
shift, cf. 2.4. Computes q := dxy/2ze for 0 ≤ z ≤ 256. Equivalent to
1<< */c.

• *>>r (x y z – q), similar to */r, but with division replaced with a
right shift, cf. 2.4. Computes q := bxy/2z + 1/2c for 0 ≤ z ≤ 256.
Equivalent to 1<< */r.

• *mod (x y z – r), similar to */mod, but computes only the remainder
r := xy − qz, where q := bxy/zc. Equivalent to */mod nip.

• + (x y – x+y), computes the sum x+y of two Integers x and y, cf. 2.4.

• +"〈string〉" (S – S ′), concatenates String S with a string literal,
cf. 2.10. Equivalent to "〈string〉" $+.

• - (x y – x− y), computes the difference x− y of two Integers x and y,
cf. 2.4.

• -1 (– −1), pushes Integer −1.

• -1<< (x – −2x), computes −2x for 0 ≤ x ≤ 256. Approximately
equivalent to 1<< negate or -1 swap <<, but works for x = 256 as
well.

65

Appendix A. List of Fift words

• -roll (xn . . .x0 n – x0 xn . . .x1), rotates the top n stack entries in the
opposite direction, where n ≥ 0 is also passed in the stack, cf. 2.5. In
particular, 1 -roll is equivalent to swap, and 2 -roll to -rot.

• -rot (x y z – z x y), rotates the three topmost stack entries in the
opposite direction, cf. 2.5. Equivalent to rot rot.

• -trailing (S – S ′), removes from String S all trailing spaces. Equiv-
alent to bl (-trailing).

• -trailing0 (S – S ′), removes from String S all trailing ‘0’ characters.
Equivalent to char 0 (-trailing).

• . (x –), prints the decimal representation of Integer x, followed by a
single space, cf. 2.4. Equivalent to ._ space.

• ."〈string〉" (–), prints a constant string into the standard output,
cf. 2.10.

• ._ (x –), prints the decimal representation of Integer x without any
spaces. Equivalent to (.) type.

• .s (–), dumps all stack entries starting from the deepest, leaving
them intact, cf. 2.5. Human-readable representations of stack entries
are output separated by spaces, followed by an end-of-line character.

• .tc (–), outputs the total number of allocated cells into the standard
error stream.

• / (x y – q := bx/yc), computes the floor-rounded quotient bx/yc of two
Integers, cf. 2.4.

• /* 〈multiline-comment〉 */ (–), skips a multi-line comment delim-
ited by word “*/” (followed by a blank or an end-of-line character),
cf. 2.2.

• // 〈comment-to-eol〉 (–), skips a single-line comment until the end
of the current line, cf. 2.2.

• /c (x y – q := dx/ye), computes the ceiling-rounded quotient dx/ye of
two Integers, cf. 2.4.

66

Appendix A. List of Fift words

• /cmod (x y – q r), computes both the ceiling-rounded quotient q :=
dx/ye and the remainder r := x− qy, cf. 2.4.

• /mod (x y – q r), computes both the floor-rounded quotient q := bx/yc
and the remainder r := x− qy, cf. 2.4.

• /r (x y – q), computes the nearest-integer-rounded quotient bx/y+1/2c
of two Integers, cf. 2.4.

• /rmod (x y – q r), computes both the nearest-integer-rounded quotient
q := bx/y + 1/2c and the remainder r := x− qy, cf. 2.4.

• 0 (– 0), pushes Integer 0.

• 0< (x – ?), checks whether x < 0 (i.e., pushes −1 if x is negative, 0
otherwise), cf. 2.12. Equivalent to 0 <.

• 0<= (x – ?), checks whether x ≤ 0 (i.e., pushes −1 if x is non-positive,
0 otherwise), cf. 2.12. Equivalent to 0 <=.

• 0<> (x – ?), checks whether x 6= 0 (i.e., pushes −1 if x is non-zero, 0
otherwise), cf. 2.12. Equivalent to 0 <>.

• 0= (x – ?), checks whether x = 0 (i.e., pushes −1 if x is zero, 0 other-
wise), cf. 2.12. Equivalent to 0 =.

• 0> (x – ?), checks whether x > 0 (i.e., pushes −1 if x is positive, 0
otherwise), cf. 2.12. Equivalent to 0 >.

• 0>= (x – ?), checks whether x ≥ 0 (i.e., pushes −1 if x is non-negative,
0 otherwise), cf. 2.12. Equivalent to 0 >=.

• 1 (– 1), pushes Integer 1.

• 1+ (x – x+ 1), computes x+ 1. Equivalent to 1 +.

• 1- (x – x− 1), computes x− 1. Equivalent to 1 -.

• 1<< (x – 2x), computes 2x for 0 ≤ x ≤ 255. Equivalent to 1 swap <<.

• 1<<1- (x – 2x−1), computes 2x−1 for 0 ≤ x ≤ 256. Almost equivalent
to 1<< 1-, but works for x = 256.

67

Appendix A. List of Fift words

• 2 (– 2), pushes Integer 2.

• 2* (x – 2x), computes 2x. Equivalent to 2 *.

• 2+ (x – x+ 2), computes x+ 2. Equivalent to 2 +.

• 2- (x – x− 2), computes x− 2. Equivalent to 2 -.

• 2/ (x – bx/2c), computes bx/2c. Equivalent to 2 / or to 1 >>.

• 2=: 〈word-name〉 (x y –), an active variant of 2constant: defines a
new ordinary word 〈word-name〉 that would push the given values x
and y when invoked, cf. 2.7.

• 2constant (x y –), scans a blank-delimited word name S from the
remainder of the input, and defines a new ordinary word S as a double
constant, which will push the given values x and y (of arbitrary types)
when invoked, cf. 4.5.

• 2drop (x y –), removes the two topmost stack entries, cf. 2.5. Equiv-
alent to drop drop.

• 2dup (x y – x y x y), duplicates the topmost pair of stack entries,
cf. 2.5. Equivalent to over over.

• 2over (x y z w – x y z w x y), duplicates the second topmost pair of
stack entries.

• 2swap (a b c d – c d a b), interchanges the two topmost pairs of stack
entries, cf. 2.5.

• : 〈word-name〉 (e –), defines a new ordinary word 〈word-name〉 in the
dictionary using WordDef e as its definition, cf. 4.5. If the specified
word is already present in the dictionary, it is tacitly redefined.

• :: 〈word-name〉 (e –), defines a new active word 〈word-name〉 in the
dictionary using WordDef e as its definition, cf. 4.5. If the specified
word is already present in the dictionary, it is tacitly redefined.

• ::_ 〈word-name〉 (e –), defines a new active prefix word 〈word-name〉
in the dictionary using WordDef e as its definition, cf. 4.5. If the
specified word is already present in the dictionary, it is tacitly redefined.

68

Appendix A. List of Fift words

• :_ 〈word-name〉 (e –), defines a new ordinary prefix word 〈word-name〉
in the dictionary using WordDef e as its definition, cf. 4.5. If the
specified word is already present in the dictionary, it is tacitly redefined.

• < (x y – ?), checks whether x < y (i.e., pushes −1 if Integer x is less
than Integer y, 0 otherwise), cf. 2.12.

• <# (– S), pushes an empty String. Typically used for starting the con-
version of an Integer into its human-readable representation, decimal
or in another base. Equivalent to "".

• << (x y – x · 2y), computes an arithmetic left shift of binary number x
by y ≥ 0 positions, yielding x · 2y, cf. 2.4.

• <</ (x y z – q), computes q := b2zx/yc for 0 ≤ z ≤ 256 producing a
513-bit intermediate result, similarly to */, cf. 2.4. Equivalent to 1<<
swap */.

• <</c (x y z – q), computes q := d2zx/ye for 0 ≤ z ≤ 256 producing a
513-bit intermediate result, similarly to */c, cf. 2.4. Equivalent to 1<<
swap */c.

• <</r (x y z – q), computes q := b2zx/y+1/2c for 0 ≤ z ≤ 256 producing
a 513-bit intermediate result, similarly to */r, cf. 2.4. Equivalent to
1<< swap */r.

• <= (x y – ?), checks whether x ≤ y (i.e., pushes −1 if Integer x is less
than or equal to Integer y, 0 otherwise), cf. 2.12.

• <> (x y – ?), checks whether x 6= y (i.e., pushes −1 if Integers x and y
are not equal, 0 otherwise), cf. 2.12.

• <b (– b), creates a new empty Builder, cf. 5.2.

• <s (c – s), transforms a Cell c into a Slice s containing the same data,
cf. 5.3. It usually marks the start of the deserialization of a cell.

• = (x y – ?), checks whether x = y (i.e., pushes −1 if Integers x and y
are equal, 0 otherwise), cf. 2.12.

69

Appendix A. List of Fift words

• =: 〈word-name〉 (x –), an active variant of constant: defines a new
ordinary word 〈word-name〉 that would push the given value x when
invoked, cf. 2.7.

• > (x y – ?), checks whether x > y (i.e., pushes −1 if Integer x is greater
than Integer y, 0 otherwise), cf. 2.12.

• >= (x y – ?), checks whether x ≥ y (i.e., pushes −1 if Integer x is
greater than or equal to Integer y, 0 otherwise), cf. 2.12.

• >> (x y – q := bx · 2−yc), computes an arithmetic right shift of binary
number x by 0 ≤ y ≤ 256 positions, cf. 2.4. Equivalent to 1<< /.

• >>c (x y – q := dx · 2−ye), computes the ceiling-rounded quotient q of
x by 2y for 0 ≤ y ≤ 256, cf. 2.4. Equivalent to 1<< /c.

• >>r (x y – q := bx · 2−y + 1/2c), computes the nearest-integer-rounded
quotient q of x by 2y for 0 ≤ y ≤ 256, cf. 2.4. Equivalent to 1<< /r.

• ?dup (x – x x or 0), duplicates an Integer x, but only if it is non-zero,
cf. 2.5. Otherwise leaves it intact.

• @’ 〈word-name〉 (– e), recovers the definition of the specified word
at execution time, performing a dictionary lookup each time it is in-
voked, and then executes this definition, cf. 2.7 and 4.6. May be
used to recover current values of constants inside word definitions and
other blocks by using the phrase @’ 〈word-name〉, equivalent to (’)
〈word-name〉 execute.

• B+ (B′ B′′ – B), concatenates two Bytes values, cf. 5.6.

• B, (b B – b′), appends Bytes B to Builder b, cf. 5.2. If there is no
room in b for B, throws an exception.

• B= (B B′ – ?), checks whether two Bytes sequences are equal, and
returns −1 or 0 depending on the comparison outcome, cf. 5.6.

• B>Li@ (B x – y), deserializes the first x/8 bytes of a Bytes value B as
a signed little-endian x-bit Integer y, cf. 5.6.

70

Appendix A. List of Fift words

• B>Li@+ (B x – B′ y), deserializes the first x/8 bytes of B as a signed
little-endian x-bit Integer y similarly to B>Li@, but also returns the
remaining bytes of B, cf. 5.6.

• B>Lu@ (B x – y), deserializes the first x/8 bytes of a Bytes value B as
an unsigned little-endian x-bit Integer y, cf. 5.6.

• B>Lu@+ (B x – B′ y), deserializes the first x/8 bytes of B as an unsigned
little-endian x-bit Integer y similarly to B>Lu@, but also returns the
remaining bytes of B, cf. 5.6.

• B>boc (B – c), deserializes a “standard” bag of cells (i.e., a bag of cells
with exactly one root cell) represented by Bytes B, and returns the
root Cell c, cf. 5.5.

• B>file (B S –), creates a new (binary) file with the name specified
in String S and writes data from Bytes B into the new file, cf. 5.6. If
the specified file already exists, it is overwritten.

• B>i@ (B x – y), deserializes the first x/8 bytes of a Bytes value B as
a signed big-endian x-bit Integer y, cf. 5.6.

• B>i@+ (B x – B′ y), deserializes the first x/8 bytes of B as a signed big-
endian x-bit Integer y similarly to B>i@, but also returns the remaining
bytes of B, cf. 5.6.

• B>u@ (B x – y), deserializes the first x/8 bytes of a Bytes value B as
an unsigned big-endian x-bit Integer y, cf. 5.6.

• B>u@+ (B x – B′ y), deserializes the first x/8 bytes of B as an un-
signed big-endian x-bit Integer y similarly to B>u@, but also returns
the remaining bytes of B, cf. 5.6.

• B@ (s x – B), fetches the first x bytes (i.e., 8x bits) from Slice s, and
returns them as a Bytes value B, cf. 5.3. If there are not enough data
bits in s, throws an exception.

• B@+ (s x – B s′), similar to B@, but returns the remainder of Slice s as
well, cf. 5.3.

• B@? (s x – B −1 or 0), similar to B@, but uses a flag to indicate failure
instead of throwing an exception, cf. 5.3.

71

Appendix A. List of Fift words

• B@?+ (s x – B s′ −1 or s 0), similar to B@+, but uses a flag to indicate
failure instead of throwing an exception, cf. 5.3.

• Bcmp (B B′ – x), lexicographically compares two Bytes sequences, and
returns −1, 0, or 1, depending on the comparison result, cf. 5.6.

• Bhash (B – B′), computes the sha256 hash of a Bytes value, cf. 5.6.
The hash is returned as a 32-byte Bytes value.

• Blen (B – x), returns the length of a Bytes value B in bytes, cf. 5.6.

• Bx. (B –), prints the hexadecimal representation of a Bytes value,
cf. 5.6. Each byte is represented by exactly two uppercase hexadecimal
digits.

• B{〈hex-digits〉} (– B), pushes a Bytes literal containing data repre-
sented by an even number of hexadecimal digits, cf. 5.6.

• B| (B x – B′ B′′), cuts the first x bytes from a Bytes value B, and
returns both the first x bytes (B′) and the remainder (B′′) as new
Bytes values, cf. 5.6.

• Li>B (x y – B), stores a signed little-endian y-bit Integer x into a Bytes
value B consisting of exactly y/8 bytes. Integer y must be a multiple
of eight in the range 0 . . . 256, cf. 5.6.

• Lu>B (x y – B), stores an unsigned little-endian y-bit Integer x into
a Bytes value B consisting of exactly y/8 bytes. Integer y must be a
multiple of eight in the range 0 . . . 256, cf. 5.6.

• [(–), opens an internal interpreter session even if state is greater
than zero, i.e., all subsequent words are executed immediately instead
of being compiled.

• [compile] 〈word-name〉 (–), compiles 〈word-name〉 as if it were an
ordinary word, even if it is active, cf. 4.6. Essentially equivalent to ’
〈word-name〉 execute.

•] (x1 . . .xn n –), closes an internal interpreter session opened by [
and invokes (compile) or (execute) afterwards depending on whether
state is greater than zero. For instance, { [2 3 + 1] * } is equiv-
alent to { 5 * }.

72

Appendix A. List of Fift words

• abort (S –), throws an exception with an error message taken from
String S, cf. 3.5.

• abort"〈message〉" (x –), throws an exception with the error message
〈message〉 if the Integer x is non-zero, cf. 3.5.

• abs (x – |x|), computes the absolute value |x| = max(x,−x) of Inte-
ger x. Equivalent to dup negate max.

• and (x y – x&y), computes the bitwise AND of two Integers, cf. 2.4.

• b+ (b b′ – b′′), concatenates two Builders b and b′, cf. 5.2.

• b. (x –), prints the binary representation of an Integer x, followed by
a single space. Equivalent to b._ space.

• b._ (x –), prints the binary representation of an Integer x without any
spaces. Equivalent to (b.) type.

• b> (b – c), transforms a Builder b into a new Cell c containing the same
data as b, cf. 5.2.

• b>idict! (v x s n – s′ −1 or s 0), adds a new value v (represented
by a Builder) with key given by signed big-endian n-bit integer x into
dictionary s with n-bit keys, and returns the new dictionary s′ and −1
on success, cf. 6.3. Otherwise the unchanged dictionary s and 0 are
returned.

• b>idict!+ (v x s n – s′ −1 or s 0), adds a new key-value pair (x, v) into
dictionary s similarly to b>idict!, but fails if the key already exists
by returning the unchanged dictionary s and 0, cf. 6.3.

• b>udict! (v x s n – s′ −1 or s 0), adds a new value v (represented by
a Builder) with key given by unsigned big-endian n-bit integer x into
dictionary s with n-bit keys, and returns the new dictionary s′ and −1
on success, cf. 6.3. Otherwise the unchanged dictionary s and 0 are
returned.

• b>udict!+ (v x s n – s′ −1 or s 0), adds a new key-value pair (x, v) into
dictionary s similarly to b>udict!, but fails if the key already exists
by returning the unchanged dictionary s and 0, cf. 6.3.

73

Appendix A. List of Fift words

• bbitrefs (b – x y), returns both the number of data bits x and the
number of references y already stored in Builder b, cf. 5.2.

• bbits (b – x), returns the number of data bits already stored in Builder b.
The result x is an Integer in the range 0 . . . 1023, cf. 5.2.

• bl (– x), pushes the Unicode codepoint of a space, i.e., 32, cf. 2.10.

• boc+>B (c x – B), creates and serializes a “standard” bag of cells, con-
taining one root Cell c along with all its descendants, cf. 5.5. An
Integer parameter 0 ≤ x ≤ 31 is used to pass flags indicating the addi-
tional options for bag-of-cells serialization, with individual bits having
the following effect:

– +1 enables bag-of-cells index creation (useful for lazy deserializa-
tion of large bags of cells).

– +2 includes the CRC32-C of all data into the serialization (useful
for checking data integrity).

– +4 explicitly stores the hash of the root cell into the serialization
(so that it can be quickly recovered afterwards without a complete
deserialization).

– +8 stores hashes of some intermediate (non-leaf) cells (useful for
lazy deserialization of large bags of cells).

– +16 stores cell cache bits to control caching of deserialized cells.

Typical values of x are x = 0 or x = 2 for very small bags of cells (e.g.,
TON Blockchain external messages) and x = 31 for large bags of cells
(e.g., TON Blockchain blocks).

• boc>B (c – B), serializes a small “standard” bag of cells with root Cell c
and all its descendants, cf. 5.5. Equivalent to 0 boc+>B.

• brefs (b – x), returns the number of references already stored in
Builder b, cf. 5.2. The result x is an Integer in the range 0 . . . 4.

• brembitrefs (b – x y), returns both the maximum number of additional
data bits 0 ≤ x ≤ 1023 and the maximum number of additional cell
references 0 ≤ y ≤ 4 that can be stored in Builder b, cf. 5.2.

74

Appendix A. List of Fift words

• brembits (b – x), returns the maximum number of additional data
bits that can be stored in Builder b, cf. 5.2. Equivalent to bbits 1023
swap -.

• bremrefs (b – x), returns the maximum number of additional cell ref-
erences that can be stored in Builder b, cf. 5.2.

• bye (–), quits the Fift interpreter to the operating system with a zero
exit code, cf. 2.3. Equivalent to 0 halt.

• b{〈binary-data〉} (– s), creates a Slice s that contains no references
and up to 1023 data bits specified in 〈binary-data〉, which must be a
string consisting only of the characters ‘0’ and ‘1’, cf. 5.1.

• char 〈string〉 (– x), pushes an Integer with the Unicode codepoint
of the first character of 〈string〉, cf. 2.10. For instance, char * is
equivalent to 42.

• chr (x – S), returns a new String S consisting of one UTF-8 encoded
character with Unicode codepoint x.

• cmp (x y – z), compares two Integers x and y, and pushes 1 if x > y,
−1 if x < y, and 0 if x = y, cf. 2.12. Approximately equivalent to -
sgn.

• cond (x e e′ –), if Integer x is non-zero, executes e, otherwise executes
e′, cf. 3.2.

• constant (x –), scans a blank-delimited word name S from the re-
mainder of the input, and defines a new ordinary word S as a constant,
which will push the given value x (of arbitrary type) when invoked,
cf. 4.5 and 2.7.

• cr (–), outputs a carriage return (or a newline character) into the
standard output, cf. 2.10.

• create (e –), defines a new ordinary word with the name equal to the
next word scanned from the input, using WordDef e as its definition,
cf. 4.5. If the word already exists, it is tacitly redefined.

75

Appendix A. List of Fift words

• csr. (s –), recursively prints a Slice s, cf. 5.3. On the first line,
the data bits of s are displayed in hexadecimal form embedded into
an x{...} construct similar to the one used for Slice literals (cf. 5.1).
On the next lines, the cells referred to by s are printed with larger
indentation.

• depth (– n), returns the current depth (the total number of entries)
of the Fift stack as an Integer n ≥ 0.

• dictmap (s n e – s′), applies execution token e (i.e., an anonymous
function) to each of the key-value pairs stored in a dictionary s with
n-bit keys, cf. 6.3. The execution token is executed once for each key-
value pair, with a Builder b and a Slice v (containing the value) pushed
into the stack before executing e. After the execution e must leave in
the stack either a modified Builder b′ (containing all data from b along
with the new value v′) and −1, or 0 indicating failure. In the latter
case, the corresponding key is omitted from the new dictionary.

• dictmerge (s s′ n e – s′′), combines two dictionaries s and s′ with
n-bit keys into one dictionary s′′ with the same keys, cf. 6.3. If a
key is present in only one of the dictionaries s and s′, this key and the
corresponding value are copied verbatim to the new dictionary s′′. Oth-
erwise the execution token (anonymous function) e is invoked to merge
the two values v and v′ corresponding to the same key k in s and s′,
respectively. Before e is invoked, a Builder b and two Slices v and v′
representing the two values to be merged are pushed. After the execu-
tion e leaves either a modified Builder b′ (containing the original data
from b along with the combined value) and −1, or 0 on failure. In the
latter case, the corresponding key is omitted from the new dictionary.

• dictnew (– s), pushes a Slice that represents a new empty dictionary,
cf. 6.3. Equivalent to b{0}.

• does (x1 . . .xn n e – e′), creates a new execution token e′ that would
push n values x1, . . . , xn into the stack and then execute e when
invoked, cf. 4.7. It is roughly equivalent to a combination of ({),
(compile), and (}).

• drop (x –), removes the top-of-stack entry, cf. 2.5.

76

Appendix A. List of Fift words

• dup (x – x x), duplicates the top-of-stack entry, cf. 2.5. If the stack is
empty, throws an exception.

• ed25519_chksign (B B′ B′′ – ?), checks whether B′ is a valid Ed25519-
signature of data B with the public key B′′, cf. 6.1.

• ed25519_sign (B B′ – B′′), signs data B with the Ed25519 private
key B′ (a 32-byte Bytes value) and returns the signature as a 64-byte
Bytes value B′′, cf. 6.1.

• ed25519_sign_uint (x B′ – B′′), converts a big-endian unsigned 256-
bit integer x into a 32-byte sequence and signs it using the Ed25519
private key B′ similarly to ed25519_sign, cf. 6.1. Equivalent to swap
256 u>B swap ed25519_sign. The integer x to be signed is typically
computed as the hash of some data.

• emit (x –), prints a UTF-8 encoded character with Unicode codepoint
given by Integer x into the standard output, cf. 2.10. For instance, 42
emit prints an asterisk “*”, and 916 emit prints a Greek Delta “∆”.
Equivalent to chr type.

• empty? (s – ?), checks whether a Slice is empty (i.e., has no data bits
and no references left), and returns −1 or 0 accordingly, cf. 5.3.

• exch (xn . . .x0 n – x0 . . .xn), interchanges the top of the stack with
the n-th stack entry from the top, where n ≥ 0 is also taken from the
stack, cf. 2.5. In particular, 1 exch is equivalent to swap, and 2 exch
to swap rot.

• exch2 (. . .n m – . . .), interchanges the n-th stack entry from the top
with the m-th stack entry from the top, where n ≥ 0, m ≥ 0 are taken
from the stack, cf. 2.5.

• execute (e – . . .), executes the execution token (WordDef) e, cf. 3.1.

• false (– 0), pushes 0 into the stack, cf. 2.11. Equivalent to 0.

• file>B (S – B), reads the (binary) file with the name specified in
String S and returns its contents as a Bytes value, cf. 5.6. If the file
does not exist, an exception is thrown.

77

Appendix A. List of Fift words

• find (S – e −1 or e 1 or 0), looks up String S in the dictionary
and returns its definition as a WordDef e if found, followed by −1 for
ordinary words or 1 for active words, cf. 4.6. Otherwise pushes 0.

• fits (x y – ?), checks whether Integer x is a signed y-bit integer (i.e.,
whether −2y−1 ≤ x < 2y−1 for 0 ≤ y ≤ 1023), and returns −1 or 0
accordingly.

• forget (–), forgets (removes from the dictionary) the definition of
the next word scanned from the input, cf. 4.5.

• gasrunvm (. . . s c z – . . .x c′ z′), a gas-aware version of runvm, cf. 6.4:
invokes a new instance of TVM with both the current continuation cc
and the special register c3 initialized from Slice s, and pushes a zero
into the initial TVM stack similarly to runvmdict, but also initializes
special register c4 (the “root of persistent data”, cf. [4, 1.4]) with Cell c.
Then starts the new TVM instance with the gas limit set to z. The
actually consumed gas z′ is returned at the top of the final Fift stack,
and the final value of c4 is returned immediately below the top of the
final Fift stack as another Cell c′.

• gasrunvmcode (. . . s z – . . .x z′), a gas-aware version of runvmcode,
cf. 6.4: invokes a new instance of TVM with the current continuation
cc initialized from Slice s and with the gas limit set to z, thus executing
code s in TVM. The original Fift stack (without s) is passed in its
entirety as the initial stack of the new TVM instance. When TVM
terminates, its resulting stack is used as the new Fift stack, with the
exit code x and the actually consumed gas z′ pushed at its top. If x is
non-zero, indicating that TVM has been terminated by an unhandled
exception, the next stack entry from the top contains the parameter
of this exception, and x is the exception code. All other entries are
removed from the stack in this case.

• gasrunvmdict (. . . s z – . . .x z′), a gas-aware version of runvmdict,
cf. 6.4: invokes a new instance of TVM with the current continua-
tion cc initialized from Slice s and sets the gas limit to z similarly
to gasrunvmcode, but also initializes the special register c3 with the
same value, and pushes a zero into the initial TVM stack before the
TVM execution begins. The actually consumed gas is returned as an

78

Appendix A. List of Fift words

Integer z′. In a typical application Slice s consists of a subroutine se-
lection code that uses the top-of-stack Integer to select the subroutine
to be executed, thus enabling the definition and execution of several
mutually-recursive subroutines (cf. [4, 4.6] and 7.8). The selector equal
to zero corresponds to the main() subroutine in a large TVM program.

• halt (x –), quits to the operating system similarly to bye, but uses
Integer x as the exit code, cf. 2.3.

• hash (c – B), computes the sha256-based representation hash of Cell c
(cf. [4, 3.1]), which unambiguously defines c and all its descendants
(provided there are no collisions for sha256), cf. 5.4. The result is
returned as a Bytes value consisting of exactly 32 bytes.

• hold (S x – S ′), appends to String S one UTF-8 encoded character
with Unicode codepoint x. Equivalent to chr $+.

• i, (b x y – b′), appends the big-endian binary representation of a signed
y-bit integer x to Builder b, where 0 ≤ y ≤ 257, cf. 5.2. If there is not
enough room in b (i.e., if b already contains more than 1023 − y data
bits), or if Integer x does not fit into y bits, an exception is thrown.

• i>B (x y – B), stores a signed big-endian y-bit Integer x into a Bytes
value B consisting of exactly y/8 bytes. Integer y must be a multiple
of eight in the range 0 . . . 256, cf. 5.6.

• i@ (s x – y), fetches a signed big-endian x-bit integer from the first x
bits of Slice s, cf. 5.3. If s contains less than x data bits, an exception
is thrown.

• i@+ (s x – y s′), fetches a signed big-endian x-bit integer from the first
x bits of Slice s similarly to i@, but returns the remainder of s as well,
cf. 5.3.

• i@? (s x – y −1 or 0), fetches a signed big-endian integer from a Slice
similarly to i@, but pushes integer −1 afterwards on success, cf. 5.3. If
there are less than x bits left in s, pushes integer 0 to indicate failure.

• i@?+ (s x – y s′ −1 or s 0), fetches a signed big-endian integer from
Slice s and computes the remainder of this Slice similarly to i@+, but

79

Appendix A. List of Fift words

pushes −1 afterwards to indicate success, cf. 5.3. On failure, pushes
the unchanged Slice s and 0 to indicate failure.

• idict! (v x s n – s′ −1 or s 0), adds a new value v (represented
by a Slice) with key given by signed big-endian n-bit integer x into
dictionary s with n-bit keys, and returns the new dictionary s′ and −1
on success, cf. 6.3. Otherwise the unchanged dictionary s and 0 are
returned.

• idict!+ (v x s n – s′ −1 or s 0), adds a new key-value pair (x, v) into
dictionary s similarly to idict!, but fails if the key already exists by
returning the unchanged dictionary s and 0, cf. 6.3.

• idict@ (x s n – v −1 or 0), looks up key represented by signed big-
endian n-bit Integer x in the dictionary represented by Slice s, cf. 6.3.
If the key is found, returns the corresponding value as a Slice v and
−1. Otherwise returns 0.

• if (x e –), executes execution token (i.e., a WordDef) e, but only if
Integer x is non-zero, cf. 3.2.

• ifnot (x e –), executes execution token e, but only if Integer x is zero,
cf. 3.2.

• include (S –), loads and interprets a Fift source file from the path
given by String S, cf. 7.1. If the filename S does not begin with a
slash, the Fift include search path, typically taken from the FIFTPATH
environment variable or the -I command-line argument of the Fift
interpreter (and equal to /usr/lib/fift if both are absent), is used
to locate S.

• max (x y – z), computes the maximum z := max(x, y) of two Integers
x and y. Equivalent to minmax nip.

• min (x y – z), computes the minimum z := min(x, y) of two Integers x
and y. Equivalent to minmax drop.

• minmax (x y – z t), computes both the minimum z := min(x, y) and
the maximum t := max(x, y) of two Integers x and y.

80

Appendix A. List of Fift words

• mod (x y – r := x mod y), computes the remainder x mod y = x − y ·
bx/yc of division of x by y, cf. 2.4.

• negate (x – −x), changes the sign of an Integer, cf. 2.4.

• newkeypair (– B B′), generates a new Ed25519 private/public key
pair, and returns both the private key B and the public key B′ as
32-byte Bytes values, cf. 6.1. The quality of the keys is good enough
for testing purposes. Real applications must feed enough entropy into
OpenSSL PRNG before generating Ed25519 keypairs.

• nip (x y – y), removes the second stack entry from the top, cf. 2.5.
Equivalent to swap drop.

• nop (–), does nothing, cf. 4.6.

• not (x – −1 − x), computes the bitwise complement of an Integer,
cf. 2.4.

• now (– x), returns the current Unixtime as an Integer, cf. 6.1.

• or (x y – x|y), computes the bitwise OR of two Integers, cf. 2.4.

• over (x y – x y x), creates a copy of the second stack entry from the
top over the top-of-stack entry, cf. 2.5.

• pfxdict! (v k s n – s′ −1 or s 0), adds key-value pair (k, v), both
represented by Slices, into a prefix dictionary s with keys of length at
most n, cf. 6.3. On success, returns the modified dictionary s′ and −1.
On failure, returns the original dictionary s and 0.

• pfxdict!+ (v k s n – s′ −1 or s 0), adds key-value pair (k, v) into
prefix dictionary s similarly to pfxdict!, but fails if the key already
exists, cf. 6.3.

• pfxdict@ (k s n – v −1 or 0), looks up key k (represented by a Slice) in
the prefix dictionary s with the length of keys limited by n bits, cf. 6.3.
On success, returns the value found as a Slice v and −1. On failure,
returns 0.

81

Appendix A. List of Fift words

• pick (xn . . .x0 n – xn . . .x0 xn), creates a copy of the n-th entry from
the top of the stack, where n ≥ 0 is also passed in the stack, cf. 2.5.
In particular, 0 pick is equivalent to dup, and 1 pick to over.

• priv>pub (B – B′), computes the public key corresponding to a private
Ed25519 key, cf. 6.1. Both the public key B′ and the private key B
are represented by 32-byte Bytes values.

• quit (. . . –), exits to the topmost level of the Fift interpreter (without
printing an ok in interactive mode) and clears the stack, cf. 2.3.

• ref, (b c – b′), appends to Builder b a reference to Cell c, cf. 5.2. If b
already contains four references, an exception is thrown.

• ref@ (s – c), fetches the first reference from the Slice s and returns
the Cell c referred to, cf. 5.3. If there are no references left, throws an
exception.

• ref@+ (s – s′ c), fetches the first reference from the Slice s similarly to
ref@, but returns the remainder of s as well, cf. 5.3.

• ref@? (s – c −1 or 0), fetches the first reference from the Slice s
similarly to ref@, but uses a flag to indicate failure instead of throwing
an exception, cf. 5.3.

• ref@?+ (s – s′ c −1 or s 0), similar to ref@+, but uses a flag to indicate
failure instead of throwing an exception, cf. 5.3.

• remaining (s – x y), returns both the number of data bits x and the
number of cell references y remaining in the Slice s, cf. 5.3.

• reverse (x1 . . .xn y1 . . . ym n m – xn . . .x1 y1 . . . ym), reverses the order
of n stack entries located immediately below the topmost m elements,
where both 0 ≤ m,n ≤ 255 are passed in the stack.

• roll (xn . . .x0 n – xn−1 . . .x0 xn), rotates the top n stack entries,
where n ≥ 0 is also passed in the stack, cf. 2.5. In particular, 1 roll
is equivalent to swap, and 2 roll to rot.

• rot (x y z – y z x), rotates the three topmost stack entries.

82

Appendix A. List of Fift words

• runvmcode (. . . s – . . .x), invokes a new instance of TVM with the
current continuation cc initialized from Slice s, thus executing code s
in TVM, cf. 6.4. The original Fift stack (without s) is passed in its
entirety as the initial stack of the new TVM instance. When TVM
terminates, its resulting stack is used as the new Fift stack, with the
exit code x pushed at its top. If x is non-zero, indicating that TVM
has been terminated by an unhandled exception, the next stack entry
from the top contains the parameter of this exception, and x is the
exception code. All other entries are removed from the stack in this
case.

• runvmdict (. . . s – . . .x), invokes a new instance of TVM with the
current continuation cc initialized from Slice s similarly to runvmcode,
but also initializes the special register c3 with the same value, and
pushes a zero into the initial TVM stack before start, cf. 6.4. In a
typical application Slice s consists of a subroutine selection code that
uses the top-of-stack Integer to select the subroutine to be executed,
thus enabling the definition and execution of several mutually-recursive
subroutines (cf. [4, 4.6] and 7.8). The selector equal to zero corresponds
to the main() subroutine in a large TVM program.

• runvm (. . . s c – . . .x c′), invokes a new instance of TVM with both
the current continuation cc and the special register c3 initialized from
Slice s, and pushes a zero into the initial TVM stack similarly to
runvmdict, but also initializes special register c4 (the “root of per-
sistent data”, cf. [4, 1.4]) with Cell c, cf. 6.4. The final value of c4 is
returned at the top of the final Fift stack as another Cell c′. In this
way one can emulate the execution of smart contracts that inspect or
modify their persistent storage.

• s, (b s – b′), appends data bits and references taken from Slice s to
Builder b, cf. 5.2.

• s> (s –), throws an exception if Slice s is non-empty, cf. 5.3. It usually
marks the end of the deserialization of a cell, checking whether there
are any unprocessed data bits or references left.

• s>c (s – c), creates a Cell c directly from a Slice s, cf. 5.3. Equivalent
to <b swap s, b>.

83

Appendix A. List of Fift words

• sbitrefs (s – x y), returns both the number of data bits x and the
number of cell references y remaining in Slice s, cf. 5.3. Equivalent to
remaining.

• sbits (s – x), returns the number of data bits x remaining in Slice s,
cf. 5.3.

• sgn (x – y), computes the sign of an Integer x (i.e., pushes 1 if x > 0,
−1 if x < 0, and 0 if x = 0), cf. 2.12. Equivalent to 0 cmp.

• shash (s – B), computes the sha256-based representation hash of a
Slice by first transforming it into a cell, cf. 5.4. Equivalent to s>c
hash.

• sign (S x – S ′), appends a minus sign “-” to String S if Integer x is
negative. Otherwise leaves S intact.

• skipspc (–), skips blank characters from the current input line until
a non-blank or an end-of-line character is found.

• smca>$ (x y z – S), packs a standard TON smart-contract address
with workchain x (a signed 32-bit Integer) and in-workchain address y
(an unsigned 256-bit Integer) into a 48-character string S (the human-
readable representation of the address) according to flags z, cf. 6.2.
Possible individual flags in z are: +1 for non-bounceable addresses,
+2 for testnet-only addresses, and +4 for base64url output instead of
base64.

• space (–), outputs a single space. Equivalent to bl emit or to ." ".

• sr, (b s – b′), constructs a new Cell containing all data and references
from Slice s, and appends a reference to this cell to Builder b, cf. 5.2.
Equivalent to s>c ref,.

• srefs (s – x), returns the number of cell references x remaining in
Slice s, cf. 5.3.

• swap (x y – y x), interchanges the two topmost stack entries, cf. 2.5.

• ten (– 10), pushes Integer constant 10.

84

Appendix A. List of Fift words

• times (e n –), executes execution token (WordDef) e exactly n times,
if n ≥ 0, cf. 3.3. If n is negative, throws an exception.

• true (– −1), pushes −1 into the stack, cf. 2.11. Equivalent to -1.

• tuck (x y – y x y), equivalent to swap over, cf. 2.5.

• type (s –), prints a String s taken from the top of the stack into the
standard output, cf. 2.10.

• u, (b x y – b′), appends the big-endian binary representation of an
unsigned y-bit integer x to Builder b, where 0 ≤ y ≤ 256, cf. 5.2. If
the operation is impossible, an exception is thrown.

• u>B (x y – B), stores an unsigned big-endian y-bit Integer x into a
Bytes value B consisting of exactly y/8 bytes. Integer y must be a
multiple of eight in the range 0 . . . 256, cf. 5.6.

• u@ (s x – y), fetches an unsigned big-endian x-bit integer from the first
x bits of Slice s, cf. 5.3. If s contains less than x data bits, an exception
is thrown.

• u@+ (s x – y s′), fetches an unsigned big-endian x-bit integer from the
first x bits of Slice s similarly to u@, but returns the remainder of s as
well, cf. 5.3.

• u@? (s x – y −1 or 0), fetches an unsigned big-endian integer from
a Slice similarly to u@, but pushes integer −1 afterwards on success,
cf. 5.3. If there are less than x bits left in s, pushes integer 0 to indicate
failure.

• u@?+ (s x – y s′ −1 or s 0), fetches an unsigned big-endian integer from
Slice s and computes the remainder of this Slice similarly to u@+, but
pushes −1 afterwards to indicate success, cf. 5.3. On failure, pushes
the unchanged Slice s and 0 to indicate failure.

• udict! (v x s n – s′ −1 or s 0), adds a new value v (represented
by a Slice) with key given by big-endian unsigned n-bit integer x into
dictionary s with n-bit keys, and returns the new dictionary s′ and −1
on success, cf. 6.3. Otherwise the unchanged dictionary s and 0 are
returned.

85

Appendix A. List of Fift words

• udict!+ (v x s n – s′ −1 or s 0), adds a new key-value pair (x, v) into
dictionary s similarly to udict!, but fails if the key already exists by
returning the unchanged dictionary s and 0, cf. 6.3.

• udict@ (x s n – v −1 or 0), looks up key represented by unsigned big-
endian n-bit Integer x in the dictionary represented by Slice s, cf. 6.3.
If the key is found, returns the corresponding value as a Slice v and
−1. Otherwise returns 0.

• ufits (x y – ?), checks whether Integer x is an unsigned y-bit integer
(i.e., whether 0 ≤ x < 2y for 0 ≤ y ≤ 1023), and returns −1 or 0
accordingly.

• until (e –), an until loop, cf. 3.4: executes WordDef e, then removes
the top-of-stack integer and checks whether it is zero. If it is, then
begins a new iteration of the loop by executing e. Otherwise exits the
loop.

• while (e e′ –), a while loop, cf. 3.4: executes WordDef e, then re-
moves and checks the top-of-stack integer. If it is zero, exits the loop.
Otherwise executes WordDef e′, then begins a new loop iteration by
executing e and checking the exit condition afterwards.

• word (x – s), parses a word delimited by the character with the Unicode
codepoint x from the remainder of the current input line and pushes the
result as a String, cf. 2.10. For instance, bl word abracadabra type
will print the string “abracadabra”. If x = 0, skips leading spaces,
and then scans until the end of the current input line. If x = 32, skips
leading spaces before parsing the next word.

• words (–), prints the names of all words currently defined in the
dictionary, cf. 4.6.

• x. (x –), prints the hexadecimal representation (without the 0x prefix)
of an Integer x, followed by a single space. Equivalent to x._ space.

• x._ (x –), prints the hexadecimal representation (without the 0x pre-
fix) of an Integer x without any spaces. Equivalent to (x.) type.

• xor (x y – x⊕ y), computes the bitwise eXclusive OR of two Integers,
cf. 2.4.

86

Appendix A. List of Fift words

• x{〈hex-data〉} (– s), creates a Slice s that contains no references and
up to 1023 data bits specified in 〈hex-data〉, cf. 5.1. More precisely,
each hex digit from 〈hex-data〉 is transformed into four binary digits
in the usual fashion. After that, if the last character of 〈hex-data〉
is an underscore _, then all trailing binary zeroes and the binary one
immediately preceding them are removed from the resulting binary
string (cf. [4, 1.0] for more details). For instance, x{6C_} is equivalent
to b{01101}.

• { (– l), an active word that increases internal variable state by one
and pushes a new empty WordList into the stack, cf. 4.7.

• |+ (s s′ – s′′), concatenates two Slices s and s′, cf. 5.1. This means
that the data bits of the new Slice s′′ are obtained by concatenating
the data bits of s and s′, and the list of Cell references of s′′ is con-
structed similarly by concatenating the corresponding lists for s and s′.
Equivalent to <b rot s, swap s, b> <s.

• |_ (s s′ – s′′), given two Slices s and s′, creates a new Slice s′′, which
is obtained from s by appending a new reference to a Cell containing
s′, cf. 5.1. Equivalent to <b rot s, swap s>c ref, b> <s.

• } (l – e), an active word that transforms a WordList l into a WordDef
(an execution token) e, thus making all further modifications of l im-
possible, and decreases internal variable state by one; then pushes the
integer 1, followed by a ’nop, cf. 4.7. The net effect is to transform the
constructed WordList into an execution token and push this execution
token into the stack, either immediately or during the execution of an
outer block.

87

