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Abstract 

Adaptive fault isolation methods based on discrepancy-
enabled pairwise comparisons are developed for 
reconfigurable logic devices.  By observing the discrepancy 
characteristics of multiple Concurrent Error Detection 
(CED) configurations, fault isolation is realized without 
requiring additional test vectors or data coding schemes. 
Hence the reprogrammability of Field Programmable Gate 
Arrays (FPGAs) is utilized to examine CED alternatives in 
succession. Results show that for a reprogrammable device 
with one million resources, where 50% of the resources are 
used on an average by the target application, fault 
isolation can be achieved in as few as 28 iterations.  The 
effect of resource utilization, the number of competing 
candidate solutions, and the number of unit resources are 
analyzed and the performance of a halving-based 
algorithm for fault isolation  are quantified. 

1 Introduction 

Efficient detection and isolation of faults within logic 
devices are fundamental issues in the design of dependable 
systems for mission-critical applications.  While traditional 
approaches to these problems rely on unique instances of 
dedicated hardware elements and/or extensive testing 
involving exhaustive or pseudo-exhaustive test vectors, this 
paper develops a new technique based on runtime 
reconfigurability and competitive dueling.  

In Field Programmable Gate Array (FPGA) devices, the 
available number of unit cells such as Look Up Tables 
(LUTs) can comprise many thousands of physical 
resources. In this paper, the difficult problem of rapidly 
identifying a failure among these resources is addressed by 
extending methods from the algorithmic work on 
Combinatorial Group Testing (CGT) [1].  These concepts 
are used to develop new adaptive methods that utilize only 
the FPGA’s usual runtime inputs to identify and isolate 
faults.  This maximizes the device’s online availability even 
while fault isolation is in progress.  

The proposed techniques are evaluated using analytical 
and experimental methods for target implementation on 
SRAM-based FPGAs.  With production exceeding 100 
million units per year, SRAM-based FPGA devices are 
frequently used in a wide range of embedded applications 
requiring high levels of reliability and availability.  
Reconfigurable devices, such as FPGAs, enable new fault 
handling techniques where the repair process can take place 
online when the hardware is in active use, or offline when 
the refurbishment occurs outside the dataflow of the  
normal computational throughput. The emphasis of this 
paper is on fast and reliable fast isolation online using an 
adaptive algorithm. 

Runtime fault detection without using special test vectors 
is achieved in a Concurrent Error Detection (CED) [5] 
strategy by comparing the outputs of two identical 
functional circuits for discrepancies. The discrepancy 
detector provides information regarding whether or not the 
outputs of two competing configurations resident on the 
FPGA produce outputs which are in bitwise agreement with 
each other. Using only this information, an adaptive 
method for reconfiguring the FPGA's functional logic can 
enable fault isolation because alternative CED 
configurations use varying subsets of resources.  When 
these instances of the functional elements are paired over 
time, the accumulated correctness behavior along with their 
resource utilization characteristics are used to isolate the 
physical resource fault. 

Fast fault detection and isolation techniques are highly 
relevant to many embedded device applications, including 
remote sensing, applications in hazardous environments, 
and space missions. For instance, deep space satellites such 
as Stardust contain over 100 FPGA devices [2] while 
aerospace applications routinely employ FPGAs 
extensively for tasks ranging from launch control to signal 
processing.   SRAM-based FPGAs are of significant 
importance due to their high density, unlimited 
reprogrammability, and growing use in mission-
critical/safety-impacting applications. 

Techniques that enable online fault detection, isolation, 
and refurbishment by reprogramming FPGAs once a failure 
occurs provide an attractive alternative to traditional 
redundancy-based techniques.  Reconfiguration offers the 



potential for resolving permanent degradation due to 
radiation-induced stuck-at-faults, thermal fatigue, oxide 
breakdown, electromigration, and other failures. Potential 
benefits include recovery without the increased weight and 
size normally associated with distinct spares that are 
configured at design-time before a specific failure occurs. 
Also, failures need not be precisely diagnosed due to 
automatic evaluation of the FPGA’s residual functionality 
while in-circuit.  Fault location methods provide inputs to 
the repair mechanism which accelerate the repair process, 
and reduce the search space that consists of candidate 
solutions. The fault isolation technique identified in this 
paper is one such method for isolating faults with low 
latency.  

A common limitation facing many fault detection 
schemes is that the failure detector itself may fail.  A fault 
involving the checker may be undetectable or result in the 
corruption of otherwise valid outputs. Traditional 
approaches to fault-detection typically rely on coding-based 
schemes [3][4] or redundancy using a single voter, 
comparator or error detector[5][6].  Triple Modular 
Redundancy (TMR)[7][8] approaches rely on three parallel 
instances of the functional logic to compute the output in 
triplicate and a majority voting element to determine 
consensus and hence the asserted output.  The proposed 
system uses the output of the detector element for fault 
isolation, in addition to detection. In a duplex redundant 
CED system, the problem of fault detection is simplified as 
the outputs of the two elements will be identical in the 
absence of at least a single fault.. 

2 Problem Definition  

In order to better understand the problem at hand, 
consider an analogy termed the Treasurer's Problem which 
is related to the Counterfeit Coin Problem [1]. The 
Counterfeit Coin Problem is extended here by analogy to 
support arbitrary groupings of logic cells within FPGAs.  In 
this Treasurer’s Problem, legitimate coins are made of gold, 
with the face value of the coins being proportional to their 
weight.  However, some counterfeit coins have other metals 
mixed in with the gold, and these counterfeit coins are to be 
identified and removed. The weight of an impure coin is 
different from the weight of pure coins of the same 
denomination.  The treasurer must inspect large quantities 
of coins for authenticity.  Most significantly, since the 
number of counterfeit instances is small relative to the total 
number of coins present, the treasurer does not weigh the 
coins individually. Instead the coins are in a vat, and the 
treasurer retreives coins from the vat to fill bags containing 
exactly 100 monetary units worth of coins. The number of 
coins in each bag may vary because of their multiple 
denominations, yet due to the property that their mass is 

proportional to their denomination then only two equally-
valued legitimate bags will display equal weight.   

Using a pan balance, the treasurer compares the weight of 
two bags at a time to determine whether they are equal 
weight or not. The coins from the bags may be returned to 
the vat after weighing, so that they can be filled in other 
bags later after shuffling. Given these pre-conditions, a 
number of questions arise about how the treasurer will 
identify any faulty coinage such as: How many weighings 
will the treasurer need to identify bags containing the 
impure coins? Can the impure coin be identified, if there 
was only one?  

These questions are analagous to the problems addressed 
in this paper for identification of a faulty physical resource 
used by a functional arrangement of FPGA configurations.  
FPGA devices are composed of an array of logic resources 
such as LUTs that are utilized by functional configurations 
just as the coins are grouped into a bag for weighing. A 
digital design can be mapped onto the resources on an 
FPGA in several ways, just like a bag worth 100 monetary 
units can be filled with coins of different denominations in 
several different ways. When one of the resources used by 
a configuration is faulty, the output of the configuration in 
response to an input may be faulty. Identifying the faulty 
resource from among many fault free resources, without 
testing the resources individually is a challenging task. 
Exhaustive testing of the individual resources is time 
consuming which takes the device offline and reduces its 
availability. By analogy, if the coins were weighed and 
checked individually, the time required would be 
phenomenal to locate a single fault out of thousands of 
resources. Instead, we recast the problem of identifying the 
faulty resource into one of making choices for group 
comparison from among the given FPGA configurations. 

A novel fault-handling scheme based on pairwise 
comparison of competing configurations that utilize 
resources from a common pool is proposed. The fault 
isolation scheme should isolate faults with minimal latency 
without using a specialized block design, or any special test 
inputs. It should also be robust against single-faults that 
could affect the resources in the device. The proposed 
approach does not require any additional test inputs; only 
the normal dataflow inputs that are applied. The 
functionally equivalent configurations used for operation 
are pre-designed to realize the required logic functions. The 
property of reconfigurability inherent in FPGAs is utilized 
to accelerate the fault isolation by intelligently shuffling the 
resources used by individual configurations. 

The arrangement of competing configurations on an 
FPGA is as shown in Figure 1. The proposed approach to 
hardware regeneration operates by comparing the outputs 
of a pair of physically distinct but functionally identical 
logic configurations that are loaded onto an FPGA. These 
configurations are identified as Functional Logic L (for left 



half CED configuration) and Functional Logic R (for right 
half CED configuration). These are loaded from the offchip 
EEPROM or RAM. The normal data throughput inputs to 
the FPGA are applied to both configurations 
simultaneously. The outputs of the competing 
configurations are compared using a discrepancy detector, 
which is mirrored over the two competing halves as shown. 
The discrepancy mirror is self-testing as it is instantiated 
equally among the competing configurations and thus 
accounts for faults in the resources used to realize the 
detector itself. The discrepancy detector's output shows 
whether or not the outputs of the configurations match.  If 
the outputs do not match, then one of the two competing 
configurations utilizes a faulty hardware resource. The Data 
Output is propagated outside the FPGA only when there is 
no discrepancy between Functional Logic L’s output and 
Functional Logic R’s output. Moreover, the results of the 
discrepancy detection serve as inputs to control the fault 
isolation algorithm. The detailed design of the self-testing 
discrepancy detector and verification of its operation are 
presented in  [9]. 

 
Figure 1: Overview of FPGA Operation for Repetitive 

Pairwise Evaluation 
 
A mathematical representation of the proposed isolation 

scheme is developed. The underlying principle of operation 
is to use repetitive pairing of competing configurations. 
The properties of the proposed isolation mechanism are 
identified. Conditions that are conducive to expedite the 
fault isolation process are explored.  

3 Resource Representation  

The problem of locating faults using Iterative Pairing can 
be represented using the following mathematical model: 

The set of all competing configurations is represented by 
S. Set Ck represents the resources utilized by configuration 
k. Each competing configuration k, 1 < k <  |S| has a 
unique binary Usage Matrix Uk, 1 < k  < p, with elements 
Uk[i,j],  1 < i  < m, 1 < j  n, where m and n represent the 
rows and columns in the device layout respectively . 
Elements Uk[i,j] = 1 denote the usage of resource (i, j) by 
Ck. The History Matrix H, with elements H[i,j] 1 < i  < m, 
1 < j  < n, is an integer matrix used to represent the relative 
fitness of individual resources. 

A discrepant output from the discrepancy mirror for any 
pairwise comparison of two configurations will lead to a 
unit increment in the value of all H[i,j] where Uk[i,j] = 1, 
for the two configurations. Initially H[i,j] = 0 ∋ i,j. Over a 
period of time, the value of H[i,j] will provide temporal 
information regarding the number of configurations that 
used resource (i,j) that also caused a discrepant output to be 
observed. Lower values of H[i,j] denote higher fitness for 
resource (i,j).  Thus, at any point of time, H[i,j] indicates 
the cumulative history of discrepancies articulated by group 
tests that utilized resource with coordinates (i,j). 

4 Fault Isolation By Discrepancy-Enabled 
Dueling  

Fault isolation by discrepancy-enabled dueling utilizes 
information from the history matrix to accelerate the fault 
isolation process.  The algorithm proceeds by maintaining a 
history of the discrepancies, and the fitness indices of 
individuals involved in the competitive dueling instances. 
An iteration of the isolation process is complete when the 
outputs of the pair of dueling configurations are evaluated 
for discrepancies and the history matrix is updated. In order 
to facilitate faster isolation, the functional configuration of 
the individuals will be updated, by swapping columns of 
resources used by the individuals. These can later be used 
to select configurations to be loaded onto the FPGA for 
carrying out computations. The fitness measure produced 
can also be used by the evolutionary repair algorithm at a 
later stage. The experiment is seeded with a population of 
competing individual configurations. Each individual uses 
a particular subset of the available resources. A cell is 
represented by two coordinates corresponding to the row 
and column that completely specify the location of the cell 
on the FPGA.  

Assuming a single fault, such as a stuck-at-0 or a stuck-
at-1 fault in the device, a subset of the population of 
competitors will be adversely affected. The effect of the 
fault will be observed as a discrepancy at the output of the 
discrepancy detector when an affected individual is paired 
with an unaffected individual. When a discrepancy is 
observed, the subset of resources used by the individual are 
assumed to be  suspect with regard to faults. The elements 
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in the history matrix corresponding to the coordinates of 
the resources used by the individual are incremented to 
note the occurence of the discrepancy. Likewise, when an 
individual does not exhibit a discrepancy upon evaluation, 
the elements in the history matrix corresponding to the 
resources used by the individual are decremented, thereby 
making these resources less suspect of being faulty. Over a 
period of time, through a repeated process of successive 
intersection being subsets of known faulty and fault-free 
resources, a consensus will emerge regarding the location 
of the single fault. The fault is isolated when there is a 
unique element in H with the maximum value among all 
elements. Finding this unique element is the terminating 
condition for one iteration of the isolation process. If the 
algorithm fails to converge upon a single element of H after 
a pre-defined number of iterations, then the existence or 
more than one fault is established, nullifying the single-
fault assumption. As a corollary, if the system converges to 
a state where there are d elements with the maximum value 
in all H[i,j], then d faults are said to have been identified. 
The coordinates of the element with the maximum value in 
the history matrix provides information regarding the 
location of the fault. 

 

Figure 2: Successive Isolation as Input Iterations Increase 
 

There are certain cases where the simple fault isolation 
scheme described above may fail to converge on a single 
faulty resource. A trivial case is when all the resources 
available on the FPGA are used by each configuration. If 
the application demands that all the resources be used, then 
isolation cannot occur through the process of successive 
intersection. Also, in cases where a very low number of 
resources are used by individual configurations, it is 
possible that none of the individuals utilize the faulty 
resource, leading to the state where no discrepancies will be 
observed. The most challenging case is when multiple 
individuals utilize the faulty resource. In this situation, the 
history matrix elements corresponding to the interection of 

the subset of resources used by these individuals will have 
no relative differences, and will all have the highest value. 
Successive intersections between the resource subsets will 
not lead to any further fault isolation. For example, with a 
resource utilization of 40% in a device with 40,000 unit 
resources, isolation proceeds as shown in Figure 2. The 
isolation cannot be completed, and after about 23 iterations, 
the number of suspected faulty elements stays a constant at 
36. Any further isolation cannot occur since there is none 
of the intersections that may follow provide any additional 
isolation information. This neccessitates an algorithm based 
on group testing. 

5 Dueling with Modified Halving 

Combinatorial group testing algorithms relate to the 
problem of identifying individual defective members from 
a large population by conducting tests on sub-groups or 
blocks of elements. Group testing has been used in medical, 
chemical and electrical testing, coding, drug screening, 
pollution control, multiaccess channel management, and 
recently in data verification, clone library screening and 
blood testing. Though group testing algorithms are not 
directly applicable to the problem at hand, some of the 
principles can be used to facilitate fault isolation. CGT 
algorithms have also been applied to the problem Built-In 
Self Test (BIST) diagnosis [11], whereby methods such as 
digging, multi-stage batching, doubling and jumping are 
developed to reduce the number of test within BIST 
schemes. BIST however is a diagnosis method that relies 
upon exhaustive and comprehensive testing, often carried 
out offline. 

To avoid the problem of not being able to proceed with 
isolation in certain cases where successive iterations do not 
provide isolation information, a dueling algorithm is 
proposed which tries to emulate halving. Halving is the 
process of successively reducing the size of the subgroup 
under test by half until, finally a test of a single element is 
required to identify the faulty element. This method cannot 
be directly applied to the problem since it is only possible 
to test groups of resources, and also, the groups of 
resources have to be of the same size – as specified by the 
target application’s computational needs on the FPGA. 

The proposed dueling algorithm works by swapping 
columns in the configurations of individual elements. When 
the fault isolation process approaches a state of stasis, some 
of the columns in the individuals are swapped. The number 
of columns to be swapped is determined by considering the 
number of resources currently suspected of being faulty. A 
number of columns equal to half of the remaining number 
of suspect elements are swapped with other columns in the 
same individual. This will introduce new information, as 
some of the suspected faulty elements used by the 
individual earlier will no longer be used, for example. 
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Swapping is restricted only to the columns to facilitate 
future implementation in FPGA hardware. 

Dueling with column swapping always leads to an 
isolation of the fault, even in the difficult cases where the 
resource utilization is too high, or too low. As shown in 
Figure 3, isolation proceeds till a single faulty element is 
isolated under the same conditions under which the results 
shown in Figure 2, for dueling without swapping were 
obtained. 
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Figure 3: Isolation Progress when Halving is used 

6 Fault Isolation using Halving-enabled 
Dueling  

In order to analyze the behavior of the dueling algorithm 
with modified halving, further experiments were conducted 
to see the implications of various factors on the isolation 
process. In each of the following experiments, the 
population size specifies the number of competing 
individual configurations in the population. Resource 
utilization, expressed as a percentage signifies the amount 
of available resources used by an application implemented 
on the FPGA. The FPGA device is simulated by using a 
square matrix of order n where n denotes the number of 
rows and columns in the device 

6.1 Effect of Number of Elements in S 
The effect of the size of the isolation problem was 

evaluated by applying the proposed technique to simulated 
FPGAs of various array sizes. As shown in Figure 4, for an 
isolation problem where there are 100 rows and columns, 
or 10000 elements, only an average of 14.3 iterations are 
required to isolate a single fault. As the size of the array 
containing the fault increases, the increase in the required 
number of iterations is minimal. For example, for the 
difficult case where there is a single fault in 1 million 
resources, the algorithm requires only an average of 27.4 

iterations to isolate the fault, showing that the algorithm 
scales well with the size of problem.  
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Figure 4: Isolation Performance as a Function of the Total 

Number of Elements 
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Figure 5: Isolation Performance as a Function of the 

Population Size 

6.2 Effect of Population Size 

As the population size increases, fault isolation is 
expected to become faster, since more information will be 
available to the algorithm from the increased population 
size. However, a very high population size may lead to 
more individuals being affected by the same fault. As 
shown in Figure 5, the number of iterations required for 
isolation, with 40000 elements, and 50% resource 
utilization shows a tendency to decrease with an increase in 
the population size. For a population of size 60, only an 
average of 17.2 iterations are required for isolation. 
Practically, however, a very high population size will imply 
the need for a higher number of alternative individual 
configurations. A population size of 30 seems to be an ideal 



tradeoff between ease of isolation, and the difficulty of 
generating increased number of individuals. 

6.3 Effect of Resource Utilization 
The ease with which faults can be isolated also depends 

on the percentage of available resources utilized by the 
individuals. If all the available resources are utilized by the 
individuals, the fault cannot be isolated through the 
proposed process of repetitive pairing, since all the 
individuals are equally likely to be affected by the fault. 
Also, if the utilization is very low, then none of the 
individuals might be affected by the fault. Except for these 
extremes, the algorithm always succeeds in isolating the 
fault. As shown in Figure 6, isolation takes longer when 
less than 20% or greater than 80% of the available 
resources are utilized.         
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Figure 6: Isolation Performance as a Function of the 

Resource Utilization 

7 Conclusions 

A novel intelligent fault isolation method for 
reconfigurable devices based on combinatorial group 
testing methods is presented. The dueling algorithm with 
modified halving consistently isolates the faulty resource 
requiring as few as 18 iterations on an average to isolate a 
fault element from among 40000 elements. The use of the 
algorithm obviates the need for special test inputs, and 
enables online testing of the device. In conjunction with a 
discrepancy detector, normal data throughput inputs can be 
used to isolate faults with a minimal number of iterations. 
Future work on this topic includes the development of an 
architecture to enable partial reconfiguration of FPGAs to 
enable column swapping, and evolutionary algorithms for 
runtime fault tolerance. 
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